1
|
Klinger ME, Miller RA, Komatsu N, Shiu A, Wilbrecht L, Landry MP. Optical Fibers Functionalized with Single-Walled Carbon Nanotubes for Flexible Fluorescent Catecholamine Detection. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:9654-9663. [PMID: 40223211 DOI: 10.1021/acs.langmuir.4c04910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Despite the popularity of drugs that act on catecholamine receptors, our knowledge of catecholamine dynamics in human health and disease remains incomplete. Recent advances in fluorescent sensors have enabled unprecedented access to catecholamine dynamics in preclinical animal models, but the requirements of these technologies to use in model organisms limit their translational value for clinical diagnostics. Here, we introduce proof of principle fluorescent catecholamine detection via optical fibers functionalized with single-walled carbon nanotube (SWNT)-based near-infrared catecholamine sensors (nIRCats), a catecholamine detection form factor that has potential for more convenient and less invasive clinical translation. We show that these near-infrared functionalized (nIRF) fibers respond to dopamine in a biologically relevant concentration range (10 nM through 1 μM), with minimal responsivity loss following 16 h exposure to human blood plasma. We further demonstrate the utility of these fibers in detecting dopamine from as little as 10 μL volumes of clinically relevant biofluids up to 24 weeks after fiber synthesis. We also introduce a compact, mobile dual-near-infrared fiber photometry rig and demonstrate its success detecting dopamine in acute brain slices with nIRF fibers. Together, this fiber-based dopamine detection tool and photometry rig expand the toolset for catecholamine detection.
Collapse
Affiliation(s)
- Madeline E Klinger
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California 94720, United States
| | - Rigney A Miller
- College of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
| | - Natsumi Komatsu
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Amanda Shiu
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Linda Wilbrecht
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California 94720, United States
- Department of Psychology, University of California Berkeley, Berkeley, California 94720, United States
| | - Markita P Landry
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California 94720, United States
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, California 94720, United States
- Innovative Genomics Institute, Berkeley, California 94720, United States
- California Institute for Quantitative Biosciences, University of California Berkeley, Berkeley, California 94720, United States
- Chan Zuckerberg Biohub, San Francisco, California 94063, United States
| |
Collapse
|
2
|
Lee YS, Shin S, Kang GR, Lee S, Kim DW, Park S, Cho Y, Lim D, Jeon SH, Cho SY, Pang C. Spatiotemporal molecular tracing of ultralow-volume biofluids via a soft skin-adaptive optical monolithic patch sensor. Nat Commun 2025; 16:3272. [PMID: 40188097 PMCID: PMC11972314 DOI: 10.1038/s41467-025-58425-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 03/18/2025] [Indexed: 04/07/2025] Open
Abstract
Molecular tracing of extremely low amounts of biofluids is vital for precise diagnostic analysis. Although optical nanosensors for real-time spatiotemporal molecular tracing exist, integrating them into simple devices that capture low-volume fluids on rough, dynamic surfaces remains challenging. We present a bioinspired 3D microstructured patch monolithically integrated with optical nanosensors (3D MIN) for real-time, multivariate molecular tracing of ultralow-volume fluids. Inspired by tree frog toe pads, the 3D MIN features soft, hexagonally aligned pillars and microchannels for conformal adhesion and targeted fluid management. Embedding near-infrared fluorescent single-walled carbon nanotube nanosensors in a hydrogel enables simultaneous fluid capture and detection. Softening the elastomer microarchitecture and optimizing water management promote stable adhesion on wet biosurfaces, allowing rapid collection of ultralow-volume fluids (~0.1 µL/min·cm²). We demonstrate real-time, remote sweat analysis with ≥75 nL volumes collected in 45 s, without exercise or iontophoresis, showcasing high biocompatibility and efficient spatiotemporal molecular tracing.
Collapse
Affiliation(s)
- Yeon Soo Lee
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, Republic of Korea
| | - Seyoung Shin
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, Republic of Korea
| | - Gyun Ro Kang
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, Republic of Korea
| | - Siyeon Lee
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, Republic of Korea
| | - Da Wan Kim
- Department of Electronic Engineering, Korea National University of Transportation, Chungju-si, Chungbuk, Republic of Korea
| | - Seongcheol Park
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, Republic of Korea
| | - Youngwook Cho
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, Republic of Korea
| | - Dohyun Lim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, Republic of Korea
| | - Seung Hwan Jeon
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, Republic of Korea
- Convergence Research Center for Meta-Touch, Korea Research Institute of Standards and Science, Daejeon, Republic of Korea
| | - Soo-Yeon Cho
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, Republic of Korea.
| | - Changhyun Pang
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, Republic of Korea.
- Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Suwon, Republic of Korea.
| |
Collapse
|
3
|
Wang J, Su Y, Wang F. Advances in the study of single-walled carbon nanotubes in ophthalmology. Hum Cell 2025; 38:76. [PMID: 40126731 DOI: 10.1007/s13577-025-01204-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 03/11/2025] [Indexed: 03/26/2025]
Abstract
With the rapid development of nanotechnology, the application of nanomaterials in the medical field shows unprecedented potential and innovative prospects. In particular, single-walled carbon nanotubes (SWCNTs), due to their unique physicochemical properties such as high surface area, excellent thermal and electrical properties, high surface/volume aspect ratio, and high tensile strength, show great potential for application in biomedical and biotechnological fields. Ophthalmology, as a branch of medicine that requires great precision and innovation, is gradually becoming one of the hotspots for nanotechnology applications. Although the research and application of nanomaterials in ophthalmology have made some progress, the potential of SWCNTs in ophthalmology has not yet been explored. This paper is a comprehensive review of the applications of nanomaterials in ophthalmology, including their use in drug delivery, antimicrobials, imaging, tissue repair, and photodynamic therapy, and further explores the similar roles of SWCNTs in other medical fields, thus speculating on their potentially important value in ophthalmic research.
Collapse
Affiliation(s)
- Junyu Wang
- Department of Ophthalmology, the Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Ying Su
- Eye Hospital, the First Affiliated Hospital, Harbin Medical University, Harbin, China.
| | - Feng Wang
- Department of Ophthalmology, the Fourth Affiliated Hospital, Harbin Medical University, Harbin, China.
| |
Collapse
|
4
|
Cohen Z, Williams RM. Single-Walled Carbon Nanotubes as Optical Transducers for Nanobiosensors In Vivo. ACS NANO 2024; 18:35164-35181. [PMID: 39696968 PMCID: PMC11697343 DOI: 10.1021/acsnano.4c13076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/28/2024] [Accepted: 12/06/2024] [Indexed: 12/20/2024]
Abstract
Semiconducting single-walled carbon nanotubes (SWCNTs) may serve as signal transducers for nanobiosensors. Recent studies have developed innovative methods of engineering molecularly specific sensors, while others have devised methods of deploying such sensors within live animals and plants. These advances may potentiate the use of implantable, noninvasive biosensors for continuous drug, disease, and contaminant monitoring based on the optical properties of single-walled carbon nanotubes (SWCNTs). Such tools have substantial potential to improve disease diagnostics, prognosis, drug safety, therapeutic response, and patient compliance. Outside of clinical applications, such sensors also have substantial potential in environmental monitoring or as research tools in the lab. However, substantial work remains to be done to realize these goals through further advances in materials science and engineering. Here, we review the current landscape of quantitative SWCNT-based optical biosensors that have been deployed in living plants and animals. Specifically, we focused this review on methods that have been developed to deploy SWCNT-based sensors in vivo as well as analytes that have been detected by SWCNTs in vivo. Finally, we evaluated potential future directions to take advantage of the promise outlined here toward field-deployable or implantable use in patients.
Collapse
Affiliation(s)
- Zachary Cohen
- Department
of Biomedical Engineering, The City College
of New York, New York, New York 10031, United States
| | - Ryan M. Williams
- Department
of Biomedical Engineering, The City College
of New York, New York, New York 10031, United States
- PhD
Program in Chemistry, The Graduate Center
of The City University of New York, New York, New York 10016, United States
| |
Collapse
|
5
|
Firuzpour F, Saleki K, Aram C, Rezaei N. Nanocarriers in glioblastoma treatment: a neuroimmunological perspective. Rev Neurosci 2024:revneuro-2024-0097. [PMID: 39733347 DOI: 10.1515/revneuro-2024-0097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 12/08/2024] [Indexed: 12/31/2024]
Abstract
Glioblastoma multiforme (GBM) is the most fatal brain tumor with a poor prognosis with current treatments, mainly because of intrinsic resistance processes. GBM is also referred to as grade 4 astrocytoma, that makes up about 15.4 % of brain cancers globally as well as 60-75 % of astrocytoma. The most prevalent therapeutic choices for GBM comprise surgery in combination with radiotherapy and chemotherapy, providing patients with an average survival of 6-14 months. Nanocarriers provide various benefits such as enhanced drug solubility, biocompatibility, targeted activity, as well as minimized side effects. In addition, GBM treatment comes with several challenges such as the presence of the blood-brain barrier (BBB), blood-brain tumor barrier (BBTB), overexpressed efflux pumps, infiltration, invasion, drug resistance, as well as immune escape due to tumor microenvironment (TME) and cancer stem cells (CSC). Recent research has focused on nanocarriers due to their ability to self-assemble, improve bioavailability, provide controlled release, and penetrate the BBB. These nano-based components could potentially enhance drug accumulation in brain tumor tissues and reduce systemic toxicity, making them a compelling solution for GBM therapy. This review captures the complexities associated with multi-functional nano drug delivery systems (NDDS) in crossing the blood-brain barrier (BBB) and targeting cancer cells. In addition, it presents a succinct overview of various types of targeted multi-functional nano drug delivery system (NDDS) which has exhibited promising value for improving drug delivery to the brain.
Collapse
Affiliation(s)
- Faezeh Firuzpour
- USERN Office, Babol University of Medical Sciences, 47176-41367, Babol, Iran
- Student Research Committee, Babol University of Medical Sciences, 47176-41367, Babol, Iran
| | - Kiarash Saleki
- USERN Office, Babol University of Medical Sciences, 47176-41367, Babol, Iran
- Student Research Committee, Babol University of Medical Sciences, 47176-41367, Babol, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, 48439 Tehran University of Medical Sciences , Tehran, 1416634793, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, 1416634793, Iran
| | - Cena Aram
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, 15719-14911, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, 48439 Tehran University of Medical Sciences , Tehran, 1416634793, Iran
- Department of Immunology, School of Medicine, 48439 Tehran University of Medical Sciences , Tehran, 1416634793, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, 1416634793, Iran
| |
Collapse
|
6
|
Hill BF, Mohr JM, Sandvoss IK, Gretz J, Galonska P, Schnitzler L, Erpenbeck L, Kruss S. Ratiometric near infrared fluorescence imaging of dopamine with 1D and 2D nanomaterials. NANOSCALE 2024; 16:18534-18544. [PMID: 39279544 DOI: 10.1039/d4nr02358g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Neurotransmitters are released by neuronal cells to exchange information. Resolving their spatiotemporal patterns is crucial to understand chemical neurotransmission. Here, we present a ratiometric sensor for the neurotransmitter dopamine that combines Egyptian blue (CaCuSi4O10) nanosheets (EB-NS) and single-walled carbon nanotubes (SWCNTs). They both fluoresce in the near infrared (NIR) region, which is beneficial due to their ultra-low background and phototoxicity. (GT)10-DNA-functionalized monochiral (6,5)-SWCNTs increase their fluorescence (1000 nm) in response to dopamine, while EB-NS serve as a stable reference (936 nm). A robust ratiometric imaging scheme is implemented by directing these signals on two different NIR sensitive cameras. Additionally, we demonstrate stability against mechanical perturbations and image dopamine release from differentiated dopaminergic Neuro 2a cells. Therefore, this technique enables robust ratiometric and non-invasive imaging of cellular responses.
Collapse
Affiliation(s)
- Bjoern F Hill
- Department of Chemistry, Ruhr Universität Bochum, 44801 Bochum, Germany.
| | - Jennifer M Mohr
- Department of Chemistry, Ruhr Universität Bochum, 44801 Bochum, Germany.
| | | | - Juliana Gretz
- Department of Chemistry, Ruhr Universität Bochum, 44801 Bochum, Germany.
| | - Phillip Galonska
- Department of Chemistry, Ruhr Universität Bochum, 44801 Bochum, Germany.
| | - Lena Schnitzler
- Department of Chemistry, Ruhr Universität Bochum, 44801 Bochum, Germany.
| | - Luise Erpenbeck
- Department of Dermatology, University Hospital Münster, 48149 Münster, Germany
| | - Sebastian Kruss
- Department of Chemistry, Ruhr Universität Bochum, 44801 Bochum, Germany.
- Fraunhofer Institute for Microelectronic Circuits and Systems, 47057 Duisburg, Germany
| |
Collapse
|
7
|
Basu S, Hendler-Neumark A, Bisker G. Dynamic Tracking of Biological Processes Using Near-Infrared Fluorescent Single-Walled Carbon Nanotubes. ACS APPLIED MATERIALS & INTERFACES 2024; 16. [PMID: 39377262 PMCID: PMC11492180 DOI: 10.1021/acsami.4c10955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/02/2024] [Accepted: 09/26/2024] [Indexed: 10/09/2024]
Abstract
Biological processes are characterized by dynamic and elaborate temporal patterns driven by the interplay of genes, proteins, and cellular components that are crucial for adaptation to changing environments. This complexity spans from molecular to organismal scales, necessitating their real-time monitoring and tracking to unravel the active processes that fuel living systems and enable early disease detection, personalized medicine, and drug development. Single-walled carbon nanotubes (SWCNTs), with their unique physicochemical and optical properties, have emerged as promising tools for real-time tracking of such processes. This perspective highlights the key properties of SWCNTs that make them ideal for such monitoring. Subsequently, it surveys studies utilizing SWCNTs to track dynamic biological phenomena across hierarchical levels─from molecules to cells, tissues, organs, and whole organisms─acknowledging their pivotal role in advancing this field. Finally, the review outlines challenges and future directions, aiming to expand the frontier of real-time biological monitoring using SWCNTs, contributing to deeper insights and novel applications in biomedicine.
