1
|
Ren J, Ding M, Peng Y, Sun C, Yang C, Zhou S, Tian J, Wang Q, Li Z. A comparative study on the detection and localization of interictal epileptiform discharges in magnetoencephalography using optically pumped magnetometers versus superconducting quantum interference devices. Neuroimage 2025; 312:121232. [PMID: 40254146 DOI: 10.1016/j.neuroimage.2025.121232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/30/2025] [Accepted: 04/18/2025] [Indexed: 04/22/2025] Open
Abstract
BACKGROUND Superconducting quantum interference device (SQUID)-based magnetoencephalography (MEG) holds substantial clinical value in epilepsy examination but is limited by the high costs. The optically pumped magnetometer (OPM)-based MEG appears promising in overcoming these limitations. This study aims to explore the consistency of interictal epileptiform discharge (IED) detection and source localization between OPM-MEG and SQUID-MEG in a large cohort of patients with epilepsy. METHODS Patients with epilepsy underwent SQUID-MEG and 128-channel whole-scalp OPM-MEG examinations. IED detection, amplitude, signal-to-noise ratio (SNR), sensor-scalp distance, and source localization results were compared between OPM-MEG and SQUID-MEG through statistical analysis. RESULTS The cohort comprised 46 patients with epilepsy (mean age, 23.7 ± 8.7 [SD] years; 29 male). McNemar χ2 test indicated no significant difference for IED detection between two systems. OPM-MEG achieved a detection accuracy of 91.3 % compared with SQUID-MEG; a Gwet's first-order agreement coefficient (AC1) of 0.892 suggested good consistency. Among 39 patients with IEDs detected by both systems, OPM-MEG demonstrated closer sensor-scalp distance (p < 0.001), higher IED amplitude (p < 0.001) and SNR (p = 0.003) compared with SQUID-MEG. At the sublobar level, OPM-MEG and SQUID-MEG exhibited nearly consistent source localization results. Among 24 patients with single dipole clusters, the average centroid distance between dipole clusters of OPM-MEG and SQUID-MEG was 12.16 ± 5.90 mm. CONCLUSION This real-world study demonstrated that OPM-MEG had comparable applicability in IED detection and source localization, compared with SQUID-MEG. Additionally, OPM-MEG performed better in terms of IED amplitude and SNR. Lower costs and user-friendly features highlight the clinical potential of OPM-MEG in epilepsy assessments.
Collapse
Affiliation(s)
- Jiechuan Ren
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, PR China
| | - Ming Ding
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, PR China; School of Instrumentation Science and Opto-electronics Engineering, Beihang University, Beijing 100191, PR China
| | - Yuming Peng
- School of Instrumentation Science and Opto-electronics Engineering, Beihang University, Beijing 100191, PR China
| | - Chang Sun
- School of Instrumentation Science and Opto-electronics Engineering, Beihang University, Beijing 100191, PR China
| | - Chunqing Yang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, PR China
| | - Shuxian Zhou
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, PR China
| | - Jiayin Tian
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, PR China
| | - Qun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, PR China; China National Clinical Research Center for Neurological Diseases, Beijing 100070, PR China.
| | - Zhimei Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, PR China.
| |
Collapse
|
2
|
Qi S, Song X, Jia L, Duan Z, Dai Y, Zhang J, Ning X. Investigating the effects of calibration errors on the spatial resolution of OPM-MEG beamformer imaging. Neuroimage 2025; 310:121078. [PMID: 40015614 DOI: 10.1016/j.neuroimage.2025.121078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 01/23/2025] [Accepted: 02/05/2025] [Indexed: 03/01/2025] Open
Abstract
The use of optically pumped magnetometers (OPMs) has provided a feasible, moveable and wearable alternative to superconducting detectors for magnetoencephalography (MEG) measurements. Recently, the widely used beamformer imaging technique has greatly improved spatial accuracy of MEG in the field of source reconstruction of neuroimaging. The spatial resolution of the source reconstruction using beamformer imaging technique was explored in the present study. The spatial accuracy of a beamformer reconstruction depends on accurate estimation of the data covariance matrix and lead field. In practical measurements, many sensor calibration errors including the gain error, crosstalk and angular error of the sensitive axis of OPMs due to for example, the low frequency magnetic field drift will distort the measured data as well as the forward model and thus reduce spatial resolution. The theory of OPM calibration errors was first provided based on the Bloch equations. The calibration errors are then quantified using the self-developed OPM array. And an analytical relationship between the Frobenius norm of the covariance matrix error and gain error, crosstalk was derived. The relationship between point-spread function (PSF) and the forward model error caused by the angular error of sensitive axis was analyzed. Finally, the effects of calibration errors on spatial resolution of OPM-MEG were investigated using simulations of two dipoles with orthogonal signals at the source level based on realistic head models. We find the presence of calibration errors will decrease the spatial resolution of beamformer reconstruction. And this decrease will become more severe as the signal-to-noise ratio increases.
Collapse
Affiliation(s)
- Shengjie Qi
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, China; Institute of Large-scale Scientific Facility and Centre for Zero Magnetic Field Science, Beihang University, Beijing, China; National Institute of Extremely-Weak Magnetic Field Infrastructure, Hangzhou, China
| | - Xinda Song
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, China; Institute of Large-scale Scientific Facility and Centre for Zero Magnetic Field Science, Beihang University, Beijing, China; National Institute of Extremely-Weak Magnetic Field Infrastructure, Hangzhou, China; State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou, China; Hangzhou Institute of Extremely-Weak Magnetic Field Major National Science and Technology Infrastructure, Hangzhou, China.
| | - Le Jia
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, China; Institute of Large-scale Scientific Facility and Centre for Zero Magnetic Field Science, Beihang University, Beijing, China; National Institute of Extremely-Weak Magnetic Field Infrastructure, Hangzhou, China; Hangzhou Institute of Extremely-Weak Magnetic Field Major National Science and Technology Infrastructure, Hangzhou, China
| | - Zhaoxin Duan
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, China; Institute of Large-scale Scientific Facility and Centre for Zero Magnetic Field Science, Beihang University, Beijing, China; National Institute of Extremely-Weak Magnetic Field Infrastructure, Hangzhou, China
| | - Yan Dai
- Hangzhou Institute of Extremely-Weak Magnetic Field Major National Science and Technology Infrastructure, Hangzhou, China
| | - Jing Zhang
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, China; Institute of Large-scale Scientific Facility and Centre for Zero Magnetic Field Science, Beihang University, Beijing, China; National Institute of Extremely-Weak Magnetic Field Infrastructure, Hangzhou, China
| | - Xiaolin Ning
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, China; Institute of Large-scale Scientific Facility and Centre for Zero Magnetic Field Science, Beihang University, Beijing, China; National Institute of Extremely-Weak Magnetic Field Infrastructure, Hangzhou, China; State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou, China; Hangzhou Institute of Extremely-Weak Magnetic Field Major National Science and Technology Infrastructure, Hangzhou, China.
| |
Collapse
|
3
|
Bonnet M, Schwartz D, Gutteling T, Daligault S, Labyt E. A fully integrated whole-head helium OPM MEG: a performance assessment compared to cryogenic MEG. FRONTIERS IN MEDICAL TECHNOLOGY 2025; 7:1548260. [PMID: 40256680 PMCID: PMC12006120 DOI: 10.3389/fmedt.2025.1548260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 02/28/2025] [Indexed: 04/22/2025] Open
Abstract
Magnetoencephalography (MEG) is a neuroimaging technique that measures neuronal activity at a millisecond scale. A few years ago, a new generation of MEG sensors emerged: optically pumped magnetometers (OPMs). The most common OPMs use alkali atoms as the sensing element. These alkali OPM sensors must be heated to approximately 150°C, in contrast to classical MEG sensors [superconducting quantum interference device MEG], which need to be cooled down to -269°C. This article focuses on a new kind of OPM that uses Helium-4 gas as the sensing element, which solves some disadvantages of alkali OPMs. 4He-OPM sensors operate at room temperature, with negligible heat dissipation (10 mW) and thus do not need thermal insulation. They also offer a large dynamic range (±200 nT) and frequency bandwidth (2,000 Hz). The main goal of this study is to characterize the performance of a whole-head MEG system based on 4He OPM sensors (4He OPM MEG). We first simulated different sensor configurations with three different numbers of channels and three different head sizes, from child to adult, in order to assess the signal-to-noise ratio and the source reconstruction accuracy. Experimental testing was also performed using a phantom to simulate brain magnetic activity. The simulation and experiments show equivalent detection capability and localization accuracy on both MEG systems. These results illustrate the benefit of 4He OPM sensors that operate at room temperature and are positioned closer to the scalp.
Collapse
Affiliation(s)
- Maxime Bonnet
- Lyon Neuroscience Research Center, INSERM UMRS 1028, CNRS UMR5292, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
- MEG Department, CERMEP-Imagerie du Vivant, Lyon, France
| | - Denis Schwartz
- Lyon Neuroscience Research Center, INSERM UMRS 1028, CNRS UMR5292, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
- MEG Department, CERMEP-Imagerie du Vivant, Lyon, France
| | - Tjerk Gutteling
- Lyon Neuroscience Research Center, INSERM UMRS 1028, CNRS UMR5292, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
- MEG Department, CERMEP-Imagerie du Vivant, Lyon, France
| | - Sebastien Daligault
- Lyon Neuroscience Research Center, INSERM UMRS 1028, CNRS UMR5292, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | | |
Collapse
|
4
|
Halkiopoulos C, Gkintoni E, Aroutzidis A, Antonopoulou H. Advances in Neuroimaging and Deep Learning for Emotion Detection: A Systematic Review of Cognitive Neuroscience and Algorithmic Innovations. Diagnostics (Basel) 2025; 15:456. [PMID: 40002607 PMCID: PMC11854508 DOI: 10.3390/diagnostics15040456] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/07/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: The following systematic review integrates neuroimaging techniques with deep learning approaches concerning emotion detection. It, therefore, aims to merge cognitive neuroscience insights with advanced algorithmic methods in pursuit of an enhanced understanding and applications of emotion recognition. Methods: The study was conducted following PRISMA guidelines, involving a rigorous selection process that resulted in the inclusion of 64 empirical studies that explore neuroimaging modalities such as fMRI, EEG, and MEG, discussing their capabilities and limitations in emotion recognition. It further evaluates deep learning architectures, including neural networks, CNNs, and GANs, in terms of their roles in classifying emotions from various domains: human-computer interaction, mental health, marketing, and more. Ethical and practical challenges in implementing these systems are also analyzed. Results: The review identifies fMRI as a powerful but resource-intensive modality, while EEG and MEG are more accessible with high temporal resolution but limited by spatial accuracy. Deep learning models, especially CNNs and GANs, have performed well in classifying emotions, though they do not always require large and diverse datasets. Combining neuroimaging data with behavioral and cognitive features improves classification performance. However, ethical challenges, such as data privacy and bias, remain significant concerns. Conclusions: The study has emphasized the efficiencies of neuroimaging and deep learning in emotion detection, while various ethical and technical challenges were also highlighted. Future research should integrate behavioral and cognitive neuroscience advances, establish ethical guidelines, and explore innovative methods to enhance system reliability and applicability.
Collapse
Affiliation(s)
- Constantinos Halkiopoulos
- Department of Management Science and Technology, University of Patras, 26334 Patras, Greece; (C.H.); (A.A.); (H.A.)
| | - Evgenia Gkintoni
- Department of Educational Sciences and Social Work, University of Patras, 26504 Patras, Greece
| | - Anthimos Aroutzidis
- Department of Management Science and Technology, University of Patras, 26334 Patras, Greece; (C.H.); (A.A.); (H.A.)
| | - Hera Antonopoulou
- Department of Management Science and Technology, University of Patras, 26334 Patras, Greece; (C.H.); (A.A.); (H.A.)
| |
Collapse
|
5
|
Wang X, Teng P, Meng Q, Jiang Y, Wu J, Li T, Wang M, Guan Y, Zhou J, Sheng J, Gao JH, Luan G. Performance of optically pumped magnetometer magnetoencephalography: validation in large samples and multiple tasks. J Neural Eng 2024; 21:066033. [PMID: 39580819 DOI: 10.1088/1741-2552/ad9680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/24/2024] [Indexed: 11/26/2024]
Abstract
Objective.Current commercial magnetoencephalography (MEG) systems detect neuro-magnetic signals using superconducting quantum interference devices (SQUIDs), which require liquid helium as cryogen and have many limitations during operation. In contrast, optically pumped magnetometers (OPMs) technology provides a promising alternative to conventional SQUID-MEG. OPMs can operate at room temperature, offering benefits such as flexible deployment and lower costs. However, the validation of OPM-MEG has primarily been conducted on small sample sizes and specific regions of interest in the brain, lacking comprehensive validation for larger sample sizes and assessment of whole-brain.Approach.We recruited 100 participants, including healthy and neurological disorders individuals. Whole-brain OPM-MEG and SQUID-MEG data were recorded sequentially during auditory (n= 50) and visual (n= 50) stimulation experiments. By comparing the task-evoked responses of the two systems, we aimed to validate the performance of the next-generation OPM-MEG.Main results.The results showed that OPM-MEG enhanced the amplitude of task-related responses and exhibited similar magnetic field patterns and neural oscillatory activity as SQUID-MEG. There was no difference in the task-related latencies measured by the two systems. The signal-to-noise ratio was lower for the OPM-MEG in the auditory experiment, but did not differ in the visual experiment, suggesting that the results may be task-dependent.Significance.These results demonstrate that OPM-MEG, as an alternative to traditional SQUID-MEG, shows superior response amplitude and comparable performance in capturing brain dynamics. This study provides evidence for the effectiveness of OPM-MEG as a next-generation neuroimaging technique.
