1
|
Zimmerman J, Malone BF, Finkin-Groner E, Sun S, Liang R, Foronda M, Schatoff EM, Granowsky E, Goswami S, Katti A, Leach B, Alcorn H, Tammela T, Fukase Y, Khan T, Huggins DJ, Ginn J, Liverton N, Hite RK, Dow LE. A potent and selective TNKS2 inhibitor for tumor-selective WNT suppression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.04.641305. [PMID: 40093088 PMCID: PMC11908206 DOI: 10.1101/2025.03.04.641305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Hyperactive WNT signaling is a potent cancer driver, but clinical translation of WNT inhibitors has been hampered by on-target toxicities. WNT signaling can be constrained through inhibition of the PARP family enzymes Tankyrase 1 (TNKS1) and Tankyrase 2 (TNKS2), however, existing TNKS inhibitors suppress WNT signaling in both tumor and healthy tissues. In this study, we show that the loss of chromosome 8p that occurs in approximately half of advanced epithelial malignancies, creates a collateral vulnerability that enables tumor-selective inhibition of Tankyrase activity. 8p loss depletes expression of TNKS1 and creates a tumor-specific dependency on the functionally redundant TNKS2 protein. Through structure-guided drug design, we identify a first-in-class TNKS2-selective inhibitor that can drive selective WNT inhibition in TNKS1-deficient oncogenic cell and organoid models. This work demonstrates a targetable vulnerability in multiple cancer types, providing a new approach to potent and selective WNT-targeted therapies.
Collapse
Affiliation(s)
- Jill Zimmerman
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, 10021
- Graduate School of Medical Sciences, Weill Cornell Medicine, New York, 10065
| | - Brandon F Malone
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, 10065
| | | | - Shan Sun
- Sanders Tri-Institutional Therapeutics Discovery Institute, New York, 10021
| | - Rui Liang
- Sanders Tri-Institutional Therapeutics Discovery Institute, New York, 10021
| | - Miguel Foronda
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, 10021
| | - Emma M Schatoff
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, 10021
- Graduate School of Medical Sciences, Weill Cornell Medicine, New York, 10065
| | - Elizabeth Granowsky
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, 10021
| | - Sukanya Goswami
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, 10021
| | - Alyna Katti
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, 10021
- Graduate School of Medical Sciences, Weill Cornell Medicine, New York, 10065
| | - Benjamin Leach
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, 10021
| | - Heather Alcorn
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, 10065
| | - Tuomas Tammela
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, 10065
| | - Yoshiyuki Fukase
- Sanders Tri-Institutional Therapeutics Discovery Institute, New York, 10021
| | - Tanweer Khan
- Sanders Tri-Institutional Therapeutics Discovery Institute, New York, 10021
| | - David J Huggins
- Sanders Tri-Institutional Therapeutics Discovery Institute, New York, 10021
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10021, USA
| | - John Ginn
- Sanders Tri-Institutional Therapeutics Discovery Institute, New York, 10021
| | - Nigel Liverton
- Sanders Tri-Institutional Therapeutics Discovery Institute, New York, 10021
| | - Richard K Hite
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, 10065
| | - Lukas E Dow
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, 10021
- Department of Medicine, Weill Cornell Medicine, New York, 10065
- Department of Biochemistry, Weill Cornell Medicine, New York, 10065
| |
Collapse
|
2
|
Madorsky Rowdo FP, Martini R, Ackermann SE, Tang CP, Tranquille M, Irizarry A, Us I, Alawa O, Moyer JE, Sigouros M, Nguyen J, Assaad MA, Cheng E, Ginter PS, Manohar J, Stonaker B, Boateng R, Oppong JK, Adjei EK, Awuah B, Kyei I, Aitpillah FS, Adinku MO, Ankomah K, Osei-Bonsu EB, Gyan KK, Hoda S, Newman L, Mosquera JM, Sboner A, Elemento O, Dow LE, Davis MB, Martin ML. Kinome-Focused CRISPR-Cas9 Screens in African Ancestry Patient-Derived Breast Cancer Organoids Identify Essential Kinases and Synergy of EGFR and FGFR1 Inhibition. Cancer Res 2025; 85:551-566. [PMID: 39891928 PMCID: PMC11790258 DOI: 10.1158/0008-5472.can-24-0775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 08/10/2024] [Accepted: 11/20/2024] [Indexed: 02/03/2025]
Abstract
Precision medicine approaches to cancer treatment aim to exploit genomic alterations that are specific to individual patients to tailor therapeutic strategies. Yet, some targetable genes and pathways are essential for tumor cell viability even in the absence of direct genomic alterations. In underrepresented populations, the mutational landscape and determinants of response to existing therapies are poorly characterized because of limited inclusion in clinical trials and studies. One way to reveal tumor essential genes is with genetic screens. Most screens are conducted on cell lines that bear little resemblance to patient tumors, after years of culture under nonphysiologic conditions. To address this problem, we aimed to develop a CRISPR screening pipeline in three-dimensionally grown patient-derived tumor organoid (PDTO) models. A breast cancer PDTO biobank that focused on underrepresented populations, including West African patients, was established and used to conduct a negative-selection kinome-focused CRISPR screen to identify kinases essential for organoid growth and potential targets for combination therapy with EGFR or MEK inhibitors. The screen identified several previously unidentified kinase targets, and the combination of FGFR1 and EGFR inhibitors synergized to block organoid proliferation. Together, these data demonstrate the feasibility of CRISPR-based genetic screens in patient-derived tumor models, including PDTOs from underrepresented patients with cancer, and identify targets for cancer therapy. Significance: Generation of a breast cancer patient-derived tumor organoid biobank focused on underrepresented populations enabled kinome-focused CRISPR screening that identified essential kinases and potential targets for combination therapy with EGFR or MEK inhibitors. See related commentary by Trembath and Spanheimer, p. 407.