Collapse
Affiliation(s)
- Srestha Basu
- Department
of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Adi Hendler-Neumark
- Department
of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Gili Bisker
- Department
of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
- Center
for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
- Center
for Nanoscience and Nanotechnology, Tel
Aviv University, Tel Aviv 6997801, Israel
- Center
for Light-Matter Interaction, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
8
|
Ying Z, Qiao L, Liu B, Gao L, Zhang P. Development of a microfluidic wearable electrochemical sensor for the non-invasive monitoring of oxidative stress biomarkers in human sweat. Biosens Bioelectron 2024; 261:116502. [PMID: 38896980 DOI: 10.1016/j.bios.2024.116502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/09/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024]
Abstract
Oxidative stress is widely recognized as a pivotal factor contributing to numerous Central Nervous System (CNS) ailments. The concentrations of hydrogen peroxide (H2O2) and phosphorylated proteins within the human body serve as crucial indicators of oxidative stress. As such, the real-time monitoring of H2O2 and phosphorylated proteins in sweat is vital for the early identification, diagnosis, and management of diseases linked to oxidative stress. In this context, we present a novel microfluidic wearable electrochemical sensor by modifying the electrode with Prussian blue (PB) and loading sulfur-rich vacancy-containing molybdenum disulfide (MoS2-X) onto Multi-walled carbon nanotube (CNTs) to form coaxially layered CNTs/MoS2-X, which was then synthesized with highly dispersed titanium dioxide nanoparticles (TiO2) to synthesize CNTs/MoS2-X/TiO2 composites for the detection of human sweat H2O2 and phosphorylated proteins, respectively. This structure, with its sulfur vacancies and coaxial layering, significantly improved sensitivity of electrochemical sensors, allowing it to detect H2O2 in a range of 0.01-1 mM with a detection limit of 4.80 μM, and phosphoproteins in a range of 0.01-1 mg/mL with a threshold of 0.917 μg/mL. Furthermore, the miniature sensor demonstrates outstanding performance in detecting analytes in both simulated and real sweat. Comprehensive biosafety assessments have validated the compatibility of the electrode material, underscoring the potential of sensor as a reliable and non-invasive method for tracking biomarkers linked to CNS disorders. This microfluidic wearable electrochemical biosensor with high performance and biosafety features shows great promise for the development of cutting-edge wearable technology devices for tracking CNS disease indicators.
Collapse
Affiliation(s)
- Zhiye Ying
- School of Mechanical Engineering, Qinghai University, Xining, 810016, PR China
| | - Lijuan Qiao
- Research Center of Basic Medical Science, Medical College, Qinghai University, Xining, 810016, PR China
| | - Bingxin Liu
- School of Mechanical Engineering, Qinghai University, Xining, 810016, PR China; Salt Lake Chemical Engineering Research Complex, Qinghai Provincial Key Laboratory of Salt Lake Materials Chemical Engineering, Qinghai University, Xining, 810016, PR China.
| | - Li Gao
- School of Mechanical Engineering, Qinghai University, Xining, 810016, PR China; Salt Lake Chemical Engineering Research Complex, Qinghai Provincial Key Laboratory of Salt Lake Materials Chemical Engineering, Qinghai University, Xining, 810016, PR China.
| | - Peng Zhang
- School of Mechanical Engineering, Qinghai University, Xining, 810016, PR China
| |
Collapse
|
9
|
Kleiner S, Wulf V, Bisker G. Single-walled carbon nanotubes as near-infrared fluorescent probes for bio-inspired supramolecular self-assembled hydrogels. J Colloid Interface Sci 2024; 670:439-448. [PMID: 38772260 DOI: 10.1016/j.jcis.2024.05.098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/12/2024] [Accepted: 05/14/2024] [Indexed: 05/23/2024]
Abstract
Hydrogels derived from fluorenylmethoxycarbonyl (Fmoc)-conjugated amino acids and peptides demonstrate remarkable potential in biomedical applications, including drug delivery, tissue regeneration, and tissue engineering. These hydrogels can be injectable, offering a minimally invasive approach to hydrogel implantation. Given their potential for prolonged application, there is a need for non-destructive evaluation of their properties over extended periods. Thus, we introduce a hydrogel characterization platform employing single-walled carbon nanotubes (SWCNTs) as near-infrared (NIR) fluorescent probes. Our approach involves generating supramolecular self-assembling hydrogels from aromatic Fmoc-amino acids. Integrating SWCNTs into the hydrogels maintains their structural and mechanical properties, establishing SWCNTs as optical probes for hydrogels. We demonstrate that the SWCNT NIR-fluorescence changes during the gelation process correlate to rheological changes within the hydrogels. Additionally, single particle tracking of SWCNTs incorporated in the hydrogels provides insights into differences in hydrogel morphologies. Furthermore, the disassembly process of the hydrogels can be monitored through the SWCNT fluorescence modulation. The unique attribute of SWCNTs as non-photobleaching fluorescent sensors, emitting at the biologically transparent window, offers a non-destructive method for studying hydrogel dynamics over extended periods. This platform could be applied to a wide range of self-assembling hydrogels to advance our understanding and applications of supramolecular assembly technologies.
Collapse
Affiliation(s)
- Shirel Kleiner
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Verena Wulf
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Gili Bisker
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel; Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel; Center for Light-Matter Interaction, Tel Aviv University, Tel Aviv 6997801, Israel.
| |
Collapse
|
10
|
Dewey HM, Lamb A, Budhathoki-Uprety J. Recent advances on applications of single-walled carbon nanotubes as cutting-edge optical nanosensors for biosensing technologies. NANOSCALE 2024; 16:16344-16375. [PMID: 39157856 DOI: 10.1039/d4nr01892c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Single-walled carbon nanotubes (SWCNTs) possess outstanding photophysical properties which has garnered interest towards utilizing these materials for biosensing and imaging applications. The near-infrared (NIR) fluorescence within the tissue transparent region along with their photostability and sizes in the nanoscale make SWCNTs valued candidates for the development of optical sensors. In this review, we discuss recent advances in the development and the applications of SWCNT-based nano-biosensors. An overview of SWCNT's structural and photophysical properties, sensor development, and sensing mechanisms are described. Examples of SWCNT-based optical nanosensors for detection of disease biomarkers, pathogens (bacteria and viruses), plant stressors, and environmental contaminants including heavy metals and disinfectants are provided. Molecular detection in biofluids, in vitro, and in vivo (small animal models and plants) are highlighted, and sensor integration into portable substrates for implantable and wearable sensing devices has been discussed. Recent advancements, which include high throughput assays and the use of machine learning models to predict more sensitive and robust sensing outcomes are discussed. Current limitations and future perspectives on translation of SWCNT optical probes into clinical practices have been provided.
Collapse
Affiliation(s)
- Hannah M Dewey
- Department of Textile Engineering, Chemistry and Science, Wilson College of Textiles, North Carolina State University, Raleigh, NC, 27695, USA.
| | - Ashley Lamb
- Department of Textile Engineering, Chemistry and Science, Wilson College of Textiles, North Carolina State University, Raleigh, NC, 27695, USA.
| | - Januka Budhathoki-Uprety
- Department of Textile Engineering, Chemistry and Science, Wilson College of Textiles, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
11
|
Zhang Y, Tian J. Strategies, Challenges, and Prospects of Nanoparticles in Gynecological Malignancies. ACS OMEGA 2024; 9:37459-37504. [PMID: 39281920 PMCID: PMC11391544 DOI: 10.1021/acsomega.4c04573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/18/2024]
Abstract
Gynecologic cancers are a significant health issue for women globally. Early detection and successful treatment of these tumors are crucial for the survival of female patients. Conventional therapies are often ineffective and harsh, particularly in advanced stages, necessitating the exploration of new therapy options. Nanotechnology offers a novel approach to biomedicine. A novel biosensor utilizing bionanotechnology can be employed for early tumor identification and therapy due to the distinctive physical and chemical characteristics of nanoparticles. Nanoparticles have been rapidly applied in the field of gynecologic malignancies, leading to significant advancements in recent years. This study highlights the significance of nanoparticles in treating gynecological cancers. It focuses on using nanoparticles for precise diagnosis and continuous monitoring of the disease, innovative imaging, and analytic methods, as well as multifunctional drug delivery systems and targeted therapies. This review examines several nanocarrier systems, such as dendrimers, liposomes, nanocapsules, and nanomicelles, for gynecological malignancies. The review also examines the enhanced therapeutic potential and targeted delivery of ligand-functionalized nanoformulations for gynecological cancers compared to nonfunctionalized anoformulations. In conclusion, the text also discusses the constraints and future exploration prospects of nanoparticles in chemotherapeutics. Nanotechnology will offer precise methods for diagnosing and treating gynecological cancers.
Collapse
Affiliation(s)
- Yingfeng Zhang
- University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| | - Jing Tian
- University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| |
Collapse
|
12
|
Settele S, Stammer F, Sebastian FL, Lindenthal S, Wald SR, Li H, Flavel BS, Zaumseil J. Easy Access to Bright Oxygen Defects in Biocompatible Single-Walled Carbon Nanotubes via a Fenton-like Reaction. ACS NANO 2024; 18:20667-20678. [PMID: 39051444 PMCID: PMC11308917 DOI: 10.1021/acsnano.4c06448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
The covalent functionalization of single-walled carbon nanotubes (SWNTs) with luminescent oxygen defects increases their brightness and enables their application as optical biosensors or fluorescent probes for in vivo imaging in the second-biological window (NIR-II). However, obtaining luminescent defects with high brightness is challenging with the current functionalization methods due to a restricted window of reaction conditions or the necessity for controlled irradiation with ultraviolet light. Here, we report a method for introducing luminescent oxygen defects via a Fenton-like reaction that uses benign and inexpensive chemicals without light irradiation. (6,5) SWNTs in aqueous dispersion functionalized with this method show bright E11* emission (1105 nm) with 3.2 times higher peak intensities than the pristine E11 emission and a reproducible photoluminescence quantum yield of 3%. The functionalization can be performed within a wide range of reaction parameters and even with unsorted nanotube raw material at high concentrations (100 mg L-1), giving access to large amounts of brightly luminescent SWNTs. We further find that the introduced oxygen defects rearrange under light irradiation, which gives additional insights into the structure and dynamics of oxygen defects. Finally, the functionalization of ultrashort SWNTs with oxygen defects also enables high photoluminescence quantum yields. Their excellent emission properties are retained after surfactant exchange with biocompatible pegylated phospholipids or single-stranded DNA to make them suitable for in vivo NIR-II imaging and dopamine sensing.
Collapse
Affiliation(s)
- Simon Settele
- Institute
for Physical Chemistry, Universität
Heidelberg, D-69120 Heidelberg, Germany
| | - Florian Stammer
- Institute
for Physical Chemistry, Universität
Heidelberg, D-69120 Heidelberg, Germany
| | - Finn L. Sebastian
- Institute
for Physical Chemistry, Universität
Heidelberg, D-69120 Heidelberg, Germany
| | - Sebastian Lindenthal
- Institute
for Physical Chemistry, Universität
Heidelberg, D-69120 Heidelberg, Germany
| | - Simon R. Wald
- Institute
for Physical Chemistry, Universität
Heidelberg, D-69120 Heidelberg, Germany
| | - Han Li
- Department
of Mechanical and Materials Engineering, University of Turku, FI-20014 Turku, Finland
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology, Kaiserstraße
12, D-76131 Karlsruhe, Germany
| | - Benjamin S. Flavel
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology, Kaiserstraße
12, D-76131 Karlsruhe, Germany
| | - Jana Zaumseil
- Institute
for Physical Chemistry, Universität
Heidelberg, D-69120 Heidelberg, Germany
| |
Collapse
|
13
|
Cohen Z, Alpert DJ, Weisel AC, Ryan A, Roach A, Rahman S, Gaikwad PV, Nicoll SB, Williams RM. Noninvasive Injectable Optical Nanosensor-Hydrogel Hybrids Detect Doxorubicin in Living Mice. ADVANCED OPTICAL MATERIALS 2024; 12:2303324. [PMID: 39450264 PMCID: PMC11498898 DOI: 10.1002/adom.202303324] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Indexed: 10/26/2024]
Abstract
While the tissue-transparent fluorescence of single-walled carbon nanotubes (SWCNTs) imparts substantial potential for use in non-invasive biosensors, development of non-invasive systems is yet to be realized. Here, we investigated the functionality of a SWCNT-based nanosensor in several injectable SWCNT-hydrogel systems, ultimately finding SWCNT encapsulation in a sulfonated methylcellulose hydrogel optimal for detection of ions, small molecules, and proteins. We found that the hydrogel system and nanosensor signal were stable for several weeks in live mice. We then found that this system successfully detects local injections of the chemotherapeutic agent doxorubicin in mice. We anticipate future studies to adapt this device for detection of other analytes in animals and, ultimately, patients.