Collapse
Affiliation(s)
- Xiongfei Wang
- Department of Neurosurgery, Laboratory for Clinical Medicine, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, People's Republic of China
- Beijing Key Laboratory of Epilepsy, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, People's Republic of China
| | - Pengfei Teng
- Department of MEG, Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, People's Republic of China
| | - Qiujian Meng
- Beijing Quanmag Healthcare, Beijing 100195, People's Republic of China
| | - Yuying Jiang
- Beijing Quanmag Healthcare, Beijing 100195, People's Republic of China
| | - Jiangfen Wu
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, People's Republic of China
| | - Tianfu Li
- Beijing Key Laboratory of Epilepsy, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, People's Republic of China
- Department of Neurology, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, People's Republic of China
| | - Mengyang Wang
- Department of Neurology, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, People's Republic of China
| | - Yuguang Guan
- Department of Neurosurgery, Laboratory for Clinical Medicine, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, People's Republic of China
| | - Jian Zhou
- Department of Neurosurgery, Laboratory for Clinical Medicine, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, People's Republic of China
| | - Jingwei Sheng
- Beijing Quanmag Healthcare, Beijing 100195, People's Republic of China
| | - Jia-Hong Gao
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, People's Republic of China
- Changping Laboratory, Beijing 102206, People's Republic of China
- Beijing City Key Laboratory for Medical Physics and Engineering, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871, People's Republic of China
- McGovern Institute for Brain Research, Peking University, Beijing 100871, People's Republic of China
| | - Guoming Luan
- Department of Neurosurgery, Laboratory for Clinical Medicine, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, People's Republic of China
- Beijing Key Laboratory of Epilepsy, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, People's Republic of China
| |
Collapse
|
6
|
袁 媛, 陈 正, 孙 伟, 付 诗, 金 琳, 盛 经, 孟 秋, 武 江, 陈 蕾, 幸 浩. [Movable Array of Magnetoencephalography With Optically Pumped Magnetometers Effectively Captures Primary Auditory-Evoked Response Signals in Healthy Populations at Low Altitudes]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2024; 55:1396-1402. [PMID: 39990846 PMCID: PMC11839355 DOI: 10.12182/20241160202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Indexed: 02/25/2025]
Abstract
Objective To investigate the effectiveness of a movable (with the distance between the temporal scalp and the detector being adjustable) array of optically pumped magnetometers for magnetoencephalography (OPM-MEG) in capturing auditory evoked response signals in healthy subjects living at low altitudes, and to provide a useful technical reference for subsequent exploration of the changes in brain functions in populations living at high altitudes on a long-term basis. Methods Forty healthy subjects living at a low altitude (470 m above sea level) were recruited. The distance between the scalp and the bilateral temporal lobe detector was adjusted, and the subjects' auditory responses in the temporal lobes were recorded at the distances of 0 mm, 5 mm, 10 mm, and 15 mm. For the different distances, the M100 peak signal strength, noise, signal-to-noise ratio (SNR), and latency were analyzed along with the corresponding auditory source localization maps. A single-factor analysis of variance was conducted to compare the differences in response signals at varying distances. Results As the distance between the scalp and the detector increased, the noise, the signal, and the SNR gradually weakened (P<0.001). The noise and signal showed a tendency of linear decline. On the other hand, the SNR reached its maximum at 5 mm and did not show a tendency of linear decline. Latency was not affected by the distance (P=0.72). The results of the auditory stimulus source reconstruction were generally consistent. Conclusion When the distance between the detector and the scalp is 5 mm, the SNR value is the highest, resulting in high sensitivity and high signal strength. On the other hand, even when the distance between the detector and the scalp reaches 15 mm, the SNR of the OPM-MEG is still higher than 16 dB, which meets the clinical signal acquisition requirements. Furthermore, the auditory stimulus source reconstruction results were generally consistent. Changing the scalp-to-detector distance does not affect the applicability of the source localization results, validating the device's effectiveness in signal acquisition.
Collapse
Affiliation(s)
- 媛 袁
- 四川大学华西医院 健康管理中心 (成都 610041)Health Management Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 正举 陈
- 四川大学华西医院 健康管理中心 (成都 610041)Health Management Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 伟 孙
- 四川大学华西医院 健康管理中心 (成都 610041)Health Management Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 诗琴 付
- 四川大学华西医院 健康管理中心 (成都 610041)Health Management Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 琳 金
- 四川大学华西医院 健康管理中心 (成都 610041)Health Management Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 经纬 盛
- 四川大学华西医院 健康管理中心 (成都 610041)Health Management Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 秋建 孟
- 四川大学华西医院 健康管理中心 (成都 610041)Health Management Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 江芬 武
- 四川大学华西医院 健康管理中心 (成都 610041)Health Management Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 蕾 陈
- 四川大学华西医院 健康管理中心 (成都 610041)Health Management Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 浩洋 幸
- 四川大学华西医院 健康管理中心 (成都 610041)Health Management Center, West China Hospital, Sichuan University, Chengdu 610041, China
- 四川大学华西医院 放射科 放射影像研究所 (成都 610041)Institute of Radiology and Medical Imaging, Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
7
|
Brickwedde M, Anders P, Kühn AA, Lofredi R, Holtkamp M, Kaindl AM, Grent-'t-Jong T, Krüger P, Sander T, Uhlhaas PJ. Applications of OPM-MEG for translational neuroscience: a perspective. Transl Psychiatry 2024; 14:341. [PMID: 39181883 PMCID: PMC11344782 DOI: 10.1038/s41398-024-03047-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 06/25/2024] [Accepted: 08/01/2024] [Indexed: 08/27/2024] Open
Abstract
Magnetoencephalography (MEG) allows the non-invasive measurement of brain activity at millisecond precision combined with localization of the underlying generators. So far, MEG-systems consisted of superconducting quantum interference devices (SQUIDS), which suffer from several limitations. Recent technological advances, however, have enabled the development of novel MEG-systems based on optically pumped magnetometers (OPMs), offering several advantages over conventional SQUID-MEG systems. Considering potential improvements in the measurement of neuronal signals as well as reduced operating costs, the application of OPM-MEG systems for clinical neuroscience and diagnostic settings is highly promising. Here we provide an overview of the current state-of-the art of OPM-MEG and its unique potential for translational neuroscience. First, we discuss the technological features of OPMs and benchmark OPM-MEG against SQUID-MEG and electroencephalography (EEG), followed by a summary of pioneering studies of OPMs in healthy populations. Key applications of OPM-MEG for the investigation of psychiatric and neurological conditions are then reviewed. Specifically, we suggest novel applications of OPM-MEG for the identification of biomarkers and circuit deficits in schizophrenia, dementias, movement disorders, epilepsy, and neurodevelopmental syndromes (autism spectrum disorder and attention deficit hyperactivity disorder). Finally, we give an outlook of OPM-MEG for translational neuroscience with a focus on remaining methodological and technical challenges.
Collapse
Affiliation(s)
- Marion Brickwedde
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Department of Child and Adolescent Psychiatry, 13353, Berlin, Germany.
- Physikalisch-Technische Bundesanstalt, Berlin, Germany.
| | - Paul Anders
- Physikalisch-Technische Bundesanstalt, Berlin, Germany
| | - Andrea A Kühn
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Sektion für Bewegungsstörungen und Neuromodulation, Klinik für Neurologie und Experimentelle Neurologie, 10117, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Humboldt-Universität, Berlin, Germany
- NeuroCure, Exzellenzcluster, Charité-Universitätsmedizin Berlin, Berlin, Germany
- DZNE, German center for neurodegenerative diseases, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Roxanne Lofredi
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Sektion für Bewegungsstörungen und Neuromodulation, Klinik für Neurologie und Experimentelle Neurologie, 10117, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Martin Holtkamp
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Department of Neurology, Epilepsy-Center Berlin-Brandenburg, 10117, Berlin, Germany
| | - Angela M Kaindl
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Department of Pediatric Neurology, 13353, Berlin, Germany
- Charité- Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Center for Chronically Sick Children, 13353, Berlin, Germany
- Charité- Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Institute of Cell Biology and Neurobiology, 10117, Berlin, Germany
| | - Tineke Grent-'t-Jong
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Department of Child and Adolescent Psychiatry, 13353, Berlin, Germany
- Institute for Neuroscience and Psychology, Glasgow University, Scotland, United Kingdom
| | - Peter Krüger
- Physikalisch-Technische Bundesanstalt, Berlin, Germany
| | | | - Peter J Uhlhaas
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Department of Child and Adolescent Psychiatry, 13353, Berlin, Germany
- Institute for Neuroscience and Psychology, Glasgow University, Scotland, United Kingdom
| |
Collapse
|
8
|
Xu X, Liu Y. The active magnetic compensation coil. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2024; 95:081501. [PMID: 39093122 DOI: 10.1063/5.0186023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 06/29/2024] [Indexed: 08/04/2024]
Abstract
The active magnetic compensation coil is of great significance for extensive applications, such as fundamental physics, aerospace engineering, national defense industry, and biological science. The magnetic shielding demand is increasing over past few decades, and better performances of the coil are required. To maintain normal operating conditions for some sensors, active magnetic compensation coils are often used to implement near-zero field environments. Many coil design methods have been developed to design the active compensation coil for different fields. It is opportune to review the development and challenges associated with active magnetic compensation coils. Active magnetic compensation coils are reviewed in this paper in terms of design methods, technology, and applications. Furthermore, the operational principle and typical structures of the coil are elucidated. The developments of the forward design method, inverse design method, and optimization algorithm are presented. Principles of various design methods and their respective advantages and disadvantages are described in detail. Finally, critical challenges in the active magnetic compensation coil techniques and potential research directions have been highlighted.
Collapse
Affiliation(s)
- Xueping Xu
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
- Zhejiang Provincial Key Laboratory of Ultra-Weak Magnetic-Field Space and Applied Technology, Hangzhou Innovation Institute of Beihang University, Hangzhou 310000, China
| | - Yi Liu
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
- Zhejiang Provincial Key Laboratory of Ultra-Weak Magnetic-Field Space and Applied Technology, Hangzhou Innovation Institute of Beihang University, Hangzhou 310000, China
| |
Collapse
|
9
|
Bu Y, Burks J, Yang K, Prince J, Borna A, Coe CL, Simmons A, Tu XM, Baker D, Kimball D, Rao R, Shah V, Huang M, Schwindt P, Coleman TP, Lerman I. Non-invasive ventral cervical magnetoneurography as a proxy of in vivo lipopolysaccharide-induced inflammation. Commun Biol 2024; 7:893. [PMID: 39075164 PMCID: PMC11286963 DOI: 10.1038/s42003-024-06435-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 06/10/2024] [Indexed: 07/31/2024] Open
Abstract
Maintenance of autonomic homeostasis is continuously calibrated by sensory fibers of the vagus nerve and sympathetic chain that convey compound action potentials (CAPs) to the central nervous system. Lipopolysaccharide (LPS) intravenous challenge reliably elicits a robust inflammatory response that can resemble systemic inflammation and acute endotoxemia. Here, we administered LPS intravenously in nine healthy subjects while recording ventral cervical magnetoneurography (vcMNG)-derived CAPs at the rostral Right Nodose Ganglion (RNG) and the caudal Right Carotid Artery (RCA) with optically pumped magnetometers (OPM). We observed vcMNG RNG and RCA neural firing rates that tracked changes in TNF-α levels in the systemic circulation. Further, endotype subgroups based on high and low IL-6 responders segregate RNG CAP frequency (at 30-120 min) and based on high and low IL-10 response discriminate RCA CAP frequency (at 0-30 min). These vcMNG tools may enhance understanding and management of the neuroimmune axis that can guide personalized treatment based on an individual's distinct endophenotype.
Collapse
Affiliation(s)
- Yifeng Bu
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jamison Burks
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Kun Yang
- Division of Biostatistics and Bioinformatics, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jacob Prince
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Amir Borna
- Quantum Information Sciences, Sandia National Laboratories, Albuquerque, NM, 87123, USA
| | - Christopher L Coe
- Department of Psychology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Alan Simmons
- Center for Stress and Mental Health (CESAMH) VA San Diego, La Jolla, CA, 92093, USA
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Xin M Tu
- Division of Biostatistics and Bioinformatics, University of California San Diego, La Jolla, CA, 92093, USA
| | - Dewleen Baker
- Center for Stress and Mental Health (CESAMH) VA San Diego, La Jolla, CA, 92093, USA
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Donald Kimball
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ramesh Rao
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Vishal Shah
- Quspin Laboratory Head Quarters, Boulder, CO, 80305, USA
| | - Mingxiong Huang
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Radiology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Peter Schwindt
- Quantum Information Sciences, Sandia National Laboratories, Albuquerque, NM, 87123, USA
| | - Todd P Coleman
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Imanuel Lerman
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, 92093, USA.
- Center for Stress and Mental Health (CESAMH) VA San Diego, La Jolla, CA, 92093, USA.
- InflammaSense Incorporated Head Quarters, La Jolla, CA, 92093, USA.
- Department of Anesthesiology, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
10
|
Wu H, Wang R, Ma Y, Liang X, Liu C, Yu D, An N, Ning X. Decoding N400m Evoked Component: A Tutorial on Multivariate Pattern Analysis for OP-MEG Data. Bioengineering (Basel) 2024; 11:609. [PMID: 38927845 PMCID: PMC11200846 DOI: 10.3390/bioengineering11060609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 05/26/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Multivariate pattern analysis (MVPA) has played an extensive role in interpreting brain activity, which has been applied in studies with modalities such as functional Magnetic Resonance Imaging (fMRI), Magnetoencephalography (MEG) and Electroencephalography (EEG). The advent of wearable MEG systems based on optically pumped magnetometers (OPMs), i.e., OP-MEG, has broadened the application of bio-magnetism in the realm of neuroscience. Nonetheless, it also raises challenges in temporal decoding analysis due to the unique attributes of OP-MEG itself. The efficacy of decoding performance utilizing multimodal fusion, such as MEG-EEG, also remains to be elucidated. In this regard, we investigated the impact of several factors, such as processing methods, models and modalities, on the decoding outcomes of OP-MEG. Our findings indicate that the number of averaged trials, dimensionality reduction (DR) methods, and the number of cross-validation folds significantly affect the decoding performance of OP-MEG data. Additionally, decoding results vary across modalities and fusion strategy. In contrast, decoder type, resampling frequency, and sliding window length exert marginal effects. Furthermore, we introduced mutual information (MI) to investigate how information loss due to OP-MEG data processing affect decoding accuracy. Our study offers insights for linear decoding research using OP-MEG and expand its application in the fields of cognitive neuroscience.
Collapse
Affiliation(s)
- Huanqi Wu
- Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, 37 Xueyuan Rd., Haidian Dist., Beijing 100083, China; (H.W.); (R.W.); (Y.M.); (X.L.); (C.L.)
- Hangzhou Institute of National Extremely-Weak Magnetic Field Infrastructure, 465 Binan Rd., Binjiang Dist., Hangzhou 310000, China
| | - Ruonan Wang
- Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, 37 Xueyuan Rd., Haidian Dist., Beijing 100083, China; (H.W.); (R.W.); (Y.M.); (X.L.); (C.L.)
- Hangzhou Institute of National Extremely-Weak Magnetic Field Infrastructure, 465 Binan Rd., Binjiang Dist., Hangzhou 310000, China
| | - Yuyu Ma
- Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, 37 Xueyuan Rd., Haidian Dist., Beijing 100083, China; (H.W.); (R.W.); (Y.M.); (X.L.); (C.L.)
- Hangzhou Institute of National Extremely-Weak Magnetic Field Infrastructure, 465 Binan Rd., Binjiang Dist., Hangzhou 310000, China
| | - Xiaoyu Liang
- Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, 37 Xueyuan Rd., Haidian Dist., Beijing 100083, China; (H.W.); (R.W.); (Y.M.); (X.L.); (C.L.)
- Hangzhou Institute of National Extremely-Weak Magnetic Field Infrastructure, 465 Binan Rd., Binjiang Dist., Hangzhou 310000, China
| | - Changzeng Liu
- Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, 37 Xueyuan Rd., Haidian Dist., Beijing 100083, China; (H.W.); (R.W.); (Y.M.); (X.L.); (C.L.)
- Hangzhou Institute of National Extremely-Weak Magnetic Field Infrastructure, 465 Binan Rd., Binjiang Dist., Hangzhou 310000, China
| | - Dexin Yu
- Shandong Key Laboratory for Magnetic Field-Free Medicine and Functional Imaging, Institute of Magnetic Field-Free Medicine and Functional Imaging, Shandong University, 27 South Shanda Rd., Licheng Dist., Jinan 250100, China;
| | - Nan An
- Hangzhou Institute of National Extremely-Weak Magnetic Field Infrastructure, 465 Binan Rd., Binjiang Dist., Hangzhou 310000, China
| | - Xiaolin Ning
- Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, 37 Xueyuan Rd., Haidian Dist., Beijing 100083, China; (H.W.); (R.W.); (Y.M.); (X.L.); (C.L.)