Collapse
Affiliation(s)
| | - Rachel Martini
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
- Institute of Translational Genomic Medicine, Morehouse School of Medicine, GA, USA
| | - Sarah E. Ackermann
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Colin P. Tang
- Institute for Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Marvel Tranquille
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Adriana Irizarry
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Ilkay Us
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Omar Alawa
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jenna E. Moyer
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Michael Sigouros
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - John Nguyen
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Majd Al Assaad
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Esther Cheng
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Paula S. Ginter
- Department of Pathology, NYU Langone Hospital-Long Island, Mineola, NY, USA
| | - Jyothi Manohar
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Brian Stonaker
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
| | | | | | | | | | - Ishmael Kyei
- Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | | | | | | | | | - Kofi K. Gyan
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
| | - Syed Hoda
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Lisa Newman
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
| | - Juan Miguel Mosquera
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Andrea Sboner
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Institute for Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Olivier Elemento
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Institute for Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Lukas E. Dow
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College and New York-Presbyterian Hospital, New York, NY, USA
| | - Melissa B. Davis
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
- Institute of Translational Genomic Medicine, Morehouse School of Medicine, GA, USA
| | - M. Laura Martin
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
3
|
Yu Z, Deng P, Chen Y, Lin D, Liu S, Hong J, Guan P, Chen J, Zhong ME, Chen J, Chen X, Sun Y, Wang Y, Wang P, Cai Z, Chan JY, Huang Y, Xiao R, Guo Y, Zeng X, Wang W, Zou Y, Yu Q, Lan P, Teh BT, Wu X, Tan J. Pharmacological modulation of RB1 activity mitigates resistance to neoadjuvant chemotherapy in locally advanced rectal cancer. Proc Natl Acad Sci U S A 2024; 121:e2304619121. [PMID: 38289962 PMCID: PMC10861914 DOI: 10.1073/pnas.2304619121] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 11/29/2023] [Indexed: 02/01/2024] Open
Abstract
Resistance to neoadjuvant chemotherapy leads to poor prognosis of locally advanced rectal cancer (LARC), representing an unmet clinical need that demands further exploration of therapeutic strategies to improve clinical outcomes. Here, we identified a noncanonical role of RB1 for modulating chromatin activity that contributes to oxaliplatin resistance in colorectal cancer (CRC). We demonstrate that oxaliplatin induces RB1 phosphorylation, which is associated with the resistance to neoadjuvant oxaliplatin-based chemotherapy in LARC. Inhibition of RB1 phosphorylation by CDK4/6 inhibitor results in vulnerability to oxaliplatin in both intrinsic and acquired chemoresistant CRC. Mechanistically, we show that RB1 modulates chromatin activity through the TEAD4/HDAC1 complex to epigenetically suppress the expression of DNA repair genes. Antagonizing RB1 phosphorylation through CDK4/6 inhibition enforces RB1/TEAD4/HDAC1 repressor activity, leading to DNA repair defects, thus sensitizing oxaliplatin treatment in LARC. Our study identifies a RB1 function in regulating chromatin activity through TEAD4/HDAC1. It also provides the combination of CDK4/6 inhibitor with oxaliplatin as a potential synthetic lethality strategy to mitigate oxaliplatin resistance in LARC, whereby phosphorylated RB1/TEAD4 can serve as potential biomarkers to guide the patient stratification.