Collapse
Affiliation(s)
- Zachary Cohen
- The City College of New York, Department of Biomedical Engineering, New York, NY 10031
| | - Dave J Alpert
- The City College of New York, Department of Biomedical Engineering, New York, NY 10031
| | - Adam C Weisel
- The City College of New York, Department of Biomedical Engineering, New York, NY 10031
| | - Amelia Ryan
- The City College of New York, Department of Biomedical Engineering, New York, NY 10031
| | - Arantxa Roach
- The City College of New York, Department of Biomedical Engineering, New York, NY 10031
| | - Syeda Rahman
- The City College of New York, Department of Biomedical Engineering, New York, NY 10031
| | - Pooja V Gaikwad
- The City College of New York, Department of Biomedical Engineering, New York, NY 10031
- PhD Program in Chemistry, Graduate Center, The City University of New York, New York, NY, 10016
| | - Steven B Nicoll
- The City College of New York, Department of Biomedical Engineering, New York, NY 10031
| | - Ryan M Williams
- The City College of New York, Department of Biomedical Engineering, New York, NY 10031
- PhD Program in Chemistry, Graduate Center, The City University of New York, New York, NY, 10016
| |
Collapse
|
14
|
Levin N, Hendler-Neumark A, Kamber D, Bisker G. Enhanced cellular internalization of near-infrared fluorescent single-walled carbon nanotubes facilitated by a transfection reagent. J Colloid Interface Sci 2024; 664:650-666. [PMID: 38490040 DOI: 10.1016/j.jcis.2024.03.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 03/17/2024]
Abstract
Functionalized single-walled carbon nanotubes (SWCNTs) hold immense potential for diverse biomedical applications due to their biocompatibility and optical properties, including near-infrared fluorescence. Specifically, SWCNTs have been utilized to target cells as a vehicle for drug delivery and gene therapy, and as sensors for various intracellular biomarkers. While the main internalization route of SWCNTs into cells is endocytosis, methods for enhancing the cellular uptake of SWCNTs are of great importance. In this research, we demonstrate the use of a transfecting reagent for promoting cell internalization of functionalized SWCNTs. We explore different types of SWCNT functionalization, namely single-stranded DNA (ssDNA) or polyethylene glycol (PEG)-lipids, and two different cell types, embryonic kidney cells and adenocarcinoma cells. We show that internalizing PEGylated functionalized SWCNTs is enhanced in the presence of the transfecting reagent, where the effect is more pronounced for negatively charged PEG-lipid. However, ssDNA-SWCNTs tend to form aggregates in the presence of the transfecting reagent, rendering it unsuitable for promoting internalization. For all cases, cellular uptake is visualized by near-infrared fluorescence microscopy, showing that the SWCNTs are typically localized within the lysosome. Generally, cellular internalization was higher in the adenocarcinoma cells, thereby paving new avenues for drug delivery and sensing in malignant cells.
Collapse
Affiliation(s)
- Naamah Levin
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Adi Hendler-Neumark
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Dotan Kamber
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Gili Bisker
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel; Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel; Center for Light-Matter Interaction, Tel Aviv University, Tel Aviv 6997801, Israel.
| |
Collapse
|
15
|
Basu S, Hendler-Neumark A, Bisker G. Monitoring Enzyme Activity Using Near-Infrared Fluorescent Single-Walled Carbon Nanotubes. ACS Sens 2024; 9:2237-2253. [PMID: 38669585 PMCID: PMC11129355 DOI: 10.1021/acssensors.4c00377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/03/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024]
Abstract
Enzymes serve as pivotal biological catalysts that accelerate essential chemical reactions, thereby influencing a variety of physiological processes. Consequently, the monitoring of enzyme activity and inhibition not only yields crucial insights into health and disease conditions but also forms the basis of research in drug discovery, toxicology, and the understanding of disease mechanisms. In this context, near-infrared (NIR) fluorescent single-walled carbon nanotubes (SWCNTs) have emerged as effective tools for tracking enzyme activity and inhibition through diverse strategies. This perspective explores the physicochemical attributes of SWCNTs that render them well-suited for such monitoring. Additionally, we delve into the various strategies developed so far for successfully monitoring enzyme activity and inhibition, emphasizing the distinctive features of each principle. Furthermore, we contrast the benefits of SWCNT-based NIR probes with conventional gold standards in monitoring enzyme activity. Lastly, we highlight the current challenges faced in this field and suggest potential solutions to propel it forward. This perspective aims to contribute to the ongoing progress in biodiagnostics and seeks to engage the wider community in developing and applying enzymatic assays using SWCNTs.
Collapse
Affiliation(s)
- Srestha Basu
- Department
of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Adi Hendler-Neumark
- Department
of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Gili Bisker
- Department
of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
- Center
for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
- Center
for Nanoscience and Nanotechnology, Tel
Aviv University, Tel Aviv 6997801, Israel
- Center
for Light-Matter Interaction, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
16
|
Martincic M, Tobías-Rossell G. UV-Vis quantification of the iron content in iteratively steam and HCl purified single-walled carbon nanotubes. PLoS One 2024; 19:e0303359. [PMID: 38728321 PMCID: PMC11086872 DOI: 10.1371/journal.pone.0303359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/24/2024] [Indexed: 05/12/2024] Open
Abstract
As-produced carbon nanotubes contain impurities which can dominate the properties of the material and are thus undesired. Herein we present a multi-step purification treatment that combines the use of steam and hydrochloric acid in an iterative manner. This allows the reduction of the iron content down to 0.2 wt. % in samples of single-walled carbon nanotubes (SWCNTs). Remarkably, Raman spectroscopy analysis reveals that this purification strategy does not introduce structural defects into the SWCNTs' backbone. To complete the study, we also report on a simplified approach for the quantitative assessment of iron using UV-Vis spectroscopy. The amount of metal in SWCNTs is assessed by dissolving in HCl the residue obtained after the complete combustion of the sample. This leads to the creation of hexaaquairon(III) chloride which allows the determination of the amount of iron, from the catalyst, by UV-Vis spectroscopy. The main advantage of the proposed strategy is that it does not require the use of additional complexing agents.
Collapse
Affiliation(s)
- Markus Martincic
- Institut de Ciència de Materiales de Barcelona (ICMAB-CSIC), Campus de la UAB, Bellaterra, Barcelona, Spain
| | - Gerard Tobías-Rossell
- Institut de Ciència de Materiales de Barcelona (ICMAB-CSIC), Campus de la UAB, Bellaterra, Barcelona, Spain
| |
Collapse
|
17
|
Rele S, Thakur CK, Khan F, Baral B, Saini V, Karthikeyan C, Moorthy NSHN, Jha HC. Curcumin coating: a novel solution to mitigate inherent carbon nanotube toxicity. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2024; 35:24. [PMID: 38526738 PMCID: PMC10963536 DOI: 10.1007/s10856-024-06789-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 03/04/2024] [Indexed: 03/27/2024]
Abstract
Multi-walled Carbon Nanotubes (MWCNTs) are inert structures with high aspect ratios that are widely used as vehicles for targeted drug delivery in cancer and many other diseases. They are largely non-toxic in nature however, when cells are exposed to these nanotubes for prolonged durations or at high concentrations, they show certain adverse effects. These include cytotoxicity, inflammation, generation of oxidative stress, and genotoxicity among others. To combat such adverse effects, various moieties can be attached to the surface of these nanotubes. Curcumin is a known anti-inflammatory, antioxidant and cytoprotective compound derived from a medicinal plant called Curcuma longa. In this study, we have synthesized and characterized Curcumin coated-lysine functionalized MWCNTs and further evaluated the cytoprotective, anti-inflammatory, antioxidant and antiapoptotic effect of Curcumin coating on the surface of MWCNTs. The results show a significant decrease in the level of inflammatory molecules like IL-6, IL-8, IL-1β, TNFα and NFκB in cells exposed to Curcumin-coated MWCNTs as compared to the uncoated ones at both transcript and protein levels. Further, compared to the uncoated samples, there is a reduction in ROS production and upregulation of antioxidant enzyme-Catalase in the cells treated with Curcumin-coated MWCNTs. Curcumin coating also helped in recovery of mitochondrial membrane potential in the cells exposed to MWCNTs. Lastly, cells exposed to Curcumin-coated MWCNTs showed reduced cell death as compared to the ones exposed to uncoated MWCNTs. Our findings suggest that coating of Curcumin on the surface of MWCNTs reduces its ability to cause inflammation, oxidative stress, and cell death.
Collapse
Affiliation(s)
- Samiksha Rele
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, MP, 453552, India
| | - Chanchal Kiran Thakur
- Cancept Therapeutics Laboratory, Department of Pharmacy, Indira Gandhi National Tribal University, Lalpur, Amarkantak, MP, 484887, India
| | - Fatima Khan
- Cancept Therapeutics Laboratory, Department of Pharmacy, Indira Gandhi National Tribal University, Lalpur, Amarkantak, MP, 484887, India
| | - Budhadev Baral
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, MP, 453552, India
| | - Vaishali Saini
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, MP, 453552, India
| | - Chandrabose Karthikeyan
- Cancept Therapeutics Laboratory, Department of Pharmacy, Indira Gandhi National Tribal University, Lalpur, Amarkantak, MP, 484887, India
| | - N S Hari Narayana Moorthy
- Cancept Therapeutics Laboratory, Department of Pharmacy, Indira Gandhi National Tribal University, Lalpur, Amarkantak, MP, 484887, India.
| | - Hem Chandra Jha
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, MP, 453552, India.
| |
Collapse
|
18
|
Settele S, Schrage CA, Jung S, Michel E, Li H, Flavel BS, Hashmi ASK, Kruss S, Zaumseil J. Ratiometric fluorescent sensing of pyrophosphate with sp³-functionalized single-walled carbon nanotubes. Nat Commun 2024; 15:706. [PMID: 38267487 PMCID: PMC10808354 DOI: 10.1038/s41467-024-45052-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/12/2024] [Indexed: 01/26/2024] Open
Abstract
Inorganic pyrophosphate is a key molecule in many biological processes from DNA synthesis to cell metabolism. Here we introduce sp3-functionalized (6,5) single-walled carbon nanotubes (SWNTs) with red-shifted defect emission as near-infrared luminescent probes for the optical detection and quantification of inorganic pyrophosphate. The sensing scheme is based on the immobilization of Cu2+ ions on the SWNT surface promoted by coordination to covalently attached aryl alkyne groups and a triazole complex. The presence of Cu2+ ions on the SWNT surface causes fluorescence quenching via photoinduced electron transfer, which is reversed by copper-complexing analytes such as pyrophosphate. The differences in the fluorescence response of sp3-defect to pristine nanotube emission enables reproducible ratiometric measurements in a wide concentration window. Biocompatible, phospholipid-polyethylene glycol-coated SWNTs with such sp3 defects are employed for the detection of pyrophosphate in cell lysate and for monitoring the progress of DNA synthesis in a polymerase chain reaction. This robust ratiometric and near-infrared luminescent probe for pyrophosphate may serve as a starting point for the rational design of nanotube-based biosensors.
Collapse
Affiliation(s)
- Simon Settele
- Institute for Physical Chemistry, Universität Heidelberg, Heidelberg, D-69120, Germany
| | - C Alexander Schrage
- Department of Chemistry and Biochemistry, Ruhr-Universität Bochum, Bochum, D-44801, Germany
| | - Sebastian Jung
- Department of Chemistry and Biochemistry, Ruhr-Universität Bochum, Bochum, D-44801, Germany
| | - Elena Michel
- Institute for Organic Chemistry, Universität Heidelberg, Heidelberg, D-69120, Germany
| | - Han Li
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Kaiserstrasse 12, Karlsruhe, D-76131, Germany
- Department of Mechanical and Materials Engineering, University of Turku, Turku, FI-20014, Finland
| | - Benjamin S Flavel
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Kaiserstrasse 12, Karlsruhe, D-76131, Germany
| | - A Stephen K Hashmi
- Institute for Organic Chemistry, Universität Heidelberg, Heidelberg, D-69120, Germany
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Sebastian Kruss
- Department of Chemistry and Biochemistry, Ruhr-Universität Bochum, Bochum, D-44801, Germany.
- Biomedical Nanosensors, Fraunhofer Institute for Microelectronic Circuits and Systems, Duisburg, D-47057, Germany.
| | - Jana Zaumseil
- Institute for Physical Chemistry, Universität Heidelberg, Heidelberg, D-69120, Germany.
| |
Collapse
|
19
|
Shar A, Shar A, Joung D. Carbon nanotube nanocomposite scaffolds: advances in fabrication and applications for tissue regeneration and cancer therapy. Front Bioeng Biotechnol 2023; 11:1299166. [PMID: 38179128 PMCID: PMC10764633 DOI: 10.3389/fbioe.2023.1299166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/08/2023] [Indexed: 01/06/2024] Open
Abstract
Carbon nanotube (CNT) nanocomposite scaffolds have emerged as highly promising frameworks for tissue engineering research. By leveraging their intrinsic electrical conductivity and valuable mechanical properties, CNTs are commonly dispersed into polymers to create robust, electrically conductive scaffolds that facilitate tissue regeneration and remodeling. This article explores the latest progress and challenges related to CNT dispersion, functionalization, and scaffold printing techniques, including electrospinning and 3D printing. Notably, these CNT scaffolds have demonstrated remarkable positive effects across various cell culture systems, stimulating neuronal growth, promoting cardiomyocyte maturation, and facilitating osteocyte differentiation. These encouraging results have sparked significant interest within the regenerative medicine field, including neural, cardiac, muscle, and bone regenerations. However, addressing the concern of CNT cytotoxicity in these scaffolds remains critical. Consequently, substantial efforts are focused on exploring strategies to minimize cytotoxicity associated with CNT-based scaffolds. Moreover, researchers have also explored the intriguing possibility of utilizing the natural cytotoxic properties of CNTs to selectively target cancer cells, opening up promising avenues for cancer therapy. More research should be conducted on cutting-edge applications of CNT-based scaffolds through phototherapy and electrothermal ablation. Unlike drug delivery systems, these novel methodologies can combine 3D additive manufacturing with the innate physical properties of CNT in response to electromagnetic stimuli to efficiently target localized tumors. Taken together, the unique properties of CNT-based nanocomposite scaffolds position them as promising candidates for revolutionary breakthroughs in both regenerative medicine and cancer treatment. Continued research and innovation in this area hold significant promise for improving healthcare outcomes.