- Hangzhou Institute of National Extremely-Weak Magnetic Field Infrastructure, 465 Binan Rd., Binjiang Dist., Hangzhou 310000, China
- Shandong Key Laboratory for Magnetic Field-Free Medicine and Functional Imaging, Institute of Magnetic Field-Free Medicine and Functional Imaging, Shandong University, 27 South Shanda Rd., Licheng Dist., Jinan 250100, China;
- Hefei National Laboratory, Gaoxin Dist., Hefei 230093, China
| |
Collapse
|
11
|
Bardouille T, Smith V, Vajda E, Leslie CD, Holmes N. Noise Reduction and Localization Accuracy in a Mobile Magnetoencephalography System. SENSORS (BASEL, SWITZERLAND) 2024; 24:3503. [PMID: 38894294 PMCID: PMC11174973 DOI: 10.3390/s24113503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024]
Abstract
Magnetoencephalography (MEG) non-invasively provides important information about human brain electrophysiology. The growing use of optically pumped magnetometers (OPM) for MEG, as opposed to fixed arrays of cryogenic sensors, has opened the door for innovation in system design and use cases. For example, cryogenic MEG systems are housed in large, shielded rooms to provide sufficient space for the system dewar. Here, we investigate the performance of OPM recordings inside of a cylindrical shield with a 1 × 2 m2 footprint. The efficacy of shielding was measured in terms of field attenuation and isotropy, and the value of post hoc noise reduction algorithms was also investigated. Localization accuracy was quantified for 104 OPM sensors mounted on a fixed helmet array based on simulations and recordings from a bespoke current dipole phantom. Passive shielding attenuated the vector field magnitude to 50.0 nT at direct current (DC), to 16.7 pT/√Hz at power line, and to 71 fT/√Hz (median) in the 10-200 Hz range. Post hoc noise reduction provided an additional 5-15 dB attenuation. Substantial field isotropy remained in the volume encompassing the sensor array. The consistency of the isotropy over months suggests that a field nulling solution could be readily applied. A current dipole phantom generating source activity at an appropriate magnitude for the human brain generated field fluctuations on the order of 0.5-1 pT. Phantom signals were localized with 3 mm localization accuracy, and no significant bias in localization was observed, which is in line with performance for cryogenic and OPM MEG systems. This validation of the performance of a small footprint MEG system opens the door for lower-cost MEG installations in terms of raw materials and facility space, as well as mobile imaging systems (e.g., truck-based). Such implementations are relevant for global adoption of MEG outside of highly resourced research and clinical institutions.
Collapse
Affiliation(s)
- Timothy Bardouille
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, NS B3H 4R2, Canada; (V.S.); (E.V.); (C.D.L.)
| | - Vanessa Smith
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, NS B3H 4R2, Canada; (V.S.); (E.V.); (C.D.L.)
| | - Elias Vajda
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, NS B3H 4R2, Canada; (V.S.); (E.V.); (C.D.L.)
| | - Carson Drake Leslie
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, NS B3H 4R2, Canada; (V.S.); (E.V.); (C.D.L.)
| | - Niall Holmes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK;
- Cerca Magnetics Limited, Units 7–8 Castlebridge Office Village, Kirtley Drive, Nottingham NG7 1LD, UK
| |
Collapse
|
12
|
Iivanainen J, Carter TR, Dhombridge JE, Read TS, Campbell K, Abate Q, Ridley DM, Borna A, Schwindt PDD. Four-channel optically pumped magnetometer for a magnetoencephalography sensor array. OPTICS EXPRESS 2024; 32:18334-18351. [PMID: 38858992 PMCID: PMC11239169 DOI: 10.1364/oe.517961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/30/2024] [Accepted: 04/15/2024] [Indexed: 06/12/2024]
Abstract
We present a novel four-channel optically pumped magnetometer (OPM) for magnetoencephalography that utilizes a two-color pump/probe scheme on a single optical axis. We characterize its performance across 18 built sensor modules. The new sensor implements several improvements over our previously developed sensor including lower vapor-cell operating temperature, improved probe-light detection optics, and reduced optical power requirements. The sensor also has new electromagnetic field coils on the sensor head which are designed using stream-function-based current optimization. We detail the coil design methodology and present experimental characterization of the coil performance. The magnetic sensitivity of the sensor is on average 12.3 fT/rt-Hz across the 18 modules while the average gradiometrically inferred sensitivity is about 6.0 fT/rt-Hz. The sensor 3-dB bandwidth is 100 Hz on average. The on-sensor coil performance is in good agreement with the simulations.
Collapse
Affiliation(s)
| | - Tony R. Carter
- Sandia National Laboratories, Albuquerque, NM 87123, USA
| | - Jonathan E. Dhombridge
- Sandia National Laboratories, Albuquerque, NM 87123, USA
- Center for Quantum Information and Control, Department of Physics & Astronomy, University of New Mexico, Albuquerque, NM 87106, USA
| | - Timothy S. Read
- Sandia National Laboratories, Albuquerque, NM 87123, USA
- Center for Quantum Information and Control, Department of Physics & Astronomy, University of New Mexico, Albuquerque, NM 87106, USA
| | - Kaleb Campbell
- Sandia National Laboratories, Albuquerque, NM 87123, USA
- Center for Quantum Information and Control, Department of Physics & Astronomy, University of New Mexico, Albuquerque, NM 87106, USA
| | - Quinn Abate
- Sandia National Laboratories, Albuquerque, NM 87123, USA
| | - David M. Ridley
- Sandia National Laboratories, Albuquerque, NM 87123, USA
- Center for Quantum Information and Control, Department of Physics & Astronomy, University of New Mexico, Albuquerque, NM 87106, USA
| | - Amir Borna
- Sandia National Laboratories, Albuquerque, NM 87123, USA
| | | |
Collapse
|
13
|
Wu H, Liang X, Wang R, Ma Y, Gao Y, Ning X. A Multivariate analysis on evoked components of Chinese semantic congruity: an OP-MEG study with EEG. Cereb Cortex 2024; 34:bhae108. [PMID: 38610084 DOI: 10.1093/cercor/bhae108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 04/14/2024] Open
Abstract
The application of wearable magnetoencephalography using optically-pumped magnetometers has drawn extensive attention in the field of neuroscience. Electroencephalogram system can cover the whole head and reflect the overall activity of a large number of neurons. The efficacy of optically-pumped magnetometer in detecting event-related components can be validated through electroencephalogram results. Multivariate pattern analysis is capable of tracking the evolution of neurocognitive processes over time. In this paper, we adopted a classical Chinese semantic congruity paradigm and separately collected electroencephalogram and optically-pumped magnetometer signals. Then, we verified the consistency of optically-pumped magnetometer and electroencephalogram in detecting N400 using mutual information index. Multivariate pattern analysis revealed the difference in decoding performance of these two modalities, which can be further validated by dynamic/stable coding analysis on the temporal generalization matrix. The results from searchlight analysis provided a neural basis for this dissimilarity at the magnetoencephalography source level and the electroencephalogram sensor level. This study opens a new avenue for investigating the brain's coding patterns using wearable magnetoencephalography and reveals the differences in sensitivity between the two modalities in reflecting neuron representation patterns.
Collapse
Affiliation(s)
- Huanqi Wu
- Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
- Hangzhou Institute of National Extremely-weak Magnetic Field Infrastructure, Hangzhou 310051, China
- Zhejiang Provincial Key Laboratory of Ultra-Weak Magnetic-Field Space and Applied Technology, Hangzhou Innovation Institute, Beihang University, Beijing 100191, China
| | - Xiaoyu Liang
- Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
- Hangzhou Institute of National Extremely-weak Magnetic Field Infrastructure, Hangzhou 310051, China
- Zhejiang Provincial Key Laboratory of Ultra-Weak Magnetic-Field Space and Applied Technology, Hangzhou Innovation Institute, Beihang University, Beijing 100191, China
| | - Ruonan Wang
- Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
- Hangzhou Institute of National Extremely-weak Magnetic Field Infrastructure, Hangzhou 310051, China
- Zhejiang Provincial Key Laboratory of Ultra-Weak Magnetic-Field Space and Applied Technology, Hangzhou Innovation Institute, Beihang University, Beijing 100191, China
| | - Yuyu Ma
- Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
- Hangzhou Institute of National Extremely-weak Magnetic Field Infrastructure, Hangzhou 310051, China
- Zhejiang Provincial Key Laboratory of Ultra-Weak Magnetic-Field Space and Applied Technology, Hangzhou Innovation Institute, Beihang University, Beijing 100191, China
| | - Yang Gao
- Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
- Hangzhou Institute of National Extremely-weak Magnetic Field Infrastructure, Hangzhou 310051, China
- Zhejiang Provincial Key Laboratory of Ultra-Weak Magnetic-Field Space and Applied Technology, Hangzhou Innovation Institute, Beihang University, Beijing 100191, China
| | - Xiaolin Ning
- Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
- Hangzhou Institute of National Extremely-weak Magnetic Field Infrastructure, Hangzhou 310051, China
- Zhejiang Provincial Key Laboratory of Ultra-Weak Magnetic-Field Space and Applied Technology, Hangzhou Innovation Institute, Beihang University, Beijing 100191, China
- Shandong Key Laboratory for Magnetic Field-free Medicine & Functional Imaging, Institute of Magnetic Field-free Medicine & Functional Imaging, Shandong University, Shandong 264209, China
- Hefei National Laboratory, Anhui 230026, China
| |
Collapse
|
14
|
Safar K, Vandewouw MM, Sato J, Devasagayam J, Hill RM, Rea M, Brookes MJ, Taylor MJ. Using optically pumped magnetometers to replicate task-related responses in next generation magnetoencephalography. Sci Rep 2024; 14:6513. [PMID: 38499615 PMCID: PMC10948796 DOI: 10.1038/s41598-024-56878-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 03/12/2024] [Indexed: 03/20/2024] Open
Abstract
Optically pumped magnetometers (OPMs) offer a new wearable means to measure magnetoencephalography (MEG) signals, with many advantages compared to conventional systems. However, OPMs are an emerging technology, thus characterizing and replicating MEG recordings is essential. Using OPM-MEG and SQUID-MEG, this study investigated evoked responses, oscillatory power, and functional connectivity during emotion processing in 20 adults, to establish replicability across the two technologies. Five participants with dental fixtures were included to assess the validity of OPM-MEG recordings in those with irremovable metal. Replicable task-related evoked responses were observed in both modalities. Similar patterns of oscillatory power to faces were observed in both systems. Increased connectivity was found in SQUID-versus OPM-MEG in an occipital and parietal anchored network. Notably, high quality OPM-MEG data were retained in participants with metallic fixtures, from whom no useable data were collected using conventional MEG.
Collapse
Affiliation(s)
- Kristina Safar
- Department of Diagnostic Imaging, Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada.
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, Canada.
| | - Marlee M Vandewouw
- Department of Diagnostic Imaging, Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, Canada
- Autism Research Centre, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Julie Sato
- Department of Diagnostic Imaging, Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, Canada
| | - Jasen Devasagayam
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, Canada
| | - Ryan M Hill
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
- Cerca Magnetics Limited, Castlebridge Office Village, Kirtley Drive, Nottingham, UK
| | - Molly Rea
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
- Cerca Magnetics Limited, Castlebridge Office Village, Kirtley Drive, Nottingham, UK
| | - Matthew J Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
- Cerca Magnetics Limited, Castlebridge Office Village, Kirtley Drive, Nottingham, UK
| | - Margot J Taylor
- Department of Diagnostic Imaging, Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, Canada
- Department of Medical Imaging, University of Toronto, Toronto, Canada
- Department of Psychology, University of Toronto, Toronto, Canada
| |
Collapse
|
15
|
Iivanainen J, Carter TR, Trumbo MCS, McKay J, Taulu S, Wang J, Stephen JM, Schwindt PDD, Borna A. Single-trial classification of evoked responses to auditory tones using OPM- and SQUID-MEG. J Neural Eng 2023; 20:056032. [PMID: 37748476 DOI: 10.1088/1741-2552/acfcd9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/25/2023] [Indexed: 09/27/2023]
Abstract
Objective.Optically pumped magnetometers (OPMs) are emerging as a near-room-temperature alternative to superconducting quantum interference devices (SQUIDs) for magnetoencephalography (MEG). In contrast to SQUIDs, OPMs can be placed in a close proximity to subject's scalp potentially increasing the signal-to-noise ratio and spatial resolution of MEG. However, experimental demonstrations of these suggested benefits are still scarce. Here, to compare a 24-channel OPM-MEG system to a commercial whole-head SQUID system in a data-driven way, we quantified their performance in classifying single-trial evoked responses.Approach.We measured evoked responses to three auditory tones in six participants using both OPM- and SQUID-MEG systems. We performed pairwise temporal classification of the single-trial responses with linear discriminant analysis as well as multiclass classification with both EEGNet convolutional neural network and xDAWN decoding.Main results.OPMs provided higher classification accuracies than SQUIDs having a similar coverage of the left hemisphere of the participant. However, the SQUID sensors covering the whole helmet had classification scores larger than those of OPMs for two of the tone pairs, demonstrating the benefits of a whole-head measurement.Significance.The results demonstrate that the current OPM-MEG system provides high-quality data about the brain with room for improvement for high bandwidth non-invasive brain-computer interfacing.
Collapse
Affiliation(s)
- Joonas Iivanainen
- Sandia National Laboratories, Albuquerque, NM 87185, United States of America
| | - Tony R Carter
- Sandia National Laboratories, Albuquerque, NM 87185, United States of America
| | - Michael C S Trumbo
- Sandia National Laboratories, Albuquerque, NM 87185, United States of America
| | - Jim McKay
- Candoo Systems Inc, Port Coquitlam, BC, Canada
| | - Samu Taulu
- University of Washington, Seattle, WA, United States of America
| | - Jun Wang
- Department of Speech, Language, and Hearing Sciences, The University of Texas at Austin, Austin, TX, United States of America
- Department of Neurology, The University of Texas at Austin, Austin, TX, United States of America
| | - Julia M Stephen
- The Mind Research Network a Division of Lovelace Biomedical Research Institute, Albuquerque, NM 87106, United States of America
| | - Peter D D Schwindt
- Sandia National Laboratories, Albuquerque, NM 87185, United States of America
| | - Amir Borna
- Sandia National Laboratories, Albuquerque, NM 87185, United States of America
| |
Collapse
|
16
|
Hunter D, Perrella C, McWilliam A, McGilligan JP, Mrozowski M, Ingleby SJ, Griffin PF, Burt D, Luiten AN, Riis E. Free-induction-decay magnetic field imaging with a microfabricated Cs vapor cell. OPTICS EXPRESS 2023; 31:33582-33595. [PMID: 37859136 DOI: 10.1364/oe.500278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/06/2023] [Indexed: 10/21/2023]
Abstract
Magnetic field imaging is a valuable resource for signal source localization and characterization. This work reports an optically pumped magnetometer (OPM) based on the free-induction-decay (FID) protocol, that implements microfabricated cesium (Cs) vapor cell technology to visualize the magnetic field distributions resulting from various magnetic sources placed close to the cell. The slow diffusion of Cs atoms in the presence of a nitrogen (N2) buffer gas enables spatially independent measurements to be made within the same vapor cell by translating a 175 μm diameter probe beam over the sensing area. For example, the OPM was used to record temporal and spatial information to reconstruct magnetic field distributions in one and two dimensions. The optimal magnetometer sensitivity was estimated to be 0.43 pT/H z within a Nyquist limited bandwidth of 500 Hz. Furthermore, the sensor's dynamic range exceeds the Earth's field of approximately 50 μT, which provides a framework for magnetic field imaging in unshielded environments.