Collapse
Affiliation(s)
- Zhaoliang Yu
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong510655, People’s Republic of China
| | - Peng Deng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong510060, People’s Republic of China
| | - Yufeng Chen
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong510655, People’s Republic of China
| | - Dezheng Lin
- Department of Endoscopic Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong510060, People’s Republic of China
| | - Shini Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong510060, People’s Republic of China
| | - Jinghan Hong
- Cancer and Stem Cell Biology Program, Duke–National University of Singapore Medical School, Singapore169857, Singapore
| | - Peiyong Guan
- Cancer and Stem Cell Biology Program, Duke–National University of Singapore Medical School, Singapore169857, Singapore
- Genome Institute of Singapore, Agency for Science, Technology, and Research (A*STAR), Singapore138672, Singapore
| | - Jianfeng Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong510060, People’s Republic of China
| | - Min-er Zhong
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong510655, People’s Republic of China
| | - Jinghong Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong510060, People’s Republic of China
| | - Xiaochuan Chen
- Department of Obstetrics and Gynecology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong510655, People’s Republic of China
| | - Yichen Sun
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong510060, People’s Republic of China
| | - Yali Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong510060, People’s Republic of China
| | - Peili Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong510060, People’s Republic of China
| | - Zerong Cai
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong510655, People’s Republic of China
| | - Jason Yongsheng Chan
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore169610, Singapore
| | - Yulin Huang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong510060, People’s Republic of China
| | - Rong Xiao
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong510060, People’s Republic of China
| | - Yaoyu Guo
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong510655, People’s Republic of China
| | - Xian Zeng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong510060, People’s Republic of China
| | - Wenyu Wang
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong510655, People’s Republic of China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong510655, People’s Republic of China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong510655, People’s Republic of China
| | - Yifeng Zou
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong510655, People’s Republic of China
| | - Qiang Yu
- Cancer and Stem Cell Biology Program, Duke–National University of Singapore Medical School, Singapore169857, Singapore
- Genome Institute of Singapore, Agency for Science, Technology, and Research (A*STAR), Singapore138672, Singapore
| | - Ping Lan
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong510655, People’s Republic of China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong510655, People’s Republic of China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong510655, People’s Republic of China
| | - Bin Tean Teh
- Cancer and Stem Cell Biology Program, Duke–National University of Singapore Medical School, Singapore169857, Singapore
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore169610, Singapore
| | - Xiaojian Wu
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong510655, People’s Republic of China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong510655, People’s Republic of China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong510655, People’s Republic of China
| | - Jing Tan
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong510060, People’s Republic of China
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore169610, Singapore
| |
Collapse
|
4
|
Loren P, Saavedra N, Saavedra K, De Godoy Torso N, Visacri MB, Moriel P, Salazar LA. Contribution of MicroRNAs in Chemoresistance to Cisplatin in the Top Five Deadliest Cancer: An Updated Review. Front Pharmacol 2022; 13:831099. [PMID: 35444536 PMCID: PMC9015654 DOI: 10.3389/fphar.2022.831099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/16/2022] [Indexed: 12/02/2022] Open
Abstract
Cisplatin (DDP) is a well-known anticancer drug used for the treatment of numerous human cancers in solid organs, including bladder, breast, cervical, head and neck squamous cell, ovarian, among others. Its most important mode of action is the DNA-platinum adducts formation, inducing DNA damage response, silencing or activating several genes to induce apoptosis; these mechanisms result in genetics and epigenetics modifications. The ability of DDP to induce tumor cell death is often challenged by the presence of anti-apoptotic regulators, leading to chemoresistance, wherein many patients who have or will develop DDP-resistance. Cancer cells resist the apoptotic effect of chemotherapy, being a problem that severely restricts the successful results of treatment for many human cancers. In the last 30 years, researchers have discovered there are several types of RNAs, and among the most important are non-coding RNAs (ncRNAs), a class of RNAs that are not involved in protein production, but they are implicated in gene expression regulation, and representing the 98% of the human genome non-translated. Some ncRNAs of great interest are long ncRNAs, circular RNAs, and microRNAs (miRs). Accumulating studies reveal that aberrant miRs expression can affect the development of chemotherapy drug resistance, by modulating the expression of relevant target proteins. Thus, identifying molecular mechanisms underlying chemoresistance development is fundamental for setting strategies to improve the prognosis of patients with different types of cancer. Therefore, this review aimed to identify and summarize miRs that modulate chemoresistance in DDP-resistant in the top five deadliest cancer, both in vitro and in vivo human models.