Collapse
Affiliation(s)
- Andy Shar
- Department of Physics, Virginia Commonwealth University, Richmond, VA, United States
| | - Angela Shar
- College of Medicine, University of Florida, Gainesville, FL, United States
| | - Daeha Joung
- Department of Physics, Virginia Commonwealth University, Richmond, VA, United States
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
20
|
Antman-Passig M, Yaari Z, Goerzen D, Parikh R, Chatman S, Komer LE, Chen C, Grabarnik E, Mathieu M, Haimovitz-Friedman A, Heller DA. Nanoreporter Identifies Lysosomal Storage Disease Lipid Accumulation Intracranially. NANO LETTERS 2023; 23:10687-10695. [PMID: 37889874 PMCID: PMC11246544 DOI: 10.1021/acs.nanolett.3c02502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
Dysregulated lipid metabolism contributes to neurodegenerative pathologies and neurological decline in lysosomal storage disorders as well as more common neurodegenerative diseases. Niemann-Pick type A (NPA) is a fatal neurodegenerative lysosomal storage disease characterized by abnormal sphingomyelin accumulation in the endolysosomal lumen. The ability to monitor abnormalities in lipid homeostasis intracranially could improve basic investigations and the development of effective treatment strategies. We investigated the carbon nanotube-based detection of intracranial lipid content. We found that the near-infrared emission of a carbon nanotube-based lipid sensor responds to lipid accumulation in neuronal and in vivo models of NPA. The nanosensor detected lipid accumulation intracranially in an acid sphingomyelinase knockout mouse via noninvasive near-infrared spectroscopy. This work indicates a tool to improve drug development processes in NPA, other lysosomal storage diseases, and neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Zvi Yaari
- Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Dana Goerzen
- Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Weill Cornell Medicine, Cornell University, New York, NY, 10065, USA
| | - Rooshi Parikh
- The City College of New York, New York, NY, 10031 USA
| | - Savannah Chatman
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
- Engineering Program, Scripps College, Claremont, CA, 91711, USA
| | - Lauren E. Komer
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Chen Chen
- Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Weill Cornell Medicine, Cornell University, New York, NY, 10065, USA
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Emma Grabarnik
- Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Mickael Mathieu
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY,10065, USA
| | | | - Daniel A. Heller
- Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Weill Cornell Medicine, Cornell University, New York, NY, 10065, USA
| |
Collapse
|
21
|
Kim M, Chen C, Yaari Z, Frederiksen R, Randall E, Wollowitz J, Cupo C, Wu X, Shah J, Worroll D, Lagenbacher RE, Goerzen D, Li YM, An H, Wang Y, Heller DA. Nanosensor-based monitoring of autophagy-associated lysosomal acidification in vivo. Nat Chem Biol 2023; 19:1448-1457. [PMID: 37322156 PMCID: PMC10721723 DOI: 10.1038/s41589-023-01364-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 05/12/2023] [Indexed: 06/17/2023]
Abstract
Autophagy is a cellular process with important functions that drive neurodegenerative diseases and cancers. Lysosomal hyperacidification is a hallmark of autophagy. Lysosomal pH is currently measured by fluorescent probes in cell culture, but existing methods do not allow for quantitative, transient or in vivo measurements. In the present study, we developed near-infrared optical nanosensors using organic color centers (covalent sp3 defects on carbon nanotubes) to measure autophagy-mediated endolysosomal hyperacidification in live cells and in vivo. The nanosensors localize to the lysosomes, where the emission band shifts in response to local pH, enabling spatial, dynamic and quantitative mapping of subtle changes in lysosomal pH. Using the sensor, we observed cellular and intratumoral hyperacidification on administration of mTORC1 and V-ATPase modulators, revealing that lysosomal acidification mirrors the dynamics of S6K dephosphorylation and LC3B lipidation while diverging from p62 degradation. This sensor enables the transient and in vivo monitoring of the autophagy-lysosomal pathway.
Collapse
Affiliation(s)
- Mijin Kim
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Chen Chen
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medicine, Cornell University, New York, NY, USA
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zvi Yaari
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
- School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | | - Jaina Wollowitz
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medicine, Cornell University, New York, NY, USA
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Christian Cupo
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Xiaojian Wu
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA
| | - Janki Shah
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Daniel Worroll
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rachel E Lagenbacher
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Dana Goerzen
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Yue-Ming Li
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Heeseon An
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - YuHuang Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA
- Maryland NanoCenter, University of Maryland, College Park, MD, USA
| | - Daniel A Heller
- Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Weill Cornell Medicine, Cornell University, New York, NY, USA.
| |
Collapse
|
22
|
Hendler-Neumark A, Wulf V, Bisker G. Single-Walled Carbon Nanotube Sensor Selection for the Detection of MicroRNA Biomarkers for Acute Myocardial Infarction as a Case Study. ACS Sens 2023; 8:3713-3722. [PMID: 37700465 PMCID: PMC10616859 DOI: 10.1021/acssensors.3c00633] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 09/01/2023] [Indexed: 09/14/2023]
Abstract
MicroRNAs (miRNAs) are single-stranded non-coding short ribonucleic acid sequences that take part in many cellular and biological processes. Recent studies have shown that altered expression of miRNAs is involved in pathological processes, and they can thus be considered biomarkers for the early detection of various diseases. Here, we demonstrate a selection and elimination process of fluorescent single-walled carbon nanotube (SWCNT) sensors for miRNA biomarkers based on RNA-DNA hybridization with a complementary DNA recognition unit bound to the SWCNT surface. We use known miRNA biomarkers for acute myocardial infarction (AMI), commonly known as a heart attack, as a case study. We have selected five possible miRNA biomarkers which are selective and specific to AMI and tested DNA-SWCNT sensor candidates with the target DNA and RNA sequences in different environments. Out of these five miRNA sensors, three could recognize the complementary DNA or RNA sequence in a buffer, showing fluorescence modulation of the SWCNT in response to the target sequence. Out of the three working sensors in buffer, only one could function in serum and was selected for further testing. The chosen sensor, SWCNT-miDNA208a, showed high specificity and selectivity toward the target sequence, with better performance in serum compared to a buffer environment. The SWCNT sensor selection pipeline highlights the importance of testing sensor candidates in the appropriate environment and can be extended to other libraries of biomarkers.
Collapse
Affiliation(s)
- Adi Hendler-Neumark
- Department
of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Verena Wulf
- Department
of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Gili Bisker
- Department
of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
- Center
for Physics and Chemistry of Living Systems, Tel-Aviv University, Tel Aviv 6997801, Israel
- Center
for Nanoscience and Nanotechnology, Tel-Aviv
University, Tel Aviv 6997801, Israel
- Center
for Light-Matter Interaction, Tel-Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
23
|
Gerstman E, Hendler-Neumark A, Wulf V, Bisker G. Monitoring the Formation of Fibrin Clots as Part of the Coagulation Cascade Using Fluorescent Single-Walled Carbon Nanotubes. ACS APPLIED MATERIALS & INTERFACES 2023; 15:21866-21876. [PMID: 37128896 PMCID: PMC10176323 DOI: 10.1021/acsami.3c00828] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Blood coagulation is a critical defense mechanism against bleeding that results in the conversion of liquid blood into a solid clot through a complicated cascade, which involves multiple clotting factors. One of the final steps in the coagulation pathway is the conversion of fibrinogen to insoluble fibrin mediated by thrombin. Because coagulation disorders can be life-threatening, the development of novel methods for monitoring the coagulation cascade dynamics is of high importance. Here, we use near-infrared (NIR)-fluorescent single-walled carbon nanotubes (SWCNTs) to image and monitor fibrin clotting in real time. Following the binding of fibrinogen to a tailored SWCNT platform, thrombin transforms the fibrinogen into fibrin monomers, which start to polymerize. The SWCNTs are incorporated within the clot and can be clearly visualized in the NIR-fluorescent channel, where the signal-to-noise ratio is improved compared to bright-field imaging in the visible range. Moreover, the diffusion of individual SWCNTs within the fibrin clot gradually slows down after the addition of thrombin, manifesting a coagulation rate that depends on both fibrinogen and thrombin concentrations. Our platform can open new opportunities for coagulation disorder diagnostics and allow for real-time monitoring of the coagulation cascade with a NIR optical signal output in the biological transparency window.
Collapse
Affiliation(s)
- Efrat Gerstman
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Adi Hendler-Neumark
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Verena Wulf
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Gili Bisker
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
- Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
- Center for Light-Matter Interaction, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
24
|
Ackermann J, Stegemann J, Smola T, Reger E, Jung S, Schmitz A, Herbertz S, Erpenbeck L, Seidl K, Kruss S. High Sensitivity Near-Infrared Imaging of Fluorescent Nanosensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206856. [PMID: 36610045 DOI: 10.1002/smll.202206856] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Biochemical processes are fast and occur on small-length scales, which makes them difficult to measure. Optical nanosensors based on single-wall carbon nanotubes (SWCNTs) are able to capture such dynamics. They fluoresce in the near-infrared (NIR, 850-1700 nm) tissue transparency window and the emission wavelength depends on their chirality. However, NIR imaging requires specialized indium gallium arsenide (InGaAs) cameras with a typically low resolution because the quantum yield of normal Si-based cameras rapidly decreases in the NIR. Here, an efficient one-step phase separation approach to isolate monochiral (6,4)-SWCNTs (880 nm emission) from mixed SWCNT samples is developed. It enables imaging them in the NIR with high-resolution standard Si-based cameras (>50× more pixels). (6,4)-SWCNTs modified with (GT)10 -ssDNA become highly sensitive to the important neurotransmitter dopamine. These sensors are 1.7× brighter and 7.5× more sensitive and allow fast imaging (<50 ms). They enable high-resolution imaging of dopamine release from cells. Thus, the assembly of biosensors from (6,4)-SWCNTs combines the advantages of nanosensors working in the NIR with the sensitivity of (Si-based) cameras and enables broad usage of these nanomaterials.
Collapse
Affiliation(s)
- Julia Ackermann
- Fraunhofer Institute for Microelectronic Circuits and Systems, Finkenstrasse 61, 47057, Duisburg, Germany
- Department EBS, University Duisburg-Essen, Bismarkstrasse 81, 47057, Duisburg, Germany
| | - Jan Stegemann
- Fraunhofer Institute for Microelectronic Circuits and Systems, Finkenstrasse 61, 47057, Duisburg, Germany
- Department of Chemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| | - Tim Smola
- Fraunhofer Institute for Microelectronic Circuits and Systems, Finkenstrasse 61, 47057, Duisburg, Germany
- Department EBS, University Duisburg-Essen, Bismarkstrasse 81, 47057, Duisburg, Germany
| | - Eline Reger
- Fraunhofer Institute for Microelectronic Circuits and Systems, Finkenstrasse 61, 47057, Duisburg, Germany
- Department EBS, University Duisburg-Essen, Bismarkstrasse 81, 47057, Duisburg, Germany
| | - Sebastian Jung
- ZEMOS Center for Solvation Science, Ruhr-University Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| | - Anne Schmitz
- Department of Dermatology, University Hospital Münster, Von-Esmarch-Strasse 58, 48149, Münster, Germany
| | - Svenja Herbertz
- Fraunhofer Institute for Microelectronic Circuits and Systems, Finkenstrasse 61, 47057, Duisburg, Germany
| | - Luise Erpenbeck
- Department of Dermatology, University Hospital Münster, Von-Esmarch-Strasse 58, 48149, Münster, Germany
| | - Karsten Seidl
- Fraunhofer Institute for Microelectronic Circuits and Systems, Finkenstrasse 61, 47057, Duisburg, Germany
- Department EBS, University Duisburg-Essen, Bismarkstrasse 81, 47057, Duisburg, Germany
- Center for Nanointegration Duisburg-Essen (CENIDE), Carl-Benz-Strasse 199, 47057, Duisburg, Germany
| | - Sebastian Kruss
- Fraunhofer Institute for Microelectronic Circuits and Systems, Finkenstrasse 61, 47057, Duisburg, Germany
- Department of Chemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
- Center for Nanointegration Duisburg-Essen (CENIDE), Carl-Benz-Strasse 199, 47057, Duisburg, Germany
| |
Collapse
|
25
|
Asil SM, Guerrero ED, Bugarini G, Cayme J, De Avila N, Garcia J, Hernandez A, Mecado J, Madero Y, Moncayo F, Olmos R, Perches D, Roman J, Salcido-Padilla D, Sanchez E, Trejo C, Trevino P, Nurunnabi M, Narayan M. Theranostic applications of multifunctional carbon nanomaterials. VIEW 2023; 4:20220056. [PMID: 37426287 PMCID: PMC10328449 DOI: 10.1002/viw.20220056] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/01/2023] [Indexed: 03/06/2023] Open
Abstract
Nanobiotechnology is one of the leading research areas in biomedical science, developing rapidly worldwide. Among various types of nanoparticles, carbon nanomaterials (CNMs) have attracted a great deal of attention from the scientific community, especially with respect to their prospective application in the field of disease diagnosis and therapy. The unique features of these nanomaterials, including favorable size, high surface area, and electrical, structural, optical, and chemical properties, have provided an excellent opportunity for their utilization in theranostic systems. Carbon nanotubes, carbon quantum dots, graphene, and fullerene are the most employed CNMs in biomedical fields. They have been considered safe and efficient for non-invasive diagnostic techniques such as fluorescence imaging, magnetic resonance imaging, and biosensors. Various functionalized CNMs exhibit a great capacity to improve cell targeting of anti-cancer drugs. Due to their thermal properties, they have been extensively used in cancer photothermal and photodynamic therapy assisted by laser irradiation and CNMs. CNMs also can cross the blood-brain barrier and have the potential to treat various brain disorders, for instance, neurodegenerative diseases, by removing amyloid fibrils. This review has summarized and emphasized on biomedical application of CNMs and their recent advances in diagnosis and therapy.