Collapse
|
17
|
Holmes N, Rea M, Hill RM, Leggett J, Edwards LJ, Hobson PJ, Boto E, Tierney TM, Rier L, Rivero GR, Shah V, Osborne J, Fromhold TM, Glover P, Brookes MJ, Bowtell R. Enabling ambulatory movement in wearable magnetoencephalography with matrix coil active magnetic shielding. Neuroimage 2023; 274:120157. [PMID: 37149237 PMCID: PMC10465235 DOI: 10.1016/j.neuroimage.2023.120157] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/13/2023] [Accepted: 05/03/2023] [Indexed: 05/08/2023] Open
Abstract
The ability to collect high-quality neuroimaging data during ambulatory participant movement would enable a wealth of neuroscientific paradigms. Wearable magnetoencephalography (MEG) based on optically pumped magnetometers (OPMs) has the potential to allow participant movement during a scan. However, the strict zero magnetic field requirement of OPMs means that systems must be operated inside a magnetically shielded room (MSR) and also require active shielding using electromagnetic coils to cancel residual fields and field changes (due to external sources and sensor movements) that would otherwise prevent accurate neuronal source reconstructions. Existing active shielding systems only compensate fields over small, fixed regions and do not allow ambulatory movement. Here we describe the matrix coil, a new type of active shielding system for OPM-MEG which is formed from 48 square unit coils arranged on two planes which can compensate magnetic fields in regions that can be flexibly placed between the planes. Through the integration of optical tracking with OPM data acquisition, field changes induced by participant movement are cancelled with low latency (25 ms). High-quality MEG source data were collected despite the presence of large (65 cm translations and 270° rotations) ambulatory participant movements.
Collapse
Affiliation(s)
- Niall Holmes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK; Cerca Magnetics Limited, Unit 2 Castlebridge Office Village, Kirtley Drive, Nottingham NG7 1LD, UK.
| | - Molly Rea
- Cerca Magnetics Limited, Unit 2 Castlebridge Office Village, Kirtley Drive, Nottingham NG7 1LD, UK; Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Ryan M Hill
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK; Cerca Magnetics Limited, Unit 2 Castlebridge Office Village, Kirtley Drive, Nottingham NG7 1LD, UK
| | - James Leggett
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Lucy J Edwards
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Peter J Hobson
- School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Elena Boto
- Cerca Magnetics Limited, Unit 2 Castlebridge Office Village, Kirtley Drive, Nottingham NG7 1LD, UK; Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Tim M Tierney
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK
| | - Lukas Rier
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Gonzalo Reina Rivero
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK; Cerca Magnetics Limited, Unit 2 Castlebridge Office Village, Kirtley Drive, Nottingham NG7 1LD, UK
| | - Vishal Shah
- QuSpin Inc., 331 South 104th Street, Suite 130, Louisville, CO 80027, USA
| | - James Osborne
- QuSpin Inc., 331 South 104th Street, Suite 130, Louisville, CO 80027, USA
| | - T Mark Fromhold
- School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Paul Glover
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Matthew J Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK; Cerca Magnetics Limited, Unit 2 Castlebridge Office Village, Kirtley Drive, Nottingham NG7 1LD, UK
| | - Richard Bowtell
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| |
Collapse
|
18
|
Holmes N, Rea M, Hill RM, Boto E, Leggett J, Edwards LJ, Rhodes N, Shah V, Osborne J, Fromhold TM, Glover P, Montague PR, Brookes MJ, Bowtell R. Naturalistic Hyperscanning with Wearable Magnetoencephalography. SENSORS (BASEL, SWITZERLAND) 2023; 23:5454. [PMID: 37420622 PMCID: PMC10304205 DOI: 10.3390/s23125454] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 07/09/2023]
Abstract
The evolution of human cognitive function is reliant on complex social interactions which form the behavioural foundation of who we are. These social capacities are subject to dramatic change in disease and injury; yet their supporting neural substrates remain poorly understood. Hyperscanning employs functional neuroimaging to simultaneously assess brain activity in two individuals and offers the best means to understand the neural basis of social interaction. However, present technologies are limited, either by poor performance (low spatial/temporal precision) or an unnatural scanning environment (claustrophobic scanners, with interactions via video). Here, we describe hyperscanning using wearable magnetoencephalography (MEG) based on optically pumped magnetometers (OPMs). We demonstrate our approach by simultaneously measuring brain activity in two subjects undertaking two separate tasks-an interactive touching task and a ball game. Despite large and unpredictable subject motion, sensorimotor brain activity was delineated clearly, and the correlation of the envelope of neuronal oscillations between the two subjects was demonstrated. Our results show that unlike existing modalities, OPM-MEG combines high-fidelity data acquisition and a naturalistic setting and thus presents significant potential to investigate neural correlates of social interaction.
Collapse
Affiliation(s)
- Niall Holmes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK; (R.M.H.); (J.L.); (L.J.E.); (N.R.); (P.G.); (M.J.B.); (R.B.)
- Cerca Magnetics Limited, Unit 2 Castlebridge Office Village, Kirtley Drive, Nottingham NG7 1LD, UK; (M.R.); (E.B.)
| | - Molly Rea
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK; (R.M.H.); (J.L.); (L.J.E.); (N.R.); (P.G.); (M.J.B.); (R.B.)
- Cerca Magnetics Limited, Unit 2 Castlebridge Office Village, Kirtley Drive, Nottingham NG7 1LD, UK; (M.R.); (E.B.)
| | - Ryan M. Hill
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK; (R.M.H.); (J.L.); (L.J.E.); (N.R.); (P.G.); (M.J.B.); (R.B.)
- Cerca Magnetics Limited, Unit 2 Castlebridge Office Village, Kirtley Drive, Nottingham NG7 1LD, UK; (M.R.); (E.B.)
| | - Elena Boto
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK; (R.M.H.); (J.L.); (L.J.E.); (N.R.); (P.G.); (M.J.B.); (R.B.)
- Cerca Magnetics Limited, Unit 2 Castlebridge Office Village, Kirtley Drive, Nottingham NG7 1LD, UK; (M.R.); (E.B.)
| | - James Leggett
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK; (R.M.H.); (J.L.); (L.J.E.); (N.R.); (P.G.); (M.J.B.); (R.B.)
| | - Lucy J. Edwards
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK; (R.M.H.); (J.L.); (L.J.E.); (N.R.); (P.G.); (M.J.B.); (R.B.)
| | - Natalie Rhodes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK; (R.M.H.); (J.L.); (L.J.E.); (N.R.); (P.G.); (M.J.B.); (R.B.)
| | - Vishal Shah
- QuSpin Inc., 331 South 104th Street, Suite 130, Louisville, CO 80027, USA; (V.S.); (J.O.)
| | - James Osborne
- QuSpin Inc., 331 South 104th Street, Suite 130, Louisville, CO 80027, USA; (V.S.); (J.O.)
| | - T. Mark Fromhold
- School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK;
| | - Paul Glover
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK; (R.M.H.); (J.L.); (L.J.E.); (N.R.); (P.G.); (M.J.B.); (R.B.)
| | - P. Read Montague
- Fralin Biomedical Research Institute, Department of Physics, Virginia Tech, Roanoke, VA 24016, USA;
| | - Matthew J. Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK; (R.M.H.); (J.L.); (L.J.E.); (N.R.); (P.G.); (M.J.B.); (R.B.)
- Cerca Magnetics Limited, Unit 2 Castlebridge Office Village, Kirtley Drive, Nottingham NG7 1LD, UK; (M.R.); (E.B.)
| | - Richard Bowtell
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK; (R.M.H.); (J.L.); (L.J.E.); (N.R.); (P.G.); (M.J.B.); (R.B.)
| |
Collapse
|
19
|
Skidchenko E, Butorina A, Ostras M, Vetoshko P, Kuzmichev A, Yavich N, Malovichko M, Koshev N. Yttrium-Iron Garnet Magnetometer in MEG: Advance towards Multi-Channel Arrays. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23094256. [PMID: 37177460 PMCID: PMC10181089 DOI: 10.3390/s23094256] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/17/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023]
Abstract
Recently, a new kind of sensor applicable in magnetoencephalography (MEG) has been presented: a solid-state yttrium-iron garnet magnetometer (YIGM). The feasibility of yttrium-iron garnet magnetometers (YIGMs) was demonstrated in an alpha-rhythm registration experiment. In this paper, we propose the analysis of lead-field matrices for different possible multi-channel on-scalp sensor layouts using YIGMs with respect to information theory. Real noise levels of the new sensor were used to compute signal-to-noise ratio (SNR) and total information capacity (TiC), and compared with corresponding metrics that can be obtained with well-established MEG systems based on superconducting quantum interference devices (SQUIDs) and optically pumped magnetometers (OPMs). The results showed that due to YIGMs' proximity to the subject's scalp, they outperform SQUIDs and OPMs at their respective noise levels in terms of SNR and TiC. However, the current noise levels of YIGM sensors are unfortunately insufficient for constructing a multichannel YIG-MEG system. This simulation study provides insight into the direction for further development of YIGM sensors to create a multi-channel MEG system, namely, by decreasing the noise levels of sensors.
Collapse
Affiliation(s)
| | - Anna Butorina
- CNBR, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Maxim Ostras
- M-Granat, Russian Quantum Center, 121205 Moscow, Russia
| | - Petr Vetoshko
- M-Granat, Russian Quantum Center, 121205 Moscow, Russia
- Laboratory of Magnetic Phenomena in Microelectronics, Kotelnikov Institute of Radioengineering and Electronics of RAS, 125009 Moscow, Russia
| | | | - Nikolay Yavich
- CNBR, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
- Computational Geophysics Lab, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Mikhail Malovichko
- Computational Geophysics Lab, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Nikolay Koshev
- CNBR, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| |
Collapse
|
20
|
Roth BJ. Biomagnetism: The First Sixty Years. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23094218. [PMID: 37177427 PMCID: PMC10181075 DOI: 10.3390/s23094218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/21/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023]
Abstract
Biomagnetism is the measurement of the weak magnetic fields produced by nerves and muscle. The magnetic field of the heart-the magnetocardiogram (MCG)-is the largest biomagnetic signal generated by the body and was the first measured. Magnetic fields have been detected from isolated tissue, such as a peripheral nerve or cardiac muscle, and these studies have provided insights into the fundamental properties of biomagnetism. The magnetic field of the brain-the magnetoencephalogram (MEG)-has generated much interest and has potential clinical applications to epilepsy, migraine, and psychiatric disorders. The biomagnetic inverse problem, calculating the electrical sources inside the brain from magnetic field recordings made outside the head, is difficult, but several techniques have been introduced to solve it. Traditionally, biomagnetic fields are recorded using superconducting quantum interference device (SQUID) magnetometers, but recently, new sensors have been developed that allow magnetic measurements without the cryogenic technology required for SQUIDs.
Collapse
Affiliation(s)
- Bradley J Roth
- Department of Physics, Oakland University, Rochester, MI 48309, USA
| |
Collapse
|
21
|
Wens V. Exploring the limits of MEG spatial resolution with multipolar expansions. Neuroimage 2023; 270:119953. [PMID: 36842521 DOI: 10.1016/j.neuroimage.2023.119953] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/17/2023] [Indexed: 02/26/2023] Open
Abstract
The advent of scalp magnetoencephalography (MEG) based on optically pumped magnetometers (OPMs) may represent a step change in the field of human electrophysiology. Compared to cryogenic MEG based on superconducting quantum interference devices (SQUIDs, placed 2-4 cm above scalp), scalp MEG promises significantly higher spatial resolution imaging but it also comes with numerous challenges regarding how to optimally design OPM arrays. In this context, we sought to provide a systematic description of MEG spatial resolution as a function of the number of sensors (allowing comparison of low- vs. high-density MEG), sensor-to-brain distance (cryogenic SQUIDs vs. scalp OPM), sensor type (magnetometers vs. gradiometers; single- vs. multi-component sensors), and signal-to-noise ratio. To that aim, we present an analytical theory based on MEG multipolar expansions that enables, once supplemented with experimental input and simulations, quantitative assessment of the limits of MEG spatial resolution in terms of two qualitatively distinct regimes. In the regime of asymptotically high-density MEG, we provide a mathematically rigorous description of how magnetic field smoothness constraints spatial resolution to a slow, logarithmic divergence. In the opposite regime of low-density MEG, it is sensor density that constraints spatial resolution to a faster increase following a square-root law. The transition between these two regimes controls how MEG spatial resolution saturates as sensors approach sources of neural activity. This two-regime model of MEG spatial resolution integrates known observations (e.g., the difficulty of improving spatial resolution by increasing sensor density, the gain brought by moving sensors on scalp, or the usefulness of multi-component sensors) and gathers them under a unifying theoretical framework that highlights the underlying physics and reveals properties inaccessible to simulations. We propose that this framework may find useful applications to benchmark the design of future OPM-based scalp MEG systems.
Collapse
Affiliation(s)
- Vincent Wens
- LN(2)T - Laboratoire de Neuroanatomie et Neuroimagerie translationnelles, UNI - ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium; Department of Translational Neuroimaging, H.U.B. - Hôpital Erasme, Brussels, Belgium.
| |
Collapse
|
22
|
Schofield H, Boto E, Shah V, Hill RM, Osborne J, Rea M, Doyle C, Holmes N, Bowtell R, Woolger D, Brookes MJ. Quantum enabled functional neuroimaging: the why and how of magnetoencephalography using optically pumped magnetometers. CONTEMPORARY PHYSICS 2023; 63:161-179. [PMID: 38463461 PMCID: PMC10923587 DOI: 10.1080/00107514.2023.2182950] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 02/06/2023] [Indexed: 03/12/2024]
Abstract
Non-invasive imaging has transformed neuroscientific discovery and clinical practice, providing a non-invasive window into the human brain. However, whilst techniques like MRI generate ever more precise images of brain structure, in many cases, it's the function within neural networks that underlies disease. Here, we review the potential for quantum-enabled magnetic field sensors to shed light on such activity. Specifically, we describe how optically pumped magnetometers (OPMs) enable magnetoencephalographic (MEG) recordings with higher accuracy and improved practicality compared to the current state-of-the-art. The paper is split into two parts: first, we describe the work to date on OPM-MEG, detailing why this novel biomagnetic imaging technique is proving disruptive. Second, we explain how fundamental physics, including quantum mechanics and electromagnetism, underpins this developing technology. We conclude with a look to the future, outlining the potential for OPM-MEG to initiate a step change in the understanding and management of brain health.