Collapse
Affiliation(s)
- Pía Loren
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| | - Nicolás Saavedra
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| | - Kathleen Saavedra
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| | | | | | - Patricia Moriel
- Faculty of Pharmaceutical Sciences, University of Campinas, Campinas, Brazil
| | - Luis A Salazar
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
5
|
Yu M, Yang Y, Sykes M, Wang S. Small-Molecule Inhibitors of Tankyrases as Prospective Therapeutics for Cancer. J Med Chem 2022; 65:5244-5273. [PMID: 35306814 DOI: 10.1021/acs.jmedchem.1c02139] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Tankyrases are multifunctional poly(adenosine diphosphate-ribose) polymerases that regulate diverse biological processes including telomere maintenance and cellular signaling. These processes are often implicated in a number of human diseases, with cancer being the most prevalent example. Accordingly, tankyrase inhibitors have gained increasing attention as potential therapeutics. Since the discovery of XAV939 and IWR-1 as the first tankyrase inhibitors over two decades ago, tankyrase-targeted drug discovery has made significant progress. This review starts with an introduction of tankyrases, with emphasis placed on their cancer-related functions. Small-molecule inhibitors of tankyrases are subsequently delineated based on their distinct modes of binding to the enzymes. In addition to inhibitors that compete with oxidized nicotinamide adenine dinucleotide (NAD+) for binding to the catalytic domain of tankyrases, non-NAD+-competitive inhibitors are detailed. This is followed by a description of three clinically trialled tankyrase inhibitors. To conclude, some of challenges and prospects in developing tankyrase-targeted cancer therapies are discussed.
Collapse
Affiliation(s)
- Mingfeng Yu
- Drug Discovery and Development, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Yuchao Yang
- Drug Discovery and Development, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Matthew Sykes
- Drug Discovery and Development, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Shudong Wang
- Drug Discovery and Development, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| |
Collapse
|
6
|
Parsons MJ, Tammela T, Dow LE. WNT as a Driver and Dependency in Cancer. Cancer Discov 2021; 11:2413-2429. [PMID: 34518209 DOI: 10.1158/2159-8290.cd-21-0190] [Citation(s) in RCA: 160] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/30/2021] [Accepted: 06/11/2021] [Indexed: 12/15/2022]
Abstract
The WNT signaling pathway is a critical regulator of development and adult tissue homeostasis and becomes dysregulated in many cancer types. Although hyperactivation of WNT signaling is common, the type and frequency of genetic WNT pathway alterations can vary dramatically between different cancers, highlighting possible cancer-specific mechanisms for WNT-driven disease. In this review, we discuss how WNT pathway disruption contributes to tumorigenesis in different organs and how WNT affects the tumor cell and immune microenvironment. Finally, we describe recent and ongoing efforts to target oncogenic WNT signaling as a therapeutic strategy. SIGNIFICANCE: WNT signaling is a fundamental regulator of tissue homeostasis and oncogenic driver in many cancer types. In this review, we highlight recent advances in our understanding of WNT signaling in cancer, particularly the complexities of WNT activation in distinct cancer types, its role in immune evasion, and the challenge of targeting the WNT pathway as a therapeutic strategy.
Collapse
Affiliation(s)
- Marie J Parsons
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York
| | - Tuomas Tammela
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Lukas E Dow
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York. .,Department of Medicine, Weill Cornell Medicine, New York, New York
| |
Collapse
|
7
|
Mehta CC, Bhatt HG. Tankyrase inhibitors as antitumor agents: a patent update (2013 - 2020). Expert Opin Ther Pat 2021; 31:645-661. [PMID: 33567917 DOI: 10.1080/13543776.2021.1888929] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Tankyrase inhibitors gained significant attention as therapeutic targets in oncology because of their potency. Their primary role in inhibiting the Wnt signaling pathway makes them an important class of compounds with the potential to be used as a combination therapy in future treatments of colorectal cancer. AREAS COVERED This review describes pertinent work in the development of tankyrase inhibitors with a great emphasis on the recently patented TNKS inhibitors published from 2013 to 2020. This article also highlights a couple of promising candidates having tankyrase inhibitory effects and are currently undergoing clinical trials. EXPERT OPINION Following the successful clinical applications of PARP inhibitors, tankyrase inhibition has gained significant attention in the research community as a target with high therapeutic potential. The ubiquitous role of tankyrase in cellular homeostasis and Wnt-dependent tumor proliferation brought difficulties for researchers to strike the right balance between potency and on-target toxicity. The need for novel tankyrase inhibitors with a better ADMET profile can introduce an additional regimen in treating various malignancies in monotherapy or adjuvant therapy. The development of combination therapies, including tankyrase inhibitors with or without PARP inhibitory properties, can potentially benefit the larger population of patients with unmet medical needs.
Collapse
Affiliation(s)
- Chirag C Mehta
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad India
| | - Hardik G Bhatt
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad India
| |
Collapse
|