Collapse
Affiliation(s)
- Shima Masoudi Asil
- Department of Environmental Science and Engineering, The University of Texas at El Paso, El Paso, Texas, USA
| | - Erick Damian Guerrero
- Department of Biochemistry, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Georgina Bugarini
- BUILDing SCHOLARS, Research Intensive Sequence (FYRIS) students, The University of Texas at El Paso, El Paso, Texas, USA
| | - Joshua Cayme
- BUILDing SCHOLARS, Research Intensive Sequence (FYRIS) students, The University of Texas at El Paso, El Paso, Texas, USA
| | - Nydia De Avila
- BUILDing SCHOLARS, Research Intensive Sequence (FYRIS) students, The University of Texas at El Paso, El Paso, Texas, USA
| | - Jaime Garcia
- BUILDing SCHOLARS, Research Intensive Sequence (FYRIS) students, The University of Texas at El Paso, El Paso, Texas, USA
| | - Adrian Hernandez
- BUILDing SCHOLARS, Research Intensive Sequence (FYRIS) students, The University of Texas at El Paso, El Paso, Texas, USA
| | - Julia Mecado
- BUILDing SCHOLARS, Research Intensive Sequence (FYRIS) students, The University of Texas at El Paso, El Paso, Texas, USA
| | - Yazeneth Madero
- BUILDing SCHOLARS, Research Intensive Sequence (FYRIS) students, The University of Texas at El Paso, El Paso, Texas, USA
| | - Frida Moncayo
- BUILDing SCHOLARS, Research Intensive Sequence (FYRIS) students, The University of Texas at El Paso, El Paso, Texas, USA
| | - Rosario Olmos
- BUILDing SCHOLARS, Research Intensive Sequence (FYRIS) students, The University of Texas at El Paso, El Paso, Texas, USA
| | - David Perches
- BUILDing SCHOLARS, Research Intensive Sequence (FYRIS) students, The University of Texas at El Paso, El Paso, Texas, USA
| | - Jacob Roman
- BUILDing SCHOLARS, Research Intensive Sequence (FYRIS) students, The University of Texas at El Paso, El Paso, Texas, USA
| | - Diana Salcido-Padilla
- BUILDing SCHOLARS, Research Intensive Sequence (FYRIS) students, The University of Texas at El Paso, El Paso, Texas, USA
| | - Efrain Sanchez
- BUILDing SCHOLARS, Research Intensive Sequence (FYRIS) students, The University of Texas at El Paso, El Paso, Texas, USA
| | - Christopher Trejo
- BUILDing SCHOLARS, Research Intensive Sequence (FYRIS) students, The University of Texas at El Paso, El Paso, Texas, USA
| | - Paulina Trevino
- BUILDing SCHOLARS, Research Intensive Sequence (FYRIS) students, The University of Texas at El Paso, El Paso, Texas, USA
| | - Md Nurunnabi
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas at El Paso, El Paso, Texas, USA
| | - Mahesh Narayan
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, Texas, USA
| |
Collapse
|
26
|
Wang H, Boghossian AA. Covalent conjugation of proteins onto fluorescent single-walled carbon nanotubes for biological and medical applications. MATERIALS ADVANCES 2023; 4:823-834. [PMID: 36761250 PMCID: PMC9900427 DOI: 10.1039/d2ma00714b] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/02/2022] [Indexed: 05/20/2023]
Abstract
Single-walled carbon nanotubes (SWCNTs) have optical properties that are conducive for biological applications such as sensing, delivery, and imaging. These applications necessitate the immobilization of macromolecules that can serve as therapeutic drugs, molecular templates, or modulators of surface interactions. Although previous studies have focused on non-covalent immobilization strategies, recent advances have introduced covalent functional handles that can preserve or even enhance the SWCNT optical properties. This review presents an overview of covalent sidewall modifications of SWCNTs, with a focus on the latest generation of "sp3 defect" modifications. We summarize and compare the reaction conditions and the reported products of these sp3 chemistries. We further review the underlying photophysics governing SWCNT fluorescence and apply these principles to the fluorescence emitted from these covalently modified SWCNTs. Finally, we provide an outlook on additional chemistries that could be applied to covalently conjugate proteins to these chemically modified, fluorescent SWCNTs. We review the advantages of these approaches, emerging opportunities for further improvement, as well as their implications for enabling new technologies.
Collapse
Affiliation(s)
- Hanxuan Wang
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Chemical Sciences and Engineering CH-1015 Lausanne Switzerland
| | - Ardemis A Boghossian
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Chemical Sciences and Engineering CH-1015 Lausanne Switzerland
| |
Collapse
|
27
|
Card M, Alejandro R, Roxbury D. Decoupling Individual Optical Nanosensor Responses Using a Spin-Coated Hydrogel Platform. ACS APPLIED MATERIALS & INTERFACES 2023; 15:1772-1783. [PMID: 36548478 DOI: 10.1021/acsami.2c16596] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Significant advances have been made in fields such as nanotechnology and biomedicine using the unique properties of single-walled carbon nanotubes (SWCNTs). Specifically, SWCNTs are used as near-infrared fluorescence sensors in the solution phase to detect a wide array of biologically relevant analytes. However, solution-based sensing has several limitations, including limited sensitivity and poor spatial resolution. We have therefore devised a new spin-coated poly(ethylene glycol) diacrylate (PEG-DA) hydrogel platform to examine individual DNA-functionalized SWCNTs (DNA-SWCNTs) in their native aqueous state and have subsequently used this platform to investigate the temporal modulations of each SWCNT in response to a model analyte. A strong surfactant, sodium deoxycholate (SDC), was chosen as the model analyte as it rapidly exchanges with DNA oligonucleotides on the SWCNT surface, modulating several optical properties of the SWCNTs and demonstrating multiparameter analyte detection. Upon addition of SDC, we observed time-dependent spectral modulations in the emission center wavelengths and peak intensities of the individual SWCNTs, indicative of a DNA-to-surfactant exchange process. Interestingly, we found that the modulations in the peak intensities, as determined by kinetic data, were significantly delayed when compared to their center wavelength counterparts, suggesting a potential decoupling of the response of these two spectral features. We used a 1-D diffusion model to relate the local SDC concentration to the spectral response of each SWCNT and created dose-response curves. The peak intensity shifts at a higher SDC concentration than the center wavelength, indicating a potential change in the conformation of the surfactant molecules adsorbed to the SWCNT sidewall after the initial exchange process. This platform allows for a unique single-molecule analysis technique that is significantly more sensitive and modifiable than utilizing SWCNTs in the solution phase.
Collapse
Affiliation(s)
- Matthew Card
- Department of Chemical Engineering, University of Rhode Island, Kingston, Rhode Island02886, United States
| | - Raisa Alejandro
- Department of Chemical Engineering, University of Rhode Island, Kingston, Rhode Island02886, United States
| | - Daniel Roxbury
- Department of Chemical Engineering, University of Rhode Island, Kingston, Rhode Island02886, United States
| |
Collapse
|
28
|
Pu Z, Wei Y, Sun Y, Wang Y, Zhu S. Carbon Nanotubes as Carriers in Drug Delivery for Non-Small Cell Lung Cancer, Mechanistic Analysis of Their Carcinogenic Potential, Safety Profiling and Identification of Biomarkers. Int J Nanomedicine 2022; 17:6157-6180. [PMID: 36523423 PMCID: PMC9744892 DOI: 10.2147/ijn.s384592] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/23/2022] [Indexed: 04/04/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) is a global burden leading to millions of deaths worldwide every year. Nanomedicine refers to the use of materials at the nanoscale for drug delivery and subsequent therapeutic approaches in cancer. Carbon nanotubes (CNTs) are widely used as nanocarriers for therapeutic molecules such as plasmids, siRNAs, antisense agents, aptamers and molecules related to the immunotherapy for several cancers. They are usually functionalized and loaded with standard drug molecules to improve their therapeutic efficiency. Functionalization and drug loading possibly decrease the genotoxic and carcinogenic potential of CNTs. In addition, the targeted cytotoxic properties of the drug improve and undesired toxicity decreases after drug loading and/or conjugation with proteins, including antibodies. For intended drug delivery, a lysosomal pH of 5.5 is more suitable and effective for the slow and extended release of cytotoxic drugs than a physiological of pH 7.4. Remarkably, CNTs possess intrinsic antitumor properties and are usually internalized by endocytosis. After being internalized, several mechanisms are involved in the therapeutic and carcinogenic effects of CNTs. They are generally safe for therapy, and their toxicity profile remains dependent on their physicochemical properties. Moreover, the dose, route, duration of exposure, surface properties and degradative potential determine the toxicity outcomes of CNTs locally or systemically. In summary, the use of CNTs in drug delivery and NSCLC therapy, as well as their genotoxic and carcinogenic potential and the possible mechanisms, has been discussed in this review. The therapeutic index is generally high for NSCLC cells treated with drug-loaded CNTs; therefore, they are effective carriers in implementing targeted therapy for NSCLC.
Collapse
Affiliation(s)
- Zhongjian Pu
- Department of Oncology, Haian Hospital of Traditional Chinese Medicine, Haian, 216600, People’s Republic of China
| | - Yujia Wei
- School of Medicine, Yangzhou University, Yangzhou, 225009, People’s Republic of China
- Department of General Practice, Suzhou Wuzhong Hospital of Traditional Chinese Medicine, Suzhou, 215101, People’s Republic of China
| | - Yuanpeng Sun
- Department of Oncology, Haian Hospital of Traditional Chinese Medicine, Haian, 216600, People’s Republic of China
| | - Yajun Wang
- Department of Oncology, Haian Hospital of Traditional Chinese Medicine, Haian, 216600, People’s Republic of China
| | - Shilin Zhu
- Department of Oncology, Haian Hospital of Traditional Chinese Medicine, Haian, 216600, People’s Republic of China
| |
Collapse
|
29
|
Wulf V, Bisker G. Single-Walled Carbon Nanotubes as Fluorescent Probes for Monitoring the Self-Assembly and Morphology of Peptide/Polymer Hybrid Hydrogels. NANO LETTERS 2022; 22:9205-9214. [PMID: 36259520 PMCID: PMC9706665 DOI: 10.1021/acs.nanolett.2c01587] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 10/12/2022] [Indexed: 05/20/2023]
Abstract
Hydrogels formed via supramolecular self-assembly of fluorenylmethyloxycarbonyl (Fmoc)-conjugated amino acids provide excellent scaffolds for 3D cell culture, tissue engineering, and tissue recovery matrices. Such hydrogels are usually characterized by rheology or electron microscopy, which are invasive and cannot provide real-time information. Here, we incorporate near-infrared fluorescent single-walled carbon nanotubes (SWCNTs) into Fmoc-diphenylalanine hydrogels as fluorescent probes, reporting in real-time on the morphology and time-dependent structural changes of the self-assembled hydrogels in the transparency window of biological tissue. We further demonstrate that the gelation process and structural changes upon the addition of cross-linking ions are transduced into spectral modulations of the SWCNT-fluorescence. Moreover, morphological differences of the hydrogels induced by polymer additives are manifested in unique features in fluorescence images of the incorporated SWCNTs. SWCNTs can thus serve as optical probes for noninvasive, long-term monitoring of the self-assembly gelation process and the fate of the resulting peptide hydrogel during long-term usage.
Collapse
Affiliation(s)
- Verena Wulf
- Department
of Biomedical Engineering, Faculty of Engineering, Tel-Aviv University, Tel Aviv 6997801, Israel
| | - Gili Bisker
- Department
of Biomedical Engineering, Faculty of Engineering, Tel-Aviv University, Tel Aviv 6997801, Israel
- The
Center for Physics and Chemistry of Living Systems, Tel-Aviv University, Tel Aviv 6997801, Israel
- Center
for Nanoscience and Nanotechnology, Tel-Aviv
University, Tel Aviv 6997801, Israel
- Center
for Light Matter Interaction, Tel-Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
30
|
Antonucci A, Reggente M, Roullier C, Gillen AJ, Schuergers N, Zubkovs V, Lambert BP, Mouhib M, Carata E, Dini L, Boghossian AA. Carbon nanotube uptake in cyanobacteria for near-infrared imaging and enhanced bioelectricity generation in living photovoltaics. NATURE NANOTECHNOLOGY 2022; 17:1111-1119. [PMID: 36097045 DOI: 10.1038/s41565-022-01198-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
The distinctive properties of single-walled carbon nanotubes (SWCNTs) have inspired the development of many novel applications in the field of cell nanobiotechnology. However, studies thus far have not explored the effect of SWCNT functionalization on transport across the cell walls of prokaryotes. We explore the uptake of SWCNTs in Gram-negative cyanobacteria and demonstrate a passive length-dependent and selective internalization of SWCNTs decorated with positively charged biomolecules. We show that lysozyme-coated SWCNTs spontaneously penetrate the cell walls of a unicellular strain and a multicellular strain. A custom-built spinning-disc confocal microscope was used to image the distinct near-infrared SWCNT fluorescence within the autofluorescent cells, revealing a highly inhomogeneous distribution of SWCNTs. Real-time near-infrared monitoring of cell growth and division reveal that the SWCNTs are inherited by daughter cells. Moreover, these nanobionic living cells retained photosynthetic activity and showed an improved photo-exoelectrogenicity when incorporated into bioelectrochemical devices.