Collapse
Affiliation(s)
- Holly Schofield
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
- Cerca Magnetics Limited, Nottingham, UK
| | - Elena Boto
- Cerca Magnetics Limited, Nottingham, UK
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | | | - Ryan M Hill
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
- Cerca Magnetics Limited, Nottingham, UK
| | | | - Molly Rea
- Cerca Magnetics Limited, Nottingham, UK
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | | | - Niall Holmes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
- Cerca Magnetics Limited, Nottingham, UK
| | - Richard Bowtell
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | | | - Matthew J Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
- Cerca Magnetics Limited, Nottingham, UK
| |
Collapse
|
23
|
Hillebrand A, Holmes N, Sijsma N, O'Neill GC, Tierney TM, Liberton N, Stam AH, van Klink N, Stam CJ, Bowtell R, Brookes MJ, Barnes GR. Non-invasive measurements of ictal and interictal epileptiform activity using optically pumped magnetometers. Sci Rep 2023; 13:4623. [PMID: 36944674 PMCID: PMC10030968 DOI: 10.1038/s41598-023-31111-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/06/2023] [Indexed: 03/23/2023] Open
Abstract
Magneto- and electroencephalography (MEG/EEG) are important techniques for the diagnosis and pre-surgical evaluation of epilepsy. Yet, in current cryogen-based MEG systems the sensors are offset from the scalp, which limits the signal-to-noise ratio (SNR) and thereby the sensitivity to activity from deep structures such as the hippocampus. This effect is amplified in children, for whom adult-sized fixed-helmet systems are typically too big. Moreover, ictal recordings with fixed-helmet systems are problematic because of limited movement tolerance and/or logistical considerations. Optically Pumped Magnetometers (OPMs) can be placed directly on the scalp, thereby improving SNR and enabling recordings during seizures. We aimed to demonstrate the performance of OPMs in a clinical population. Seven patients with challenging cases of epilepsy underwent MEG recordings using a 12-channel OPM-system and a 306-channel cryogen-based whole-head system: three adults with known deep or weak (low SNR) sources of interictal epileptiform discharges (IEDs), along with three children with focal epilepsy and one adult with frequent seizures. The consistency of the recorded IEDs across the two systems was assessed. In one patient the OPMs detected IEDs that were not found with the SQUID-system, and in two patients no IEDs were found with either system. For the other patients the OPM data were remarkably consistent with the data from the cryogenic system, noting that these were recorded in different sessions, with comparable SNRs and IED-yields overall. Importantly, the wearability of OPMs enabled the recording of seizure activity in a patient with hyperkinetic movements during the seizure. The observed ictal onset and semiology were in agreement with previous video- and stereo-EEG recordings. The relatively affordable technology, in combination with reduced running and maintenance costs, means that OPM-based MEG could be used more widely than current MEG systems, and may become an affordable alternative to scalp EEG, with the potential benefits of increased spatial accuracy, reduced sensitivity to volume conduction/field spread, and increased sensitivity to deep sources. Wearable MEG thus provides an unprecedented opportunity for epilepsy, and given its patient-friendliness, we envisage that it will not only be used for presurgical evaluation of epilepsy patients, but also for diagnosis after a first seizure.
Collapse
Affiliation(s)
- Arjan Hillebrand
- Department of Clinical Neurophysiology and Magnetoencephalography Center, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081HV, Amsterdam, The Netherlands.
- Brain Imaging, Amsterdam Neuroscience, Amsterdam, The Netherlands.
- Systems and Network Neurosciences, Amsterdam Neuroscience, Amsterdam, The Netherlands.
| | - Niall Holmes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Ndedi Sijsma
- Department of Clinical Neurophysiology and Magnetoencephalography Center, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081HV, Amsterdam, The Netherlands
| | - George C O'Neill
- Wellcome Centre for Human Neuroimaging, Department of Imaging Neuroscience, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3AR, UK
| | - Tim M Tierney
- Wellcome Centre for Human Neuroimaging, Department of Imaging Neuroscience, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3AR, UK
| | - Niels Liberton
- Department of Medical Technology, 3D Innovation Lab, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Anine H Stam
- Department of Clinical Neurophysiology and Magnetoencephalography Center, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081HV, Amsterdam, The Netherlands
| | - Nicole van Klink
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Cornelis J Stam
- Department of Clinical Neurophysiology and Magnetoencephalography Center, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081HV, Amsterdam, The Netherlands
- Brain Imaging, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Neurodegeneration, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Richard Bowtell
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Matthew J Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Gareth R Barnes
- Wellcome Centre for Human Neuroimaging, Department of Imaging Neuroscience, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3AR, UK
| |
Collapse
|
24
|
Gutteling TP, Bonnefond M, Clausner T, Daligault S, Romain R, Mitryukovskiy S, Fourcault W, Josselin V, Le Prado M, Palacios-Laloy A, Labyt E, Jung J, Schwartz D. A New Generation of OPM for High Dynamic and Large Bandwidth MEG: The 4He OPMs-First Applications in Healthy Volunteers. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23052801. [PMID: 36905007 PMCID: PMC10006929 DOI: 10.3390/s23052801] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/16/2023] [Accepted: 02/24/2023] [Indexed: 06/06/2023]
Abstract
MagnetoEncephaloGraphy (MEG) provides a measure of electrical activity in the brain at a millisecond time scale. From these signals, one can non-invasively derive the dynamics of brain activity. Conventional MEG systems (SQUID-MEG) use very low temperatures to achieve the necessary sensitivity. This leads to severe experimental and economical limitations. A new generation of MEG sensors is emerging: the optically pumped magnetometers (OPM). In OPM, an atomic gas enclosed in a glass cell is traversed by a laser beam whose modulation depends on the local magnetic field. MAG4Health is developing OPMs using Helium gas (4He-OPM). They operate at room temperature with a large dynamic range and a large frequency bandwidth and output natively a 3D vectorial measure of the magnetic field. In this study, five 4He-OPMs were compared to a classical SQUID-MEG system in a group of 18 volunteers to evaluate their experimental performances. Considering that the 4He-OPMs operate at real room temperature and can be placed directly on the head, our assumption was that 4He-OPMs would provide a reliable recording of physiological magnetic brain activity. Indeed, the results showed that the 4He-OPMs showed very similar results to the classical SQUID-MEG system by taking advantage of a shorter distance to the brain, despite having a lower sensitivity.
Collapse
Affiliation(s)
- Tjerk P. Gutteling
- CERMEP-Imagerie du Vivant, MEG Departement, 69000 Lyon, France
- CRNL, UMR_S 1028, HCL, Université Lyon 1, 69000 Lyon, France
| | | | - Tommy Clausner
- CRNL, UMR_S 1028, HCL, Université Lyon 1, 69000 Lyon, France
| | | | | | | | - William Fourcault
- CEA LETI, Minatec Campus, Université Grenoble Alpes, 38000 Grenoble, France
| | - Vincent Josselin
- CEA LETI, Minatec Campus, Université Grenoble Alpes, 38000 Grenoble, France
| | | | | | | | - Julien Jung
- CRNL, UMR_S 1028, HCL, Université Lyon 1, 69000 Lyon, France
| | - Denis Schwartz
- CERMEP-Imagerie du Vivant, MEG Departement, 69000 Lyon, France
- CRNL, UMR_S 1028, HCL, Université Lyon 1, 69000 Lyon, France
| |
Collapse
|
25
|
Hands-On Quantum Sensing with NV− Centers in Diamonds. Mol Vis 2023. [DOI: 10.3390/c9010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The physical properties of diamond crystals, such as color or electrical conductivity, can be controlled via impurities. In particular, when doped with nitrogen, optically active nitrogen-vacancy centers (NV), can be induced. The center is an outstanding quantum spin system that enables, under ambient conditions, optical initialization, readout, and coherent microwave control with applications in sensing and quantum information. Under optical and radio frequency excitation, the Zeeman splitting of the degenerate states allows the quantitative measurement of external magnetic fields with high sensitivity. This study provides a pedagogical introduction to the properties of the NV centers as well as a step-by-step process to develop and test a simple magnetic quantum sensor based on color centers with significant potential for the development of highly compact multisensor systems.
Collapse
|
26
|
Bezsudnova Y, Koponen LM, Barontini G, Jensen O, Kowalczyk AU. Optimising the sensing volume of OPM sensors for MEG source reconstruction. Neuroimage 2022; 264:119747. [PMID: 36403733 PMCID: PMC7615061 DOI: 10.1016/j.neuroimage.2022.119747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/17/2022] [Accepted: 11/08/2022] [Indexed: 11/19/2022] Open
Abstract
Magnetoencephalography (MEG) based on optically pumped magnetometers (OPMs) has been hailed as the future of electrophysiological recordings from the human brain. In this work, we investigate how the dimensions of the sensing volume (the vapour cell) affect the performance of both a single OPM-MEG sensor and a multi-sensor OPM-MEG system. We consider a realistic noise model that accounts for background brain activity and residual noise. By using source reconstruction metrics such as localization accuracy and time-course reconstruction accuracy, we demonstrate that the best overall sensitivity and reconstruction accuracy are achieved with cells that are significantly longer and wider that those of the majority of current commercial OPM sensors. Our work provides useful tools to optimise the cell dimensions of OPM sensors in a wide range of environments.
Collapse
Affiliation(s)
- Yulia Bezsudnova
- School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Lari M Koponen
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Edgbaston, Birmingham, B15 2SA, United Kingdom
| | - Giovanni Barontini
- School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom; Centre for Human Brain Health, School of Psychology, University of Birmingham, Edgbaston, Birmingham, B15 2SA, United Kingdom
| | - Ole Jensen
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Edgbaston, Birmingham, B15 2SA, United Kingdom
| | - Anna U Kowalczyk
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Edgbaston, Birmingham, B15 2SA, United Kingdom.
| |
Collapse
|
27
|
Chen Y, Zhao L, Ma Y, Yu M, Wang Y, Zhang N, Wei K, Jiang Z. Spin exchange optically pumped nuclear spin self compensation system for moving magnetoencephalography measurement. BIOMEDICAL OPTICS EXPRESS 2022; 13:5937-5951. [PMID: 36733752 PMCID: PMC9872881 DOI: 10.1364/boe.474862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/10/2022] [Accepted: 10/10/2022] [Indexed: 05/25/2023]
Abstract
Recording moving magnetoencephalograms (MEGs ), in which a person's head can move freely as the brain's magnetic field is recorded, has been a key subject in recent years. Here, we describe a method based on an optically pumped atomic co-magnetometer (OPACM) for recording moving MEGs. In the OPACM, hyper-polarized nuclear spins produce a magnetic field that blocks the background fluctuation low-frequency magnetic field noise while the rapidly changing MEG signal is recorded. In this study, the magnetic field compensation was studied theoretically, and we found that the compensation is closely related to several parameters such as the electron spin magnetic field, nuclear spin magnetic field, and holding magnetic field. Furthermore, the magnetic field compensation was optimized based on a theoretical model . We also experimentally studied the magnetic field compensation and measured the responses of the OPACM to different magnetic field frequencies. We show that the OPACM clearly suppresses low-frequency (under 1 Hz) magnetic fields. However, the OPACM responses to magnetic field frequencies around the band of the MEG. A magnetic field sensitivity of 3 fT/Hz1/2 was achieved. Finally, we performed a simulation of the OPACM during utilization for moving MEG recording. For comparison, the traditional compensation system for moving MEG recording is based on a coil that is around 2 m in dimension , while our compensation system is only 2 mm in dimension .
Collapse
Affiliation(s)
- Yao Chen
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies,Overseas Expertise Introduction Center for Micro/Nano Manufacturing and Nano Measurement Technologies Discipline Innovation, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China
- Xi’an Jiaotong University Suzhou Institute, Suzhou 215123, China
| | - Libo Zhao
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies,Overseas Expertise Introduction Center for Micro/Nano Manufacturing and Nano Measurement Technologies Discipline Innovation, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Yintao Ma
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies,Overseas Expertise Introduction Center for Micro/Nano Manufacturing and Nano Measurement Technologies Discipline Innovation, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Mingzhi Yu
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies,Overseas Expertise Introduction Center for Micro/Nano Manufacturing and Nano Measurement Technologies Discipline Innovation, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Yanbin Wang
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies,Overseas Expertise Introduction Center for Micro/Nano Manufacturing and Nano Measurement Technologies Discipline Innovation, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Ning Zhang
- Research Center for Quantum Sensing, Intelligent Perception Research Institute, Zhejiang Lab, Hangzhou 310000, China
| | - Kai Wei
- School of Instrumentation Science and Opto-electronics Engineering, Beihang University, Beijing, 100191, China
| | - Zhuangde Jiang
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies,Overseas Expertise Introduction Center for Micro/Nano Manufacturing and Nano Measurement Technologies Discipline Innovation, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| |
Collapse
|
28
|
Rea M, Boto E, Holmes N, Hill R, Osborne J, Rhodes N, Leggett J, Rier L, Bowtell R, Shah V, Brookes MJ. A 90-channel triaxial magnetoencephalography system using optically pumped magnetometers. Ann N Y Acad Sci 2022; 1517:107-124. [PMID: 36065147 PMCID: PMC9826099 DOI: 10.1111/nyas.14890] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Magnetoencephalography (MEG) measures the small magnetic fields generated by current flow in neural networks, providing a noninvasive metric of brain function. MEG is well established as a powerful neuroscientific and clinical tool. However, current instrumentation is hampered by cumbersome cryogenic field-sensing technologies. In contrast, MEG using optically pumped magnetometers (OPM-MEG) employs small, lightweight, noncryogenic sensors that provide data with higher sensitivity and spatial resolution, a natural scanning environment (including participant movement), and adaptability to any age. However, OPM-MEG is new and the optimum way to design a system is unknown. Here, we construct a novel, 90-channel triaxial OPM-MEG system and use it to map motor function during a naturalistic handwriting task. Results show that high-precision magnetic field control reduced background fields to ∼200 pT, enabling free participant movement. Our triaxial array offered twice the total measured signal and better interference rejection compared to a conventional (single-axis) design. We mapped neural oscillatory activity to the sensorimotor network, demonstrating significant differences in motor network activity and connectivity for left-handed versus right-handed handwriting. Repeatability across scans showed that we can map electrophysiological activity with an accuracy ∼4 mm. Overall, our study introduces a novel triaxial OPM-MEG design and confirms its potential for high-performance functional neuroimaging.
Collapse
Affiliation(s)
- Molly Rea
- Sir Peter Mansfield Imaging Centre, School of Physics and AstronomyUniversity of NottinghamNottinghamUK
| | - Elena Boto
- Sir Peter Mansfield Imaging Centre, School of Physics and AstronomyUniversity of NottinghamNottinghamUK
| | - Niall Holmes
- Sir Peter Mansfield Imaging Centre, School of Physics and AstronomyUniversity of NottinghamNottinghamUK
| | - Ryan Hill
- Sir Peter Mansfield Imaging Centre, School of Physics and AstronomyUniversity of NottinghamNottinghamUK
| | | | - Natalie Rhodes
- Sir Peter Mansfield Imaging Centre, School of Physics and AstronomyUniversity of NottinghamNottinghamUK
| | - James Leggett
- Sir Peter Mansfield Imaging Centre, School of Physics and AstronomyUniversity of NottinghamNottinghamUK
| | - Lukas Rier
- Sir Peter Mansfield Imaging Centre, School of Physics and AstronomyUniversity of NottinghamNottinghamUK
| | - Richard Bowtell
- Sir Peter Mansfield Imaging Centre, School of Physics and AstronomyUniversity of NottinghamNottinghamUK
| | | | - Matthew J. Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and AstronomyUniversity of NottinghamNottinghamUK
| |
Collapse
|
29
|
Detection of the 40 Hz auditory steady-state response with optically pumped magnetometers. Sci Rep 2022; 12:17993. [PMID: 36289267 PMCID: PMC9606299 DOI: 10.1038/s41598-022-21870-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 10/04/2022] [Indexed: 01/24/2023] Open
Abstract
Magnetoencephalography (MEG) is a functional neuroimaging technique that noninvasively detects the brain magnetic field from neuronal activations. Conventional MEG measures brain signals using superconducting quantum interference devices (SQUIDs). SQUID-MEG requires a cryogenic environment involving a bulky non-magnetic Dewar flask and the consumption of liquid helium, which restricts the variability of the sensor array and the gap between the cortical sources and sensors. Recently, miniature optically pumped magnetometers (OPMs) have been developed and commercialized. OPMs do not require cryogenic cooling and can be placed within millimeters from the scalp. In the present study, we arranged six OPM sensors on the temporal area to detect auditory-related brain responses in a two-layer magnetically shielded room. We presented the auditory stimuli of 1 kHz pure-tone bursts with 200 ms duration and obtained the M50 and M100 components of auditory-evoked fields. We delivered the periodic stimuli with a 40 Hz repetition rate and observed the gamma-band power changes and inter-trial phase coherence of auditory steady-state responses at 40 Hz. We found that the OPM sensors have a performance comparable to that of conventional SQUID-MEG sensors, and our results suggest the feasibility of using OPM sensors for functional neuroimaging and brain-computer interface applications.