Collapse
Affiliation(s)
- Alessandra Antonucci
- Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Melania Reggente
- Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Charlotte Roullier
- Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Alice J Gillen
- Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Nils Schuergers
- Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Biology III, University of Freiburg, Freiburg, Germany
| | - Vitalijs Zubkovs
- Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Swiss Center for Electronics and Microtechnology (CSEM), Landquart, Switzerland
| | - Benjamin P Lambert
- Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Mohammed Mouhib
- Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Elisabetta Carata
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | - Luciana Dini
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, CNR Nanotec, Lecce, Italy
| | - Ardemis A Boghossian
- Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
31
|
Russell PS, Velivolu R, Maldonado Zimbrón VE, Hong J, Kavianinia I, Hickey AJR, Windsor JA, Phillips ARJ. Fluorescent Tracers for In Vivo Imaging of Lymphatic Targets. Front Pharmacol 2022; 13:952581. [PMID: 35935839 PMCID: PMC9355481 DOI: 10.3389/fphar.2022.952581] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
The lymphatic system continues to gain importance in a range of conditions, and therefore, imaging of lymphatic vessels is becoming more widespread for research, diagnosis, and treatment. Fluorescent lymphatic imaging offers advantages over other methods in that it is affordable, has higher resolution, and does not require radiation exposure. However, because the lymphatic system is a one-way drainage system, the successful delivery of fluorescent tracers to lymphatic vessels represents a unique challenge. Each fluorescent tracer used for lymphatic imaging has distinct characteristics, including size, shape, charge, weight, conjugates, excitation/emission wavelength, stability, and quantum yield. These characteristics in combination with the properties of the target tissue affect the uptake of the dye into lymphatic vessels and the fluorescence quality. Here, we review the characteristics of visible wavelength and near-infrared fluorescent tracers used for in vivo lymphatic imaging and describe the various techniques used to specifically target them to lymphatic vessels for high-quality lymphatic imaging in both clinical and pre-clinical applications. We also discuss potential areas of future research to improve the lymphatic fluorescent tracer design.
Collapse
Affiliation(s)
- P. S. Russell
- Applied Surgery and Metabolism Laboratory, School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
- Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - R. Velivolu
- Applied Surgery and Metabolism Laboratory, School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
- Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - V. E. Maldonado Zimbrón
- Applied Surgery and Metabolism Laboratory, School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
- Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - J. Hong
- Applied Surgery and Metabolism Laboratory, School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
- Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, Faculty of Science, The University of Auckland, Auckland, New Zealand
| | - I. Kavianinia
- Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, Faculty of Science, The University of Auckland, Auckland, New Zealand
- School of Chemical Sciences, Faculty of Science, The University of Auckland, Auckland, New Zealand
| | - A. J. R. Hickey
- Applied Surgery and Metabolism Laboratory, School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, Faculty of Science, The University of Auckland, Auckland, New Zealand
| | - J. A. Windsor
- Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, Faculty of Science, The University of Auckland, Auckland, New Zealand
| | - A. R. J. Phillips
- Applied Surgery and Metabolism Laboratory, School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
- Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, Faculty of Science, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
32
|
Assali M, Kittana N, Alhaj-Qasem S, Hajjyahya M, Abu-Rass H, Alshaer W, Al-Buqain R. Noncovalent functionalization of carbon nanotubes as a scaffold for tissue engineering. Sci Rep 2022; 12:12062. [PMID: 35835926 PMCID: PMC9283586 DOI: 10.1038/s41598-022-16247-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/07/2022] [Indexed: 11/10/2022] Open
Abstract
Tissue engineering is one of the hot topics in recent research that needs special requirements. It depends on the development of scaffolds that allow tissue formation with certain characteristics, carbon nanotubes (CNTs)-collagen composite attracted the attention of the researchers with this respect. However, CNTs suffer from low water dispersibility, which hampered their utilization. Therefore, we aim to functionalize CNTs non-covalently with pyrene moiety using an appropriate hydrophilic linker derivatized from polyethylene glycol (PEG) terminated with hydroxyl or carboxyl group to disperse them in water. The functionalization of the CNTs is successfully confirmed by TEM, absorption spectroscopy, TGA, and zeta potential analysis. 3T3 cells-based engineered connective tissues (ECTs) are generated with different concentrations of the functionalized CNTs (f-CNTs). These tissues show a significant enhancement in electrical conductivity at a concentration of 0.025%, however, the cell viability is reduced by about 10 to 20%. All ECTs containing f-CNTs show a significant reduction in tissue fibrosis and matrix porosity relative to the control tissues. Taken together, the developed constructs show great potential for further in vivo studies as engineered tissue.
Collapse
Affiliation(s)
- Mohyeddin Assali
- Department of Pharmacy, Faculty of Medicine & Health Sciences, An-Najah National University, Nablus, Palestine.
| | - Naim Kittana
- Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, An-Najah National University, Nablus, Palestine.
| | - Sahar Alhaj-Qasem
- Department of Pharmacy, Faculty of Medicine & Health Sciences, An-Najah National University, Nablus, Palestine
| | - Muna Hajjyahya
- Department of Physics, Faculty of Sciences, An-Najah National University, Nablus, Palestine
| | - Hanood Abu-Rass
- Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, An-Najah National University, Nablus, Palestine
| | - Walhan Alshaer
- Cell Therapy Center, The University of Jordan, Amman, 11942, Jordan
| | - Rula Al-Buqain
- Cell Therapy Center, The University of Jordan, Amman, 11942, Jordan
| |
Collapse
|
33
|
Nißler R, Ackermann J, Ma C, Kruss S. Prospects of Fluorescent Single-Chirality Carbon Nanotube-Based Biosensors. Anal Chem 2022; 94:9941-9951. [PMID: 35786856 DOI: 10.1021/acs.analchem.2c01321] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Semiconducting single-wall carbon nanotubes (SWCNTs) fluoresce in the near-infrared (NIR), and the emission wavelength depends on their structure (chirality). Interactions with other molecules affect their fluorescence, which has successfully been used for SWCNT-based molecular sensors. So far, most such sensors are assembled from crude mixtures of different SWCNT chiralities, which causes polydisperse sensor responses as well as spectral congestion and limits their performance. The advent of chirality-pure SWCNTs is about to overcome this limitation and paves the way for the next generation of biosensors. Here, we discuss the first examples of chirality-pure SWCNT-based fluorescent biosensors. We introduce routes to such sensors via aqueous two-phase extraction-assisted purification of SWCNTs and highlight the critical interplay between purification and surface modification procedures. Applications include the NIR detection and imaging of neurotransmitters, reactive oxygen species, lipids, bacterial motives, and plant metabolites. Most importantly, we outline a path toward how such monodisperse (chirality-pure) sensors will enable advanced multiplexed sensing with enhanced bioanalytical performance.
Collapse
Affiliation(s)
- Robert Nißler
- Nanoparticle Systems Engineering Lab, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland.,Laboratory for Particles-Biology Interactions, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland.,Department of Chemistry, Bochum University, Universitätsstrasse 150, 44801 Bochum, Germany
| | - Julia Ackermann
- Fraunhofer Institute of Microelectronic Circuits and Systems, Finkenstrasse 61, 47057 Duisburg, Germany
| | - Chen Ma
- Department of Chemistry, Bochum University, Universitätsstrasse 150, 44801 Bochum, Germany
| | - Sebastian Kruss
- Department of Chemistry, Bochum University, Universitätsstrasse 150, 44801 Bochum, Germany.,Fraunhofer Institute of Microelectronic Circuits and Systems, Finkenstrasse 61, 47057 Duisburg, Germany
| |
Collapse
|
34
|
Mostafavi E, Iravani S, Varma RS, Khatami M, Rahbarizadeh F. Eco-friendly synthesis of carbon nanotubes and their cancer theranostic applications. MATERIALS ADVANCES 2022; 3:4765-4782. [PMID: 35812837 PMCID: PMC9207599 DOI: 10.1039/d2ma00341d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
Carbon nanotubes (CNTs) with attractive physicochemical characteristics such as high surface area, mechanical strength, functionality, and electrical/thermal conductivity have been widely studied in different fields of science. However, the preparation of these nanostructures on a large scale is either expensive or sometimes ecologically unfriendly. In this context, plenty of studies have been conducted to discover innovative methods to fabricate CNTs in an eco-friendly and inexpensive manner. CNTs have been synthesized using various natural hydrocarbon precursors, including plant extracts (e.g., tea-tree extract), essential oils (e.g., eucalyptus and sunflower oil), biodiesel, milk, honey, and eggs, among others. Additionally, agricultural bio-wastes have been widely studied for synthesizing CNTs. Researchers should embrace the usage of natural and renewable precursors as well as greener methods to produce various types of CNTs in large quantities with the advantages of cost-effectiveness and environmentally benign features. In addition, multifunctionalized CNTs with improved biocompatibility and targeting features are promising candidates for cancer theranostic applications owing to their attractive optical, chemical, thermal, and electrical properties. This perspective discusses the recent developments in eco-friendly synthesis of CNTs using green chemistry-based techniques, natural renewable resources, and sustainable catalysts, with emphasis on important challenges and future perspectives and highlighting techniques for the functionalization or modification of CNTs. Significant and promising cancer theranostic applications as well as their biocompatibility and cytotoxicity issues are also discussed.
Collapse
Affiliation(s)
- Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine CA 94305 USA
- Department of Medicine, Stanford University School of Medicine Stanford CA 94305 USA
| | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences 81746-73461 Isfahan Iran
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University in Olomouc Slechtitelu 27 783 71 Olomouc Czech Republic
| | - Mehrdad Khatami
- Non-communicable Diseases Research Center, Bam University of Medical Sciences Bam Iran
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University Tehran Iran
| | - Fatemeh Rahbarizadeh
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University Tehran Iran
| |
Collapse
|
35
|
Antman-Passig M, Wong E, Frost GR, Cupo C, Shah J, Agustinus A, Chen Z, Mancinelli C, Kamel M, Li T, Jonas LA, Li YM, Heller DA. Optical Nanosensor for Intracellular and Intracranial Detection of Amyloid-Beta. ACS NANO 2022; 16:7269-7283. [PMID: 35420796 PMCID: PMC9710299 DOI: 10.1021/acsnano.2c00054] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Amyloid-beta (Aβ) deposition occurs in the early stages of Alzheimer's disease (AD), but the early detection of Aβ is a persistent challenge. Herein, we engineered a near-infrared optical nanosensor capable of detecting Aβ intracellularly in live cells and intracranially in vivo. The sensor is composed of single-walled carbon nanotubes functionalized with Aβ wherein Aβ-Aβ interactions drive the response. We found that the Aβ nanosensors selectively responded to Aβ via solvatochromic modulation of the near-infrared emission of the nanotube. The sensor tracked Aβ accumulation in live cells and, upon intracranial administration in a genetic model of AD, signaled distinct responses in aged mice. This technology enables the interrogation of molecular mechanisms underlying Aβ neurotoxicity in the development of AD in living systems.
Collapse
Affiliation(s)
- Merav Antman-Passig
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Eitan Wong
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Georgia R Frost
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Christian Cupo
- Department of Mechanical Engineering, Columbia University, New York, New York 10027, United States
| | - Janki Shah
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Albert Agustinus
- Program of Pharmacology, Weill Graduate School of Medical Sciences of Cornell University, New York, New York 10065, United States
| | - Ziyu Chen
- Program of Physiology, Biophysics, & Systems Biology, Weill Graduate School of Medical Sciences of Cornell University, New York, New York 10065, United States
| | - Chiara Mancinelli
- Program of Pharmacology, Weill Graduate School of Medical Sciences of Cornell University, New York, New York 10065, United States
| | - Maikel Kamel
- Sophie Davis School of Biomedical Education, CUNY School of Medicine, New York, New York 10031, United States
| | - Thomas Li
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
- Program of Neurosciences, Weill Graduate School of Medical Sciences of Cornell University, New York, New York 10065, United States
| | - Lauren A Jonas
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
- Program of Pharmacology, Weill Graduate School of Medical Sciences of Cornell University, New York, New York 10065, United States
| | - Yue-Ming Li
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
- Program of Pharmacology, Weill Graduate School of Medical Sciences of Cornell University, New York, New York 10065, United States
- Program of Neurosciences, Weill Graduate School of Medical Sciences of Cornell University, New York, New York 10065, United States
| | - Daniel A Heller
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
- Program of Pharmacology, Weill Graduate School of Medical Sciences of Cornell University, New York, New York 10065, United States
- Program of Physiology, Biophysics, & Systems Biology, Weill Graduate School of Medical Sciences of Cornell University, New York, New York 10065, United States
| |
Collapse
|
36
|
Ackermann J, Metternich JT, Herbertz S, Kruss S. Biosensing with Fluorescent Carbon Nanotubes. Angew Chem Int Ed Engl 2022; 61:e202112372. [PMID: 34978752 PMCID: PMC9313876 DOI: 10.1002/anie.202112372] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 12/28/2021] [Indexed: 12/23/2022]
Abstract
Biosensors are powerful tools for modern basic research and biomedical diagnostics. Their development requires substantial input from the chemical sciences. Sensors or probes with an optical readout, such as fluorescence, offer rapid, minimally invasive sensing of analytes with high spatial and temporal resolution. The near-infrared (NIR) region is beneficial because of the reduced background and scattering of biological samples (tissue transparency window) in this range. In this context, single-walled carbon nanotubes (SWCNTs) have emerged as versatile NIR fluorescent building blocks for biosensors. Here, we provide an overview of advances in SWCNT-based NIR fluorescent molecular sensors. We focus on chemical design strategies for diverse analytes and summarize insights into the photophysics and molecular recognition. Furthermore, different application areas are discussed-from chemical imaging of cellular systems and diagnostics to in vivo applications and perspectives for the future.
Collapse
Affiliation(s)
- Julia Ackermann
- Biomedical NanosensorsFraunhofer Institute for Microelectronic Circuits and SystemsFinkenstrasse 6147057DuisburgGermany
- Department EBSUniversity Duisburg-EssenBismarckstrasse 8147057DuisburgGermany
| | - Justus T. Metternich
- Physical ChemistryRuhr-University BochumUniversitätsstrasse 15044801BochumGermany
- Biomedical NanosensorsFraunhofer Institute for Microelectronic Circuits and SystemsFinkenstrasse 6147057DuisburgGermany
| | - Svenja Herbertz
- Biomedical NanosensorsFraunhofer Institute for Microelectronic Circuits and SystemsFinkenstrasse 6147057DuisburgGermany
| | - Sebastian Kruss
- Physical ChemistryRuhr-University BochumUniversitätsstrasse 15044801BochumGermany
- Biomedical NanosensorsFraunhofer Institute for Microelectronic Circuits and SystemsFinkenstrasse 6147057DuisburgGermany
| |
Collapse
|
37
|
Ackermann J, Metternich JT, Herbertz S, Kruss S. Biosensing with Fluorescent Carbon Nanotubes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Julia Ackermann
- Biomedical Nanosensors Fraunhofer Institute for Microelectronic Circuits and Systems Finkenstrasse 61 47057 Duisburg Germany
- Department EBS University Duisburg-Essen Bismarckstrasse 81 47057 Duisburg Germany
| | - Justus T. Metternich
- Physical Chemistry Ruhr-University Bochum Universitätsstrasse 150 44801 Bochum Germany
- Biomedical Nanosensors Fraunhofer Institute for Microelectronic Circuits and Systems Finkenstrasse 61 47057 Duisburg Germany
| | - Svenja Herbertz
- Biomedical Nanosensors Fraunhofer Institute for Microelectronic Circuits and Systems Finkenstrasse 61 47057 Duisburg Germany
| | - Sebastian Kruss
- Physical Chemistry Ruhr-University Bochum Universitätsstrasse 150 44801 Bochum Germany
- Biomedical Nanosensors Fraunhofer Institute for Microelectronic Circuits and Systems Finkenstrasse 61 47057 Duisburg Germany
| |
Collapse
|
38
|
Jena PV, Gravely M, Cupo C, Safaee MM, Roxbury D, Heller DA. Hyperspectral Counting of Multiplexed Nanoparticle Emitters in Single Cells and Organelles. ACS NANO 2022; 16:3092-3104. [PMID: 35049273 DOI: 10.1021/acsnano.1c10708] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nanomaterials are the subject of a range of biomedical, commercial, and environmental investigations involving measurements in living cells and tissues. Accurate quantification of nanomaterials, at the tissue, cell, and organelle levels, is often difficult, however, in part due to their inhomogeneity. Here, we propose a method that uses the distinct optical properties of a heterogeneous nanomaterial preparation in order to improve quantification at the single-cell and organelle level. We developed "hyperspectral counting", which employs diffraction-limited imaging via hyperspectral microscopy of a diverse set of fluorescent nanomaterials to estimate particle number counts in live cells and subcellular structures. A mathematical model was developed, and Monte Carlo simulations were employed, to improve the accuracy of these estimates, enabling quantification with single-cell and single-endosome resolution. We applied this nanometrology technique with single-walled carbon nanotubes and identified an upper limit of the rate of uptake into cells─approximately 3,000 nanotubes endocytosed within 30 min. In contrast, conventional region-of-interest counting results in a 230% undercount. The method identified significant heterogeneity and a broad non-Gaussian distribution of carbon nanotube uptake within cells. For example, while a particular cell contained an average of 1 nanotube per endosome, the heterogeneous distribution resulted in over 7 nanotubes localizing within some endosomes, substantially changing the accounting of subcellular nanoparticle concentration distributions. This work presents a method to quantify the cellular and subcellular concentrations of a heterogeneous carbon nanotube reference material, with implications for the nanotoxicology, drug/gene delivery, and nanosensor fields.
Collapse
Affiliation(s)
- Prakrit V Jena
- Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Mitchell Gravely
- Department of Chemical Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Christian Cupo
- Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Mohammad Moein Safaee
- Department of Chemical Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Daniel Roxbury
- Department of Chemical Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Daniel A Heller
- Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
- Weill Cornell Medical College, New York, New York 10065, United States
| |
Collapse
|
39
|
Kohls A, Maurer Ditty M, Dehghandehnavi F, Zheng SY. Vertically Aligned Carbon Nanotubes as a Unique Material for Biomedical Applications. ACS APPLIED MATERIALS & INTERFACES 2022; 14:6287-6306. [PMID: 35090107 PMCID: PMC9254017 DOI: 10.1021/acsami.1c20423] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Vertically aligned carbon nanotubes (VACNTs), a unique classification of CNT, highly oriented and normal to the respective substrate, have been heavily researched over the last two decades. Unlike randomly oriented CNT, VACNTs have demonstrated numerous advantages making it an extremely desirable nanomaterial for many biomedical applications. These advantages include better spatial uniformity, increased surface area, greater susceptibility to functionalization, improved electrocatalytic activity, faster electron transfer, higher resolution in sensing, and more. This Review discusses VACNT and its utilization in biomedical applications particularly for sensing, biomolecule filtration systems, cell stimulation, regenerative medicine, drug delivery, and bacteria inhibition. Furthermore, comparisons are made between VACNT and its traditionally nonaligned, randomly oriented counterpart. Thus, we aim to provide a better understanding of VACNT and its potential applications within the community and encourage its utilization in the future.
Collapse
|
40
|
Takasaka M, Kobayashi S, Usui Y, Haniu H, Tsuruoka S, Aoki K, Saito N. Biokinetic Evaluation of Contrast Media Loaded Carbon Nanotubes Using a Radiographic Device. TOXICS 2021; 9:toxics9120331. [PMID: 34941765 PMCID: PMC8705935 DOI: 10.3390/toxics9120331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/27/2021] [Accepted: 11/30/2021] [Indexed: 12/26/2022]
Abstract
Considerable progress has been made in various fields of applied research on the use of carbon nanotubes (CNTs). Because CNTs are fibrous nanomaterials, biosafety of CNTs has been discussed. The biokinetic data of CNTs, such as using the radioisotope of carbon and surface labeling of CNTs, have been reported. However, the use of radioisotopes requires a special facility. In addition, there are problems in the surface labeling of CNTs, including changes in surface properties and labels eliminating over time. In order to solve these problems and properly evaluate the biokinetics of CNTs, the authors synthesize peapods with platinum (Pt) encapsulated within the hollow region of Double-Walled CNTs (DWCNTs) and develop a new system to evaluate biokinetics using widely available imaging equipment. In the cell assay, no significant difference is observed with and without Pt in CNTs. In animal studies, radiography of the lungs of rats that inhaled Pt-peapods show the detectability of Pt inside the CNTs. This new method using Pt-peapods enables image evaluation with a standard radiographic imaging device without changing the surface property of the CNTs and is effective for biokinetics evaluation of CNTs.
Collapse
Affiliation(s)
- Mieko Takasaka
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 3-1-1 Asahi, Matsumoto 390-8621, Japan; (M.T.); (H.H.)
- Biomedical Engineering Division, Graduate School of Science and Technology, Shinshu University, 3-1-1 Asahi, Matsumoto 390-8621, Japan
| | - Shinsuke Kobayashi
- USUI Orthopedic Clinic, 6-33 Idegawa, Matsumoto 390-0826, Japan; (S.K.); (Y.U.)
| | - Yuki Usui
- USUI Orthopedic Clinic, 6-33 Idegawa, Matsumoto 390-0826, Japan; (S.K.); (Y.U.)
| | - Hisao Haniu
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 3-1-1 Asahi, Matsumoto 390-8621, Japan; (M.T.); (H.H.)
| | - Shuji Tsuruoka
- Institute of Carbon Science and Technology, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 4-17-1 Wakasato, Matsumoto 380-8553, Japan;
| | - Kaoru Aoki
- Physical Therapy Division, School of Health Sciences, Shinshu University, 3-1-1 Asahi, Matsumoto 390-8621, Japan
- Correspondence: (K.A.); (N.S.)
| | - Naoto Saito
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 3-1-1 Asahi, Matsumoto 390-8621, Japan; (M.T.); (H.H.)
- Correspondence: (K.A.); (N.S.)
| |
Collapse
|
41
|
Yaari Z, Yang Y, Apfelbaum E, Cupo C, Settle AH, Cullen Q, Cai W, Roche KL, Levine DA, Fleisher M, Ramanathan L, Zheng M, Jagota A, Heller DA. A perception-based nanosensor platform to detect cancer biomarkers. SCIENCE ADVANCES 2021; 7:eabj0852. [PMID: 34797711 PMCID: PMC8604403 DOI: 10.1126/sciadv.abj0852] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 09/14/2021] [Indexed: 05/15/2023]
Abstract
Conventional molecular recognition elements, such as antibodies, present issues for developing biomolecular assays for use in certain technologies, such as implantable devices. Additionally, antibody development and use, especially for highly multiplexed applications, can be slow and costly. We developed a perception-based platform based on an optical nanosensor array that leverages machine learning algorithms to detect multiple protein biomarkers in biofluids. We demonstrated this platform in gynecologic cancers, often diagnosed at advanced stages, leading to low survival rates. We investigated the detection of protein biomarkers in uterine lavage samples, which are enriched with certain cancer markers compared to blood. We found that the method enables the simultaneous detection of multiple biomarkers in patient samples, with F1-scores of ~0.95 in uterine lavage samples from patients with cancer. This work demonstrates the potential of perception-based systems for the development of multiplexed sensors of disease biomarkers without the need for specific molecular recognition elements.
Collapse
Affiliation(s)
- Zvi Yaari
- Memorial Sloan Kettering Cancer Center, NY, New York 10065, USA
| | - Yoona Yang
- Lehigh University, Bethlehem, PA 18015, USA
| | - Elana Apfelbaum
- Memorial Sloan Kettering Cancer Center, NY, New York 10065, USA
| | - Christian Cupo
- Memorial Sloan Kettering Cancer Center, NY, New York 10065, USA
| | - Alex H. Settle
- Memorial Sloan Kettering Cancer Center, NY, New York 10065, USA
| | - Quinlan Cullen
- Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Winson Cai
- Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Kara Long Roche
- Memorial Sloan Kettering Cancer Center, NY, New York 10065, USA
| | | | - Martin Fleisher
- Memorial Sloan Kettering Cancer Center, NY, New York 10065, USA
| | | | - Ming Zheng
- National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | | | - Daniel A. Heller
- Memorial Sloan Kettering Cancer Center, NY, New York 10065, USA
- Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| |
Collapse
|
42
|
Henderson E, Huynh G, Wilson K, Plebanski M, Corrie S. The Development of Nanoparticles for the Detection and Imaging of Ovarian Cancers. Biomedicines 2021; 9:1554. [PMID: 34829783 PMCID: PMC8615601 DOI: 10.3390/biomedicines9111554] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 11/27/2022] Open
Abstract
Ovarian cancer remains as one of the most lethal gynecological cancers to date, with major challenges associated with screening, diagnosis and treatment of the disease and an urgent need for new technologies that can meet these challenges. Nanomaterials provide new opportunities in diagnosis and therapeutic management of many different types of cancers. In this review, we highlight recent promising developments of nanoparticles designed specifically for the detection or imaging of ovarian cancer that have reached the preclinical stage of development. This includes contrast agents, molecular imaging agents and intraoperative aids that have been designed for integration into standard imaging procedures. While numerous nanoparticle systems have been developed for ovarian cancer detection and imaging, specific design criteria governing nanomaterial targeting, biodistribution and clearance from the peritoneal cavity remain key challenges that need to be overcome before these promising tools can accomplish significant breakthroughs into the clinical setting.
Collapse
Affiliation(s)
- Edward Henderson
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia; (E.H.); (G.H.)
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia; (K.W.); (M.P.)
| | - Gabriel Huynh
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia; (E.H.); (G.H.)
| | - Kirsty Wilson
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia; (K.W.); (M.P.)
| | - Magdalena Plebanski
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia; (K.W.); (M.P.)
| | - Simon Corrie
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia; (E.H.); (G.H.)
- ARC Training Center for Cell and Tissue Engineering Technologies, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
43
|
Shashanka Indeevara Rajapakse RM, Rajapakse S. Single-Walled Carbon Nanotube-Based Biosensors for Detection of Bronchial Inflammation. INTERNATIONAL JOURNAL OF NANOSCIENCE 2021. [DOI: 10.1142/s0219581x21300029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Inflammation is a protective mechanism against invading pathogens and tissue damage. However, the inflammatory process is implicated in a wide range of diseases affecting all organs and body systems. Nitric oxide — a multifunctional signaling molecule that plays a critical role in systemic blood pressure homeostasis, prevention of platelet aggregation, antimicrobial resistance, immunoregulation, tumor suppression and as a neurotransmitter — is used as a surrogate marker for inflammation. However, the most commonly used Griess assay is an indirect and expensive method for the determination of nitric oxide concentration. Hence, single-walled carbon nanotube-based biosensors have been explored as real-time, sensitive, selective and safe methods to determine nitric oxide released during the inflammatory process. In this review, we explore current developments in single-walled carbon nanotube-based biosensors for the detection of nitric oxide in exhaled breath as a direct and noninvasive test for detection of bronchial inflammation.