Collapse
|
30
|
Iwata GZ, Hu Y, Wickenbrock A, Sander T, Muthuraman M, Chirumamilla VC, Groppa S, Liu Q, Budker D. Biomagnetic signals recorded during transcranial magnetic stimulation (TMS)-evoked peripheral muscular activity. BIOMED ENG-BIOMED TE 2022; 67:333-344. [PMID: 35960879 DOI: 10.1515/bmt-2021-0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 07/11/2022] [Indexed: 11/15/2022]
Abstract
Transcranial magnetic stimulation (TMS) has widespread clinical applications from diagnosis to treatment. We combined TMS with non-contact magnetic detection of TMS-evoked muscle activity in peripheral limbs to explore a new diagnostic modality that enhances the utility of TMS as a clinical tool by leveraging technological advances in magnetometry. We recorded measurements in a regular hospital room using an array of optically pumped magnetometers (OPMs) inside a portable shield that encloses only the forearm and hand of the subject. We present magnetomyograms (MMG)s of TMS-evoked movement in a human hand, together with a simultaneous surface electromyograph (EMG) data. The biomagnetic signals recorded in the MMG provides detailed spatial and temporal information that is complementary to that of the electric signal channels. Moreover, we identify features in the magnetic recording beyond that of the EMG. This system demonstrates the value of biomagnetic signals in TMS-based clinical approaches and widens its availability and practical potential.
Collapse
Affiliation(s)
- Geoffrey Z Iwata
- Johannes Gutenberg-Universität Mainz, Mainz, Germany.,Helmholtz-Institut Mainz, GSI Helmholtzzentrum für Schwerionenforschung Mainz, Germany
| | - Yinan Hu
- Johannes Gutenberg-Universität Mainz, Mainz, Germany.,Helmholtz-Institut Mainz, GSI Helmholtzzentrum für Schwerionenforschung Mainz, Germany
| | - Arne Wickenbrock
- Johannes Gutenberg-Universität Mainz, Mainz, Germany.,Helmholtz-Institut Mainz, GSI Helmholtzzentrum für Schwerionenforschung Mainz, Germany
| | | | - Muthuraman Muthuraman
- Department of Neurology, Biomedical Statistics and Multimodal Signal Processing Unit, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Venkata Chaitanya Chirumamilla
- Department of Neurology, Biomedical Statistics and Multimodal Signal Processing Unit, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Sergiu Groppa
- Department of Neurology, Biomedical Statistics and Multimodal Signal Processing Unit, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Qishan Liu
- Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - Dmitry Budker
- Johannes Gutenberg-Universität Mainz, Mainz, Germany.,Helmholtz-Institut Mainz, GSI Helmholtzzentrum für Schwerionenforschung Mainz, Germany.,Department of Physics, University of California, Berkeley, CA, USA
| |
Collapse
|
31
|
Holmes N, Rea M, Chalmers J, Leggett J, Edwards LJ, Nell P, Pink S, Patel P, Wood J, Murby N, Woolger D, Dawson E, Mariani C, Tierney TM, Mellor S, O'Neill GC, Boto E, Hill RM, Shah V, Osborne J, Pardington R, Fierlinger P, Barnes GR, Glover P, Brookes MJ, Bowtell R. A lightweight magnetically shielded room with active shielding. Sci Rep 2022; 12:13561. [PMID: 35945239 PMCID: PMC9363499 DOI: 10.1038/s41598-022-17346-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 07/25/2022] [Indexed: 11/09/2022] Open
Abstract
Magnetically shielded rooms (MSRs) use multiple layers of materials such as MuMetal to screen external magnetic fields that would otherwise interfere with high precision magnetic field measurements such as magnetoencephalography (MEG). Optically pumped magnetometers (OPMs) have enabled the development of wearable MEG systems which have the potential to provide a motion tolerant functional brain imaging system with high spatiotemporal resolution. Despite significant promise, OPMs impose stringent magnetic shielding requirements, operating around a zero magnetic field resonance within a dynamic range of ± 5 nT. MSRs developed for OPM-MEG must therefore effectively shield external sources and provide a low remnant magnetic field inside the enclosure. Existing MSRs optimised for OPM-MEG are expensive, heavy, and difficult to site. Electromagnetic coils are used to further cancel the remnant field inside the MSR enabling participant movements during OPM-MEG, but present coil systems are challenging to engineer and occupy space in the MSR limiting participant movements and negatively impacting patient experience. Here we present a lightweight MSR design (30% reduction in weight and 40-60% reduction in external dimensions compared to a standard OPM-optimised MSR) which takes significant steps towards addressing these barriers. We also designed a 'window coil' active shielding system, featuring a series of simple rectangular coils placed directly onto the walls of the MSR. By mapping the remnant magnetic field inside the MSR, and the magnetic field produced by the coils, we can identify optimal coil currents and cancel the remnant magnetic field over the central cubic metre to just |B|= 670 ± 160 pT. These advances reduce the cost, installation time and siting restrictions of MSRs which will be essential for the widespread deployment of OPM-MEG.
Collapse
Affiliation(s)
- Niall Holmes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| | - Molly Rea
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - James Chalmers
- Magnetic Shields Limited, Headcorn Road, Staplehurst, Tonbridge, Kent, TN12 0DS, UK
| | - James Leggett
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Lucy J Edwards
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Paul Nell
- Magnetic Shields Limited, Headcorn Road, Staplehurst, Tonbridge, Kent, TN12 0DS, UK
| | - Stephen Pink
- Magnetic Shields Limited, Headcorn Road, Staplehurst, Tonbridge, Kent, TN12 0DS, UK
| | - Prashant Patel
- Magnetic Shields Limited, Headcorn Road, Staplehurst, Tonbridge, Kent, TN12 0DS, UK
| | - Jack Wood
- Magnetic Shields Limited, Headcorn Road, Staplehurst, Tonbridge, Kent, TN12 0DS, UK
| | - Nick Murby
- Magnetic Shields Limited, Headcorn Road, Staplehurst, Tonbridge, Kent, TN12 0DS, UK
| | - David Woolger
- Magnetic Shields Limited, Headcorn Road, Staplehurst, Tonbridge, Kent, TN12 0DS, UK
| | - Eliot Dawson
- Cerca Magnetics Limited, Headcorn Road, Staplehurst, Tonbridge, Kent, TN12 0DS, UK
| | - Christopher Mariani
- Cerca Magnetics Limited, Headcorn Road, Staplehurst, Tonbridge, Kent, TN12 0DS, UK
| | - Tim M Tierney
- Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, London, WC1N 3AR, UK
| | - Stephanie Mellor
- Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, London, WC1N 3AR, UK
| | - George C O'Neill
- Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, London, WC1N 3AR, UK
| | - Elena Boto
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Ryan M Hill
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Vishal Shah
- QuSpin Inc., 331 South 104th Street, Suite 130, Louisville, CO, 80027, USA
| | - James Osborne
- QuSpin Inc., 331 South 104th Street, Suite 130, Louisville, CO, 80027, USA
| | | | - Peter Fierlinger
- Department of Physics, Technical University Munich, 85748, Garching, Germany
| | - Gareth R Barnes
- Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, London, WC1N 3AR, UK
| | - Paul Glover
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Matthew J Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Richard Bowtell
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| |
Collapse
|
32
|
Brookes MJ, Leggett J, Rea M, Hill RM, Holmes N, Boto E, Bowtell R. Magnetoencephalography with optically pumped magnetometers (OPM-MEG): the next generation of functional neuroimaging. Trends Neurosci 2022; 45:621-634. [PMID: 35779970 PMCID: PMC10465236 DOI: 10.1016/j.tins.2022.05.008] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/06/2022] [Accepted: 05/24/2022] [Indexed: 10/17/2022]
Abstract
Magnetoencephalography (MEG) measures human brain function via assessment of the magnetic fields generated by electrical activity in neurons. Despite providing high-quality spatiotemporal maps of electrophysiological activity, current MEG instrumentation is limited by cumbersome field sensing technologies, resulting in major barriers to utility. Here, we review a new generation of MEG technology that is beginning to lift many of these barriers. By exploiting quantum sensors, known as optically pumped magnetometers (OPMs), 'OPM-MEG' has the potential to dramatically outperform the current state of the art, promising enhanced data quality (better sensitivity and spatial resolution), adaptability to any head size/shape (from babies to adults), motion robustness (participants can move freely during scanning), and a less complex imaging platform (without reliance on cryogenics). We discuss the current state of this emerging technique and describe its far-reaching implications for neuroscience.
Collapse
Affiliation(s)
- Matthew J Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| | - James Leggett
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Molly Rea
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Ryan M Hill
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Niall Holmes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Elena Boto
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Richard Bowtell
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| |
Collapse
|
33
|
Ru X, He K, Lyu B, Li D, Xu W, Gu W, Ma X, Liu J, Li C, Li T, Zheng F, Yan X, Yin Y, Duan H, Na S, Wan S, Qin J, Sheng J, Gao JH. Multimodal neuroimaging with optically pumped magnetometers: A simultaneous MEG-EEG-fNIRS acquisition system. Neuroimage 2022; 259:119420. [PMID: 35777634 DOI: 10.1016/j.neuroimage.2022.119420] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/13/2022] [Accepted: 06/27/2022] [Indexed: 11/24/2022] Open
Abstract
Multimodal neuroimaging plays an important role in neuroscience research. Integrated noninvasive neuroimaging modalities, such as magnetoencephalography (MEG), electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS), allow neural activity and related physiological processes in the brain to be precisely and comprehensively depicted, providing an effective and advanced platform to study brain function. Noncryogenic optically pumped magnetometer (OPM) MEG has high signal power due to its on-scalp sensor layout and enables more flexible configurations than traditional commercial superconducting MEG. Here, we integrate OPM-MEG with EEG and fNIRS to develop a multimodal neuroimaging system that can simultaneously measure brain electrophysiology and hemodynamics. We conducted a series of experiments to demonstrate the feasibility and robustness of our MEG-EEG-fNIRS acquisition system. The complementary neural and physiological signals simultaneously collected by our multimodal imaging system provide opportunities for a wide range of potential applications in neurovascular coupling, wearable neuroimaging, hyperscanning and brain-computer interfaces.
Collapse
Affiliation(s)
- Xingyu Ru
- Beijing City Key Lab for Medical Physics and Engineering, Institution of Heavy Ion Physics, School of Physics, Peking University, Beijing, China
| | - Kaiyan He
- Beijing City Key Lab for Medical Physics and Engineering, Institution of Heavy Ion Physics, School of Physics, Peking University, Beijing, China
| | | | - Dongxu Li
- Beijing City Key Lab for Medical Physics and Engineering, Institution of Heavy Ion Physics, School of Physics, Peking University, Beijing, China
| | - Wei Xu
- Changping Laboratory, Beijing, China
| | - Wenyu Gu
- Beijing City Key Lab for Medical Physics and Engineering, Institution of Heavy Ion Physics, School of Physics, Peking University, Beijing, China
| | - Xiao Ma
- Beijing City Key Lab for Medical Physics and Engineering, Institution of Heavy Ion Physics, School of Physics, Peking University, Beijing, China
| | - Jiayi Liu
- Beijing City Key Lab for Medical Physics and Engineering, Institution of Heavy Ion Physics, School of Physics, Peking University, Beijing, China
| | | | - Tingyue Li
- Beijing City Key Lab for Medical Physics and Engineering, Institution of Heavy Ion Physics, School of Physics, Peking University, Beijing, China
| | - Fufu Zheng
- Beijing City Key Lab for Medical Physics and Engineering, Institution of Heavy Ion Physics, School of Physics, Peking University, Beijing, China
| | - Xiaozhou Yan
- Beijing PsycheArk Science & Technology Development Co., Ltd., Beijing, China
| | - Yugang Yin
- Beijing PsycheArk Science & Technology Development Co., Ltd., Beijing, China
| | - Hongfeng Duan
- Beijing PsycheArk Science & Technology Development Co., Ltd., Beijing, China
| | - Shuai Na
- National Biomedical Imaging Center, Peking University, Beijing, China
| | - Shuangai Wan
- Beijing Automation Control Equipment Institute, Beijing, China
| | - Jie Qin
- Beijing Automation Control Equipment Institute, Beijing, China
| | | | - Jia-Hong Gao
- Beijing City Key Lab for Medical Physics and Engineering, Institution of Heavy Ion Physics, School of Physics, Peking University, Beijing, China; Changping Laboratory, Beijing, China; National Biomedical Imaging Center, Peking University, Beijing, China; McGovern Institute for Brain Research, Peking University, Beijing, China; Center for MRI Research, Academy for Advance Interdisciplinary Studies, Peking University, Beijing, China.
| |
Collapse
|
34
|
Nugent AC, Benitez Andonegui A, Holroyd T, Robinson SE. On-scalp magnetocorticography with optically pumped magnetometers: Simulated performance in resolving simultaneous sources. NEUROIMAGE. REPORTS 2022; 2:100093. [PMID: 35692456 PMCID: PMC9186482 DOI: 10.1016/j.ynirp.2022.100093] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Currently, the gold standard for high-resolution mapping of cortical electrophysiological activity is invasive electrocorticography (ECoG), a procedure that carries with it the risk of serious morbidity and mortality. Due to these risks, the use of ECoG is largely limited to pre-surgical mapping in intractable epilepsy. Nevertheless, many seminal studies in neuroscience have utilized ECoG to explore domains such as visual perception, attention, auditory processing, and sensorimotor behavior. Studies such as these, occurring in patients with epilepsy rather than healthy controls, may lack generalizability, and are limited by the placement of the electrode arrays over the presumed seizure focus. This manuscript explores the use of optically pumped magnetometers (OPMs) to create a non-invasive alternative to ECoG, which we refer to as magnetocorticography. Because prior ECoG studies reveal that most cognitive processes are driven by multiple, simultaneous independent neuronal assemblies, we characterize the ability of a theoretical 56-channel dense OPM array to resolve simultaneous independent sources, and compare it to currently available SQUID devices, as well as OPM arrays with inter-sensor spacings more typical of other systems in development. Our evaluation of this theoretical system assesses many potential sources of error, including errors of sensor calibration and position. In addition, we investigate the influence of geometrical and anatomical factors on array performance. Our simulations reveal the potential of high-density, on-scalp OPM MEG devices to localize electrophysiological brain responses at unprecedented resolution for a non-invasive device.
Collapse
|
35
|
Campbell K, Wang YJ, Savukov I, Schwindt PDD, Jau YY, Shah V. Gradient Field Detection Using Interference of Stimulated Microwave Optical Sidebands. PHYSICAL REVIEW LETTERS 2022; 128:163602. [PMID: 35522487 DOI: 10.1103/physrevlett.128.163602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/27/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
We demonstrate that stimulated microwave optical sideband generation using parametric frequency conversion can be utilized as a powerful technique for coherent state detection in atomic physics experiments. The technique has advantages over traditional absorption or polarization rotation-based measurements and enables the isolation of signal photons from probe photons. We outline a theoretical framework that accurately models sideband generation using a density matrix formalism. Using this technique, we demonstrate a novel intrinsic magnetic gradiometer that detects magnetic gradient fields between two spatially separated vapor cells by measuring the frequency of the beat note between sidebands generated within each cell. The sidebands are produced with high efficiency using parametric frequency conversion of a probe beam interacting with ^{87}Rb atoms in a coherent superposition of magnetically sensitive hyperfine ground states. Interference between the sidebands generates a low-frequency beat note whose frequency is determined by the magnetic field gradient between the two vapor cells. In contrast to traditional gradiometers the intermediate step of measuring the magnetic field experienced by the two vapor cells is unnecessary. We show that this technique can be readily implemented in a practical device by demonstrating a compact magnetic gradiometer sensor head with a sensitivity of 25 fT/cm/sqrt[Hz] with a 4.4 cm baseline, while operating in a noisy laboratory environment unshielded from Earth's field.