Collapse
Affiliation(s)
| | - Sanath Rajapakse
- Department of Molecular Biology and Biotechnology, Faculty of Science, University of Peradeniya, Sri Lanka
| |
Collapse
|
44
|
Hendler-Neumark A, Wulf V, Bisker G. In vivo imaging of fluorescent single-walled carbon nanotubes within C. elegans nematodes in the near-infrared window. Mater Today Bio 2021; 12:100175. [PMID: 34927042 PMCID: PMC8649898 DOI: 10.1016/j.mtbio.2021.100175] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/14/2021] [Accepted: 11/29/2021] [Indexed: 01/02/2023] Open
Abstract
Caenorhabditis elegans (C. elegans) nematodes serve as a model organism for eukaryotes, especially due to their genetic similarity. Although they have many advantages like their small size and transparency, their autofluorescence in the entire visible wavelength range poses a challenge for imaging and tracking fluorescent proteins or dyes using standard fluorescence microscopy. Herein, near-infrared (NIR) fluorescent single-walled carbon nanotubes (SWCNTs) are utilized for in vivo imaging within the gastrointestinal track of C. elegans. The SWCNTs are biocompatible, and do not affect the worms' viability nor their reproduction ability. The worms do not show any autofluorescence in the NIR range, thus enabling the spectral separation between the SWCNT NIR fluorescence and the strong autofluorescence of the worm gut granules. The worms are fed with ssDNA-SWCNT which are visualized mainly in the intestine lumen. The NIR fluorescence is used in vivo to track the contraction and relaxation in the area of the pharyngeal valve at the anterior of the terminal bulb. These biocompatible, non-photobleaching, NIR fluorescent nanoparticles can advance in vivo imaging and tracking within C. elegans and other small model organisms by overcoming the signal-to-noise challenge stemming from the wide-range visible autofluorescence.
Collapse
Affiliation(s)
- Adi Hendler-Neumark
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Verena Wulf
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Gili Bisker
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, 6997801, Israel
- Center for Physics and Chemistry of Living Systems, Tel-Aviv University, Tel Aviv, 6997801, Israel
- Center for Nanoscience and Nanotechnology, Tel-Aviv University, Tel Aviv, 6997801, Israel
- Center for Light Matter Interaction, Tel-Aviv University, Tel Aviv, 6997801, Israel
| |
Collapse
|
45
|
Bakh NA, Gong X, Lee MA, Jin X, Koman VB, Park M, Nguyen FT, Strano MS. Transcutaneous Measurement of Essential Vitamins Using Near-Infrared Fluorescent Single-Walled Carbon Nanotube Sensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100540. [PMID: 34176216 DOI: 10.1002/smll.202100540] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/29/2021] [Indexed: 06/13/2023]
Abstract
Vitamins such as riboflavin and ascorbic acid are frequently utilized in a range of biomedical applications as drug delivery targets, fluidic tracers, and pharmaceutical excipients. Sensing these biochemicals in the human body has the potential to significantly advance medical research and clinical applications. In this work, a nanosensor platform consisting of single-walled carbon nanotubes (SWCNTs) with nanoparticle corona phases engineered to allow for the selective molecular recognition of ascorbic acid and riboflavin, is developed. The study provides a methodological framework for the implementation of colloidal SWCNT nanosensors in an intraperitoneal SKH1-E murine model by addressing complications arising from tissue absorption and scattering, mechanical perturbations, as well as sensor diffusion and interactions with the biological environment. Nanosensors are encapsulated in a polyethylene glycol diacrylate hydrogel and a diffusion model is utilized to validate analyte transport and sensor responses to local concentrations at the boundary. Results are found to be reproducible and stable after exposure to 10% mouse serum even after three days of in vivo implantation. A geometrical encoding scheme is used to reference sensor pairs, correcting for in vivo optical and mechanical artifacts, resulting in an order of magnitude improvement of p-value from 0.084 to 0.003 during analyte sensing.
Collapse
Affiliation(s)
- Naveed A Bakh
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Xun Gong
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Michael A Lee
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Xiaojia Jin
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Volodymyr B Koman
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Minkyung Park
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Freddy T Nguyen
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Michael S Strano
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| |
Collapse
|
46
|
Ehrlich R, Hendler-Neumark A, Wulf V, Amir D, Bisker G. Optical Nanosensors for Real-Time Feedback on Insulin Secretion by β-Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101660. [PMID: 34197026 DOI: 10.1002/smll.202101660] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/20/2021] [Indexed: 06/13/2023]
Abstract
Quantification of insulin is essential for diabetes research in general, and for the study of pancreatic β-cell function in particular. Herein, fluorescent single-walled carbon nanotubes (SWCNT) are used for the recognition and real-time quantification of insulin. Two approaches for rendering the SWCNT sensors for insulin are compared, using surface functionalization with either a natural insulin aptamer with known affinity to insulin, or a synthetic lipid-poly(ethylene glycol) (PEG) (C16 -PEG(2000Da)-Ceramide), both of which show a modulation of the emitted fluorescence in response to insulin. Although the PEGylated-lipid has no prior affinity to insulin, the response of C16 -PEG(2000Da)-Ceramide-SWCNTs to insulin is more stable and reproducible compared to the insulin aptamer-SWCNTs. The SWCNT sensors successfully detect insulin secreted by β-cells within the complex environment of the conditioned media. The insulin is quantified by comparing the SWCNTs fluorescence response to a standard calibration curve, and the results are found to be in agreement with an enzyme-linked immunosorbent assay. This novel analytical tool for real time quantification of insulin secreted by β-cells provides new opportunities for rapid assessment of β-cell function, with the ability to push forward many aspects of diabetes research.
Collapse
Affiliation(s)
- Roni Ehrlich
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Adi Hendler-Neumark
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Verena Wulf
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Dean Amir
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Gili Bisker
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, 6997801, Israel
- Center for Physics and Chemistry of Living Systems, Center for Nanoscience and Nanotechnology, Center for Light Matter Interaction, Tel Aviv University, Tel Aviv, 6997801, Israel
| |
Collapse
|
47
|
Assali M, Kittana N, Dayyeh S, Khiar N. Dual covalent functionalization of single-walled carbon nanotubes for effective targeted cancer therapy. NANOTECHNOLOGY 2021; 32:205101. [PMID: 33561838 DOI: 10.1088/1361-6528/abe48c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Chemotherapy is a mainstay strategy in the management of cancer. Regrettably, current chemotherapeutic agents are cytotoxic not only to cancer cells but also to healthy cells, resulting in dose-limiting serious side effects. Therefore, many researchers are eager to develop new drug delivery systems that may help to decrease the side effects and the target delivery of chemotherapy to cancer cells. One of the epochal drug delivery systems in this field is based on carbon nanotubes technology. The aim of this work is the dual covalent functionalization of single-walled carbon nanotubes (SWCNTs) with doxorubicin (DOX) connected with acid-labile linkage and mannose (Man) as a targeting agent. The characterization of the developed nano-drug by transmission electron microscopy showed good dispersibility of the functionalized SWCNTs with diameters (6-10) nm. Moreover, the percentage of functionalization was determined by thermogravimetric analysis showing 25% of functionalization in the case of SWNCTs-NHN-DOX (7) and 51% for SWCNTs-Man-NHN-DOX (11). The in vitro release profile of Dox from SWNCTs-NHN-DOX (7) showed 45% of the loaded drug was released over 18 h at pH 7.4 and almost complete release at pH 6.4 at 37 °C. However, the in vitro release profile of Dox from SWCNTs-Man-NHN-DOX (11) showed 75% of the loaded drug was released over 5 h at pH 6.4 at 37 °C. The cytotoxic effect of the compounds was studied on liver cancer cells (HepG2) at different concentrations and different pH conditions and was compared with DOX alone. The cytotoxicity of compounds SWCNTs-NHN-DOX (7) and SWCNTs-Man-NHN-DOX (11) was enhanced at pH 6.5, where the cell viability in both test compounds was significantly reduced by almost 50% compared to the cell viability at pH 7.4 for the same test compound Moreover, the pre-incubation of cells with different concentrations of mannose reduced the cytotoxicity of compound (11) by more than 50%, suggesting that the entry of this complex could be at least in part facilitated by mannose receptors, which imparts this complex a kind of selectivity for cancer cells that overexpress this type of receptors.
Collapse
Affiliation(s)
- Mohyeddin Assali
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, PO Box 7, Nablus, Palestine †
| | - Naim Kittana
- Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, An Najah National University, PO Box 7, Nablus, Palestine †
| | - Safa' Dayyeh
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, PO Box 7, Nablus, Palestine †
| | - Noureddine Khiar
- Asymmetric Synthesis and Functional Nanosystems Group, Institute of Chemical Research-Universidad de Sevilla, Avda. AméricoVespucio, E-41092 Seville, Spain
| |
Collapse
|
48
|
Ho NT, Siggel M, Camacho KV, Bhaskara RM, Hicks JM, Yao YC, Zhang Y, Köfinger J, Hummer G, Noy A. Membrane fusion and drug delivery with carbon nanotube porins. Proc Natl Acad Sci U S A 2021; 118:e2016974118. [PMID: 33941689 PMCID: PMC8126853 DOI: 10.1073/pnas.2016974118] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Drug delivery mitigates toxic side effects and poor pharmacokinetics of life-saving therapeutics and enhances treatment efficacy. However, direct cytoplasmic delivery of drugs and vaccines into cells has remained out of reach. We find that liposomes studded with 0.8-nm-wide carbon nanotube porins (CNTPs) function as efficient vehicles for direct cytoplasmic drug delivery by facilitating fusion of lipid membranes and complete mixing of the membrane material and vesicle interior content. Fusion kinetics data and coarse-grained molecular dynamics simulations reveal an unusual mechanism where CNTP dimers tether the vesicles, pull the membranes into proximity, and then fuse their outer and inner leaflets. Liposomes containing CNTPs in their membranes and loaded with an anticancer drug, doxorubicin, were effective in delivering the drug to cancer cells, killing up to 90% of them. Our results open an avenue for designing efficient drug delivery carriers compatible with a wide range of therapeutics.
Collapse
Affiliation(s)
- Nga T Ho
- Materials Science Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550
- School of Natural Sciences, University of California, Merced, CA 93434
| | - Marc Siggel
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Karen V Camacho
- Materials Science Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550
| | - Ramachandra M Bhaskara
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Jacqueline M Hicks
- Materials Science Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550
- Department of Regenerative Medicine and Cellular Therapies, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Yun-Chiao Yao
- Materials Science Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550
- School of Natural Sciences, University of California, Merced, CA 93434
| | - Yuliang Zhang
- Materials Science Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550
| | - Jürgen Köfinger
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany;
- Institute of Biophysics, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Aleksandr Noy
- Materials Science Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550;
- School of Natural Sciences, University of California, Merced, CA 93434
| |
Collapse
|
49
|
Potential Use of Nitrogen-Doped Carbon Nanotube Sponges as Payload Carriers Against Malignant Glioma. NANOMATERIALS 2021; 11:nano11051244. [PMID: 34066818 PMCID: PMC8150914 DOI: 10.3390/nano11051244] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 04/28/2021] [Accepted: 05/06/2021] [Indexed: 11/17/2022]
Abstract
Glioblastoma is the most aggressive brain tumor with a low median survival of 14 months. The only Food and Drug Administration (FDA)-approved treatment for topical delivery of the cancer drug carmustine is Gliadel. However, its use has been associated with several side-effects, mainly provoked by a mass effect. Nitrogen-doped carbon nanotube sponges (N-CNSs) are a new type of nanomaterial exhibiting high biocompatibility, and they are able to load large amounts of hydrophobic drugs, reducing the amount of carriers. This study evaluated the use of N-CNSs as potential carmustine carriers using malignant glioma cell lines. N-CNSs were characterized by nanoparticle tracking analysis and transmission electron microscopy. The biocompatibility of N-CNSs was determined in glioma cell lines and in primary astrocytes. Afterward, N-CNSs were loaded with carmustine (1:10 w/w), and the drug and liberation efficiency, as well as cytotoxicity induction, were determined. N-CNSs presented a homogeneous size distribution formed by round nanotubes, without induced cytotoxicity, at concentrations below 40 µg/mL. The N-CNSs loaded with carmustine exhibited a continuous kinetic release of carmustine with a maximum release after 72 h. The cytotoxic effect of N-CNSs loaded with carmustine was similar to that of carmustine alone. The results demonstrated that N-CNSs are a biocompatible nanostructure that could be used as carriers for the tumoral load of large amounts of chemotherapeutic agents.
Collapse
|
50
|
Abstract
The family of carbon nanostructures comprises several members, such as fullerenes, nano-onions, nanodots, nanodiamonds, nanohorns, nanotubes, and graphene-based materials. Their unique electronic properties have attracted great interest for their highly innovative potential in nanomedicine. However, their hydrophobic nature often requires organic solvents for their dispersibility and processing. In this review, we describe the green approaches that have been developed to produce and functionalize carbon nanomaterials for biomedical applications, with a special focus on the very latest reports.
Collapse
|