Collapse
Affiliation(s)
- Kaleb Campbell
- Sandia National Laboratory, 1515 Eubank SE, Albuquerque, New Mexico 87123, USA
- Center for Quantum Information and Control, Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Ying-Ju Wang
- QuSpin Inc, 331S 104th St. Unit 130, Louisville, Colorado 80027, USA
| | - Igor Savukov
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Peter D D Schwindt
- Sandia National Laboratory, 1515 Eubank SE, Albuquerque, New Mexico 87123, USA
| | - Yuan-Yu Jau
- Sandia National Laboratory, 1515 Eubank SE, Albuquerque, New Mexico 87123, USA
| | - Vishal Shah
- QuSpin Inc, 331S 104th St. Unit 130, Louisville, Colorado 80027, USA
| |
Collapse
|
36
|
Marhl U, Sander T, Jazbinšek V. Simulation Study of Different OPM-MEG Measurement Components. SENSORS 2022; 22:s22093184. [PMID: 35590874 PMCID: PMC9105726 DOI: 10.3390/s22093184] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/15/2022] [Accepted: 04/20/2022] [Indexed: 02/04/2023]
Abstract
Magnetoencephalography (MEG) is a neuroimaging technique that measures the magnetic fields of the brain outside of the head. In the past, the most suitable magnetometer for MEG was the superconducting quantum interference device (SQUID), but in recent years, a new type has also been used, the optically pumped magnetometer (OPM). OPMs can be configured to measure multiple directions of magnetic field simultaneously. This work explored whether combining multiple directions of the magnetic field lowers the source localization error of brain sources under various conditions of noise. We simulated dipolar-like sources for multiple configurations of both SQUID- and OPM-MEG systems. To test the performance of a given layout, we calculated the average signal-to-noise ratio and the root mean square of the simulated magnetic field; furthermore, we evaluated the performance of the dipole fit. The results showed that the field direction normal to the scalp yields a higher signal-to-noise ratio and that ambient noise has a much lower impact on its localization error; therefore, this is the optimal choice for source localization when only one direction of magnetic field can be measured. For a low number of OPMs, combining multiple field directions greatly improves the source localization results. Lastly, we showed that MEG sensors that can be placed closer to the brain are more suitable for localizing deeper sources.
Collapse
Affiliation(s)
- Urban Marhl
- Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000 Maribor, Slovenia
- Department of Physics, Institute of Mathematics, Physics and Mechanics, Jadranska ulica 19, 1000 Ljubljana, Slovenia;
- Correspondence:
| | - Tilmann Sander
- Physikalisch-Technische Bundesanstalt, Abbestraße 2, 10587 Berlin, Germany;
| | - Vojko Jazbinšek
- Department of Physics, Institute of Mathematics, Physics and Mechanics, Jadranska ulica 19, 1000 Ljubljana, Slovenia;
| |
Collapse
|
37
|
Calibration and Localization of Optically Pumped Magnetometers Using Electromagnetic Coils. SENSORS 2022; 22:s22083059. [PMID: 35459044 PMCID: PMC9024658 DOI: 10.3390/s22083059] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 12/10/2022]
Abstract
In this paper, we propose a method to estimate the position, orientation, and gain of a magnetic field sensor using a set of (large) electromagnetic coils. We apply the method for calibrating an array of optically pumped magnetometers (OPMs) for magnetoencephalography (MEG). We first measure the magnetic fields of the coils at multiple known positions using a well-calibrated triaxial magnetometer, and model these discreetly sampled fields using vector spherical harmonics (VSH) functions. We then localize and calibrate an OPM by minimizing the sum of squared errors between the model signals and the OPM responses to the coil fields. We show that by using homogeneous and first-order gradient fields, the OPM sensor parameters (gain, position, and orientation) can be obtained from a set of linear equations with pseudo-inverses of two matrices. The currents that should be applied to the coils for approximating these low-order field components can be determined based on the VSH models. Computationally simple initial estimates of the OPM sensor parameters follow. As a first test of the method, we placed a fluxgate magnetometer at multiple positions and estimated the RMS position, orientation, and gain errors of the method to be 1.0 mm, 0.2°, and 0.8%, respectively. Lastly, we calibrated a 48-channel OPM array. The accuracy of the OPM calibration was tested by using the OPM array to localize magnetic dipoles in a phantom, which resulted in an average dipole position error of 3.3 mm. The results demonstrate the feasibility of using electromagnetic coils to calibrate and localize OPMs for MEG.
Collapse
|
38
|
Using OPM-MEG in contrasting magnetic environments. Neuroimage 2022; 253:119084. [PMID: 35278706 PMCID: PMC9135301 DOI: 10.1016/j.neuroimage.2022.119084] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 11/21/2022] Open
Abstract
Magnetoencephalography (MEG) has been revolutionised by optically pumped magnetometers (OPMs). "OPM-MEG" offers higher sensitivity, better spatial resolution, and lower cost than conventional instrumentation based on superconducting quantum interference devices (SQUIDs). Moreover, because OPMs are small, lightweight, and portable they offer the possibility of lifespan compliance and (with control of background field) motion robustness, dramatically expanding the range of MEG applications. However, OPM-MEG remains nascent technology; it places stringent requirements on magnetic shielding, and whilst a number of viable systems exist, most are custom made and there have been no cross-site investigations showing the reliability of data. In this paper, we undertake the first cross-site OPM-MEG comparison, using near identical commercial systems scanning the same participant. The two sites are deliberately contrasting, with different magnetic environments: a "green field" campus university site with an OPM-optimised shielded room (low interference) and a city centre hospital site with a "standard" (non-optimised) MSR (higher interference). We show that despite a 20-fold difference in background field, and a 30-fold difference in low frequency interference, using dynamic field control and software-based suppression of interference we can generate comparable noise floors at both sites. In human data recorded during a visuo-motor task and a face processing paradigm, we were able to generate similar data, with source localisation showing that brain regions could be pinpointed with just ∼10 mm spatial discrepancy and temporal correlations of > 80%. Overall, our study demonstrates that, with appropriate field control, OPM-MEG systems can be sited even in city centre hospital locations. The methods presented pave the way for wider deployment of OPM-MEG.
Collapse
|
39
|
Marhl U, Jodko-Władzińska A, Brühl R, Sander T, Jazbinšek V. Transforming and comparing data between standard SQUID and OPM-MEG systems. PLoS One 2022; 17:e0262669. [PMID: 35045107 PMCID: PMC8769297 DOI: 10.1371/journal.pone.0262669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 01/03/2022] [Indexed: 11/18/2022] Open
Abstract
Optically pumped magnetometers (OPMs) have recently become so sensitive that they are suitable for use in magnetoencephalography (MEG). These sensors solve operational problems of the current standard MEG, where superconducting quantum interference device (SQUID) gradiometers and magnetometers are being used. The main advantage of OPMs is that they do not require cryogenics for cooling. Therefore, they can be placed closer to the scalp and are much easier to use. Here, we measured auditory evoked fields (AEFs) with both SQUID- and OPM-based MEG systems for a group of subjects to better understand the usage of a limited sensor count OPM-MEG. We present a theoretical framework that transforms the within subject data and equivalent simulation data from one MEG system to the other. This approach works on the principle of solving the inverse problem with one system, and then using the forward model to calculate the magnetic fields expected for the other system. For the source reconstruction, we used a minimum norm estimate (MNE) of the current distribution. Two different volume conductor models were compared: the homogeneous conducting sphere and the three-shell model of the head. The transformation results are characterized by a relative error and cross-correlation between the measured and the estimated magnetic field maps of the AEFs. The results for both models are encouraging. Since some commercial OPMs measure multiple components of the magnetic field simultaneously, we additionally analyzed the effect of tangential field components. Overall, our dual-axis OPM-MEG with 15 sensors yields similar information to a 62-channel SQUID-MEG with its field of view restricted to the right hemisphere.
Collapse
Affiliation(s)
- Urban Marhl
- Institute of Mathematics, Physics and Mechanics, Ljubljana, Slovenia
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
- * E-mail:
| | - Anna Jodko-Władzińska
- Warsaw University of Technology, Warsaw, Poland
- Physikalisch-Technische Bundesanstalt, Berlin, Germany
| | - Rüdiger Brühl
- Physikalisch-Technische Bundesanstalt, Berlin, Germany
| | | | - Vojko Jazbinšek
- Institute of Mathematics, Physics and Mechanics, Ljubljana, Slovenia
| |
Collapse
|
40
|
Triaxial detection of the neuromagnetic field using optically-pumped magnetometry: feasibility and application in children. Neuroimage 2022; 252:119027. [PMID: 35217205 PMCID: PMC9135302 DOI: 10.1016/j.neuroimage.2022.119027] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/11/2022] [Accepted: 02/21/2022] [Indexed: 12/02/2022] Open
Abstract
Optically-pumped magnetometers (OPMs) are an established alternative to superconducting sensors for magnetoencephalography (MEG), offering significant advantages including flexibility to accommodate any head size, uniform coverage, free movement during scanning, better data quality and lower cost. However, OPM sensor technology remains under development; there is flexibility regarding OPM design and it is not yet clear which variant will prove most effective for MEG. Most OPM-MEG implementations have either used single-axis (equivalent to conventional MEG) or dual-axis magnetic field measurements. Here we demonstrate use of a triaxial OPM formulation, able to characterise the full 3D neuromagnetic field vector. We show that this novel sensor is able to characterise magnetic fields with high accuracy and sensitivity that matches conventional (dual-axis) OPMs. We show practicality via measurement of biomagnetic fields from both the heart and the brain. Using simulations, we demonstrate how triaxial measurement offers improved cortical coverage, especially in infants. Finally, we introduce a new 3D-printed child-friendly OPM-helmet and demonstrate feasibility of triaxial measurement in a five-year-old. In sum, the data presented demonstrate that triaxial OPMs offer a significant improvement over dual-axis variants and are likely to become the sensor of choice for future MEG systems, particularly for deployment in paediatric populations.
Collapse
|
41
|
An N, Cao F, Li W, Wang W, Xu W, Wang C, Xiang M, Gao Y, Sui B, Liang A, Ning X. Imaging somatosensory cortex responses measured by OPM-MEG: Variational free energy-based spatial smoothing estimation approach. iScience 2022; 25:103752. [PMID: 35118364 PMCID: PMC8800110 DOI: 10.1016/j.isci.2022.103752] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/18/2021] [Accepted: 01/06/2022] [Indexed: 12/11/2022] Open
Abstract
In recent years, optically pumped magnetometer (OPM)-based magnetoencephalography (MEG) has shown potential for analyzing brain activity. It has a flexible sensor configuration and comparable sensitivity to conventional SQUID-MEG. We constructed a 32-channel OPM-MEG system and used it to measure cortical responses to median and ulnar nerve stimulations. Traditional magnetic source imaging methods tend to blur the spatial extent of sources. Accurate estimation of the spatial size of the source is important for studying the organization of brain somatotopy and for pre-surgical functional mapping. We proposed a new method called variational free energy-based spatial smoothing estimation (FESSE) to enhance the accuracy of mapping somatosensory cortex responses. A series of computer simulations based on the OPM-MEG showed better performance than the three types of competing methods under different levels of signal-to-noise ratios, source patch sizes, and co-registration errors. FESSE was then applied to the source imaging of the OPM-MEG experimental data.
Collapse
Affiliation(s)
- Nan An
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
| | - Fuzhi Cao
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
| | - Wen Li
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
| | - Wenli Wang
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
| | - Weinan Xu
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
| | - Chunhui Wang
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
| | - Min Xiang
- Research Institute of Frontier Science, Beihang University, Beijing 100191, China
- Hangzhou Innovation Institute, Beihang University, Hangzhou 100191, China
| | - Yang Gao
- Hangzhou Innovation Institute, Beihang University, Hangzhou 100191, China
- Beijing Academy of Quantum Information Sciences, Beijing 100193, China
| | - Binbin Sui
- Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Aimin Liang
- Beijing Children’s Hospital, Capital Medical University, Beijing 100045, China
| | - Xiaolin Ning
- Research Institute of Frontier Science, Beihang University, Beijing 100191, China
- Hangzhou Innovation Institute, Beihang University, Hangzhou 100191, China
| |
Collapse
|
42
|
Seymour RA, Alexander N, Mellor S, O'Neill GC, Tierney TM, Barnes GR, Maguire EA. Interference suppression techniques for OPM-based MEG: Opportunities and challenges. Neuroimage 2022; 247:118834. [PMID: 34933122 PMCID: PMC8803550 DOI: 10.1016/j.neuroimage.2021.118834] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/23/2021] [Accepted: 12/17/2021] [Indexed: 12/13/2022] Open
Abstract
One of the primary technical challenges facing magnetoencephalography (MEG) is that the magnitude of neuromagnetic fields is several orders of magnitude lower than interfering signals. Recently, a new type of sensor has been developed - the optically pumped magnetometer (OPM). These sensors can be placed directly on the scalp and move with the head during participant movement, making them wearable. This opens up a range of exciting experimental and clinical opportunities for OPM-based MEG experiments, including paediatric studies, and the incorporation of naturalistic movements into neuroimaging paradigms. However, OPMs face some unique challenges in terms of interference suppression, especially in situations involving mobile participants, and when OPMs are integrated with electrical equipment required for naturalistic paradigms, such as motion capture systems. Here we briefly review various hardware solutions for OPM interference suppression. We then outline several signal processing strategies aimed at increasing the signal from neuromagnetic sources. These include regression-based strategies, temporal filtering and spatial filtering approaches. The focus is on the practical application of these signal processing algorithms to OPM data. In a similar vein, we include two worked-through experiments using OPM data collected from a whole-head sensor array. These tutorial-style examples illustrate how the steps for suppressing external interference can be implemented, including the associated data and code so that researchers can try the pipelines for themselves. With the popularity of OPM-based MEG rising, there will be an increasing need to deal with interference suppression. We hope this practical paper provides a resource for OPM-based MEG researchers to build upon.
Collapse
Affiliation(s)
- Robert A Seymour
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK.
| | - Nicholas Alexander
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK
| | - Stephanie Mellor
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK
| | - George C O'Neill
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK
| | - Tim M Tierney
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK
| | - Gareth R Barnes
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK
| | - Eleanor A Maguire
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK.
| |
Collapse
|
43
|
Xing B, Lu J, Sun C, Yu T, Wu Y, Gao Y, Han B. Suppression of the magnetic noise response caused by elliptically polarized light in an optical rotation detection system. OPTICS EXPRESS 2022; 30:3854-3865. [PMID: 35209635 DOI: 10.1364/oe.449951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
We analyze and suppress the magnetic noise response in optical rotation detection system (ORDS) in atomic magnetometers in this study. Because of the imperfections of the optical elements, the probe light is actually elliptically polarized in ORDS, which can polarize the atom ensemble and cause the responses to the three-axis magnetic noise. We theoretically analyze the frequency responses to the magnetic noise, and prove that the responses are closely associated with the DC magnetic field. The values of the DC magnetic fields are calculated with special frequency points, called 'break points', in the transverse responses. We reveal the relationships between the DC magnetic field and the sensitivities of ORDS, and effectively suppress the magnetic noise responses with the residual magnetic field compensation. Finally, the sensitivity of ORDS is improved by approximately two times at 10-20 Hz.
Collapse
|
44
|
Papadopoulos S, Bonaiuto J, Mattout J. An Impending Paradigm Shift in Motor Imagery Based Brain-Computer Interfaces. Front Neurosci 2022; 15:824759. [PMID: 35095410 PMCID: PMC8789741 DOI: 10.3389/fnins.2021.824759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/21/2021] [Indexed: 01/11/2023] Open
Abstract
The development of reliable assistive devices for patients that suffer from motor impairments following central nervous system lesions remains a major challenge in the field of non-invasive Brain-Computer Interfaces (BCIs). These approaches are predominated by electroencephalography and rely on advanced signal processing and machine learning methods to extract neural correlates of motor activity. However, despite tremendous and still ongoing efforts, their value as effective clinical tools remains limited. We advocate that a rather overlooked research avenue lies in efforts to question neurophysiological markers traditionally targeted in non-invasive motor BCIs. We propose an alternative approach grounded by recent fundamental advances in non-invasive neurophysiology, specifically subject-specific feature extraction of sensorimotor bursts of activity recorded via (possibly magnetoencephalography-optimized) electroencephalography. This path holds promise in overcoming a significant proportion of existing limitations, and could foster the wider adoption of online BCIs in rehabilitation protocols.
Collapse
Affiliation(s)
- Sotirios Papadopoulos
- University Lyon 1, Lyon, France
- Lyon Neuroscience Research Center, CRNL, INSERM, U1028, CNRS, UMR 5292, Lyon, France
- Institut des Sciences Cognitives Marc Jeannerod, CNRS, UMR 5229, Bron, France
- *Correspondence: Sotirios Papadopoulos,
| | - James Bonaiuto
- University Lyon 1, Lyon, France
- Institut des Sciences Cognitives Marc Jeannerod, CNRS, UMR 5229, Bron, France
| | - Jérémie Mattout
- University Lyon 1, Lyon, France
- Lyon Neuroscience Research Center, CRNL, INSERM, U1028, CNRS, UMR 5292, Lyon, France
| |
Collapse
|
45
|
Sometti D, Semeia L, Baek S, Chen H, Righetti G, Dax J, Kronlage C, Kirchgässner M, Romano A, Heilos J, Staber D, Oppold J, Middelmann T, Braun C, Broser P, Marquetand J. Muscle Fatigue Revisited – Insights From Optically Pumped Magnetometers. Front Physiol 2021; 12:724755. [PMID: 34975515 PMCID: PMC8718712 DOI: 10.3389/fphys.2021.724755] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 11/25/2021] [Indexed: 11/13/2022] Open
Abstract
So far, surface electromyography (sEMG) has been the method of choice to detect and evaluate muscle fatigue. However, recent advancements in non-cryogenic quantum sensors, such as optically pumped magnetometers (OPMs), enable interesting possibilities to flexibly record biomagnetic signals. Yet, a magnetomyographic investigation of muscular fatigue is still missing. Here, we simultaneously used sEMG (4 surface electrode) and OPM-based magnetomyography (OPM-MMG, 4 sensors) to detect muscle fatigue during a 3 × 1-min isometric contractions of the left rectus femoris muscle in 7 healthy participants. Both signals exhibited the characteristic spectral compression distinctive for muscle fatigue. OPM-MMG and sEMG slope values, used to quantify the spectral compression of the signals, were positively correlated, displaying similarity between the techniques. Additionally, the analysis of the different components of the magnetic field vector enabled speculations regarding the propagation of the muscle action potentials (MAPs). Altogether these results show the feasibility of the magnetomyographic approach with OPMs and propose a potential alternative to sEMG for the study of muscle fatigue.
Collapse
Affiliation(s)
- Davide Sometti
- Department of Neural Dynamics and Magnetoencephalography, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- MEG-Center, University of Tübingen, Tübingen, Germany
- Graduate Training Centre of Neuroscience, International Max Planck Research School, University of Tübingen, Tübingen, Germany
- Center for Pediatric Clinical Studies, University of Tübingen, Tübingen, Germany
| | - Lorenzo Semeia
- Graduate Training Centre of Neuroscience, International Max Planck Research School, University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), IDM/fMEG Center of the Helmholtz Center Munich at the University of Tübingen, University of Tübingen, Tübingen, Germany
| | - Sangyeob Baek
- Department of Neural Dynamics and Magnetoencephalography, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- MEG-Center, University of Tübingen, Tübingen, Germany
| | - Hui Chen
- Department of Neural Dynamics and Magnetoencephalography, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- MEG-Center, University of Tübingen, Tübingen, Germany
| | - Giulia Righetti
- Department of Neural Dynamics and Magnetoencephalography, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- MEG-Center, University of Tübingen, Tübingen, Germany
- Graduate Training Centre of Neuroscience, International Max Planck Research School, University of Tübingen, Tübingen, Germany
- Center for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Juergen Dax
- Department of Neural Dynamics and Magnetoencephalography, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- MEG-Center, University of Tübingen, Tübingen, Germany
| | - Cornelius Kronlage
- Department of Epileptology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Milena Kirchgässner
- Department of Epileptology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Alyssa Romano
- Department of Epileptology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Johanna Heilos
- Department of Epileptology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Deborah Staber
- Department of Epileptology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Julia Oppold
- Department of Epileptology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Thomas Middelmann
- Department of Biosignals, Physikalisch-Technische Bundesanstalt (PTB), Berlin, Germany
| | - Christoph Braun
- Department of Neural Dynamics and Magnetoencephalography, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- MEG-Center, University of Tübingen, Tübingen, Germany
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Rovereto, Italy
- Department of Psychology and Cognitive Science (DiPsCo), University of Trento, Rovereto, Italy
| | - Philip Broser
- Children’s Hospital of Eastern Switzerland, Sankt Gallen, Switzerland
| | - Justus Marquetand
- Department of Neural Dynamics and Magnetoencephalography, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- MEG-Center, University of Tübingen, Tübingen, Germany
- Department of Epileptology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- *Correspondence: Justus Marquetand,
| |
Collapse
|
46
|
Borna A, Iivanainen J, Carter TR, McKay J, Taulu S, Stephen J, Schwindt PDD. Cross-Axis projection error in optically pumped magnetometers and its implication for magnetoencephalography systems. Neuroimage 2021; 247:118818. [PMID: 34915157 PMCID: PMC8929686 DOI: 10.1016/j.neuroimage.2021.118818] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/22/2021] [Accepted: 12/13/2021] [Indexed: 10/25/2022] Open
Abstract
Optically pumped magnetometers (OPMs) developed for magnetoencephalography (MEG) typically operate in the spin-exchange-relaxation-free (SERF) regime and measure a magnetic field component perpendicular to the propagation axis of the optical-pumping photons. The most common type of OPM for MEG employs alkali atoms, e.g. 87Rb, as the sensing element and one or more lasers for preparation and interrogation of the magnetically sensitive states of the alkali atoms ensemble. The sensitivity of the OPM can be greatly enhanced by operating it in the SERF regime, where the alkali atoms' spin exchange rate is much faster than the Larmor precession frequency. The SERF regime accommodates remnant static magnetic fields up to ±5 nT. However, in the presented work, through simulation and experiment, we demonstrate that multi-axis magnetic signals in the presence of small remnant static magnetic fields, not violating the SERF criteria, can introduce significant error terms in OPM's output signal. We call these deterministic errors cross-axis projection errors (CAPE), where magnetic field components of the MEG signal perpendicular to the nominal sensing axis contribute to the OPM signal giving rise to substantial amplitude and phase errors. Furthermore, through simulation, we have discovered that CAPE can degrade localization and calibration accuracy of OPM-based magnetoencephalography (OPM-MEG) systems.
Collapse
Affiliation(s)
- Amir Borna
- Sandia National Laboratories, 1515 Eubank Blvd SE, Albuquerque, NM 87123, United States.
| | - Joonas Iivanainen
- Sandia National Laboratories, 1515 Eubank Blvd SE, Albuquerque, NM 87123, United States
| | - Tony R Carter
- Sandia National Laboratories, 1515 Eubank Blvd SE, Albuquerque, NM 87123, United States
| | - Jim McKay
- Candoo Systems Inc., Port Coquitlam, BC V3C 5M2, Canada
| | - Samu Taulu
- University of Washington Seattle, WA 98195, United States
| | - Julia Stephen
- The Mind Research Network, Albuquerque, NM 87106, United States
| | - Peter D D Schwindt
- Sandia National Laboratories, 1515 Eubank Blvd SE, Albuquerque, NM 87123, United States
| |
Collapse
|
47
|
Seymour RA, Alexander N, Mellor S, O'Neill GC, Tierney TM, Barnes GR, Maguire EA. Using OPMs to measure neural activity in standing, mobile participants. Neuroimage 2021; 244:118604. [PMID: 34555493 PMCID: PMC8591613 DOI: 10.1016/j.neuroimage.2021.118604] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/13/2021] [Accepted: 09/19/2021] [Indexed: 11/30/2022] Open
Abstract
Optically pumped magnetometer-based magnetoencephalography (OP-MEG) can be used to measure neuromagnetic fields while participants move in a magnetically shielded room. Head movements in previous OP-MEG studies have been up to 20 cm translation and ∼30° rotation in a sitting position. While this represents a step-change over stationary MEG systems, naturalistic head movement is likely to exceed these limits, particularly when participants are standing up. In this proof-of-concept study, we sought to push the movement limits of OP-MEG even further. Using a 90 channel (45-sensor) whole-head OP-MEG system and concurrent motion capture, we recorded auditory evoked fields while participants were: (i) sitting still, (ii) standing up and still, and (iii) standing up and making large natural head movements continuously throughout the recording - maximum translation 120 cm, maximum rotation 198°. Following pre-processing, movement artefacts were substantially reduced but not eliminated. However, upon utilisation of a beamformer, the M100 event-related field localised to primary auditory regions. Furthermore, the event-related fields from auditory cortex were remarkably consistent across the three conditions. These results suggest that a wide range of movement is possible with current OP-MEG systems. This in turn underscores the exciting potential of OP-MEG for recording neural activity during naturalistic paradigms that involve movement (e.g. navigation), and for scanning populations who are difficult to study with stationary MEG (e.g. young children).
Collapse
Affiliation(s)
- Robert A Seymour
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, United Kingdom.
| | - Nicholas Alexander
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, United Kingdom
| | - Stephanie Mellor
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, United Kingdom
| | - George C O'Neill
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, United Kingdom
| | - Tim M Tierney
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, United Kingdom
| | - Gareth R Barnes
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, United Kingdom
| | - Eleanor A Maguire
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, United Kingdom.
| |
Collapse
|
48
|
Dash D, Ferrari P, Babajani-Feremi A, Borna A, Schwindt PDD, Wang J. Magnetometers vs Gradiometers for Neural Speech Decoding. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:6543-6546. [PMID: 34892608 DOI: 10.1109/embc46164.2021.9630489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Neural speech decoding aims at providing natural rate communication assistance to patients with locked-in state (e.g. due to amyotrophic lateral sclerosis, ALS) in contrast to the traditional brain-computer interface (BCI) spellers which are slow. Recent studies have shown that Magnetoencephalography (MEG) is a suitable neuroimaging modality to study neural speech decoding considering its excellent temporal resolution that can characterize the fast dynamics of speech. Gradiometers have been the preferred choice for sensor space analysis with MEG, due to their efficacy in noise suppression over magnetometers. However, recent development of optically pumped magnetometers (OPM) based wearable-MEG devices have shown great potential in future BCI applications, yet, no prior study has evaluated the performance of magnetometers in neural speech decoding. In this study, we decoded imagined and spoken speech from the MEG signals of seven healthy participants and compared the performance of magnetometers and gradiometers. Experimental results indicated that magnetometers also have the potential for neural speech decoding, although the performance was significantly lower than that obtained with gradiometers. Further, we implemented a wavelet based denoising strategy that improved the performance of both magnetometers and gradiometers significantly. These findings reconfirm that gradiometers are preferable in MEG based decoding analysis but also provide the possibility towards the use of magnetometers (or OPMs) for the development of the next-generation speech-BCIs.
Collapse
|
49
|
Contactless measurements of retinal activity using optically pumped magnetometers. Neuroimage 2021; 243:118528. [PMID: 34464740 DOI: 10.1016/j.neuroimage.2021.118528] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/20/2021] [Accepted: 08/27/2021] [Indexed: 11/23/2022] Open
Abstract
Optically pumped magnetometers (OPMs) have been adopted for the measurement of brain activity. Without the need to be cooled to cryogenic temperatures, an array of these sensors can be placed more flexibly, which allows for the recording of neuronal structures other than neocortex. Here we use eight OPM sensors to record human retinal activity following flash stimulation. We compare this magnetoretinographic (MRG) activity to the simultaneously recorded electroretinogram of the eight participants. The MRG shows the familiar flash-evoked potentials (a-wave and b-wave) and shares a highly significant amount of information with the electroretinogram (both in a simultaneous and separate measurement). We conclude that OPM sensors have the potential to become a contactless alternative to fiber electrodes for the measurement of retinal activity. Such a contactless solution can benefit both clinical and neuroscientific settings.
Collapse
|
50
|
Wittevrongel B, Holmes N, Boto E, Hill R, Rea M, Libert A, Khachatryan E, Van Hulle MM, Bowtell R, Brookes MJ. Practical real-time MEG-based neural interfacing with optically pumped magnetometers. BMC Biol 2021; 19:158. [PMID: 34376215 PMCID: PMC8356471 DOI: 10.1186/s12915-021-01073-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 04/25/2021] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Brain-computer interfaces decode intentions directly from the human brain with the aim to restore lost functionality, control external devices or augment daily experiences. To combine optimal performance with wide applicability, high-quality brain signals should be captured non-invasively. Magnetoencephalography (MEG) is a potent candidate but currently requires costly and confining recording hardware. The recently developed optically pumped magnetometers (OPMs) promise to overcome this limitation, but are currently untested in the context of neural interfacing. RESULTS In this work, we show that OPM-MEG allows robust single-trial analysis which we exploited in a real-time 'mind-spelling' application yielding an average accuracy of 97.7%. CONCLUSIONS This shows that OPM-MEG can be used to exploit neuro-magnetic brain responses in a practical and flexible manner, and opens up new avenues for a wide range of new neural interface applications in the future.
Collapse
Affiliation(s)
- Benjamin Wittevrongel
- Laboratory for Neuro- and Psychophysiology, Department of Neurosciences, KU Leuven, Leuven, Belgium. .,Leuven Institute for Artificial Intelligence (Leuven.AI), Leuven, Belgium. .,Leuven Brain Institute (LBI), Leuven, Belgium.
| | - Niall Holmes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Elena Boto
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Ryan Hill
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Molly Rea
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Arno Libert
- Laboratory for Neuro- and Psychophysiology, Department of Neurosciences, KU Leuven, Leuven, Belgium.,Leuven Brain Institute (LBI), Leuven, Belgium
| | - Elvira Khachatryan
- Laboratory for Neuro- and Psychophysiology, Department of Neurosciences, KU Leuven, Leuven, Belgium.,Leuven Brain Institute (LBI), Leuven, Belgium
| | - Marc M Van Hulle
- Laboratory for Neuro- and Psychophysiology, Department of Neurosciences, KU Leuven, Leuven, Belgium.,Leuven Institute for Artificial Intelligence (Leuven.AI), Leuven, Belgium.,Leuven Brain Institute (LBI), Leuven, Belgium
| | - Richard Bowtell
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Matthew J Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| |
Collapse
|