1
|
Schilling M, Jagdev M, Thomas H, Johnson N. Metagenomic analysis of mosquitoes from Kangerlussuaq, Greenland reveals a unique virome. Sci Rep 2025; 15:17141. [PMID: 40382365 DOI: 10.1038/s41598-025-01086-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 05/02/2025] [Indexed: 05/20/2025] Open
Abstract
Climate change is dramatically affecting vector ecology in extreme environments such as the Arctic. However, little is known about the current status of viruses of arthropod vectors located in such northerly locations. As part of a field survey on the role of wildlife in international movement of zoonotic pathogens, we sampled mammalophilic mosquitoes near the settlement of Kangerlussuaq, Greenland in July 2022 and July 2023 to investigate their virome. The majority of mosquitoes were identified as either Aedes impiger or Aedes nigripes. Metagenomic analysis of RNA extracted from species pools detected a number of novel RNA viruses belonging to a range of different virus families, including Flaviviridae, Orthomyxoviridae, Bunyavirales, Totiviridae and Rhabdoviridae. However, the sequence identities when compared to previously published, were as low as 34% at the amino acid level. Furthermore, a comparison of virome diversity between Aedes species emphasises the uniqueness of both Aedes impiger and Aedes nigripes from this secluded ecosystem. It also highlights the need to better understand the viromes of potential pathogen vectors as the impacts of climate change are experienced in such northerly ecosystems.
Collapse
Affiliation(s)
- Mirjam Schilling
- Virology Department, Animal and Plant Health Agency, Woodham Lane, Addlestone, KT15 3 NB, Surrey, UK.
| | - Madhujot Jagdev
- Virology Department, Animal and Plant Health Agency, Woodham Lane, Addlestone, KT15 3 NB, Surrey, UK
| | - Huw Thomas
- Greenland White-fronted Goose Study group/VEO Project, Bristol, UK
| | - Nicholas Johnson
- Virology Department, Animal and Plant Health Agency, Woodham Lane, Addlestone, KT15 3 NB, Surrey, UK
| |
Collapse
|
2
|
Chen S, Fang Y, Fujita R, Khater EIM, Li Y, Wang W, Qian P, Huang L, Guo Z, Zhang Y, Li S. An Exploration of the Viral Coverage of Mosquito Viromes Using Meta-Viromic Sequencing: A Systematic Review and Meta-Analysis. Microorganisms 2024; 12:1899. [PMID: 39338573 PMCID: PMC11434593 DOI: 10.3390/microorganisms12091899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/08/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
The aim of this review was to delve into the extent of mosquito virome coverage (proportion of viral reads) via meta-viromic sequencing and uncover potential factors of heterogeneity that could impact this coverage. Data sources were PubMed, Web of Science, Embase, Scopus, Science-Direct, Google Scholar, and the China National Knowledge Infrastructure. Pooled coverage was estimated using random-effects modeling, and subgroup analyses further reveal potential heterogeneous factors. Within the three mosquito genera studied, Culex exhibited the highest pooled viral coverage of mosquito viromes at 7.09% (95% CI: 3.44-11.91%), followed by Anopheles at 5.28% (95% CI: 0.45-14.93%), and Aedes at 2.11% (95% CI: 0.58-7.66%). Subgroup analyses showed that multiple processing methods significantly affected the viral coverage of mosquito viromes, especially pre-treatment of mosquito samples with saline buffer/medium and antibiotics prior to DNase/RNase treatment and removal of the host genome prior to RNA library construction. In conclusion, the results of this study demonstrate that the viral coverage of mosquito viromes varies between mosquito genera and that pre-treatment of mosquito samples with saline buffer/medium and antibiotics before DNase/RNase treatment and removing host genomes prior to RNA library construction are critical for the detection of RNA viruses in mosquito vectors using meta-viromic sequencing.
Collapse
Affiliation(s)
- Shenglin Chen
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai 200025, China
| | - Yuan Fang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai 200025, China
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ryosuke Fujita
- Laboratory of Sanitary Entomology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Emad I M Khater
- Department of Entomology, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
| | - Yuanyuan Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai 200025, China
| | - Wenya Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai 200025, China
| | - Peijun Qian
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai 200025, China
| | - Lulu Huang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai 200025, China
| | - Zhaoyu Guo
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai 200025, China
| | - Yi Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai 200025, China
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shizhu Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai 200025, China
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
3
|
Da Silva AG, Bach E, Ellwanger JH, Chies JAB. Tips and tools to obtain and assess mosquito viromes. Arch Microbiol 2024; 206:132. [PMID: 38436750 DOI: 10.1007/s00203-023-03813-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/06/2023] [Accepted: 12/22/2023] [Indexed: 03/05/2024]
Abstract
Due to their vectorial capacity, mosquitoes (Diptera: Culicidae) receive special attention from health authorities and entomologists. These cosmopolitan insects are responsible for the transmission of many viral diseases, such as dengue and yellow fever, causing huge impacts on human health and justifying the intensification of research focused on mosquito-borne diseases. In this context, the study of the virome of mosquitoes can contribute to anticipate the emergence and/or the reemergence of infectious diseases. The assessment of mosquito viromes also contributes to the surveillance of a wide variety of viruses found in these insects, allowing the early detection of pathogens with public health importance. However, the study of mosquito viromes can be challenging due to the number and complexities of steps involved in this type of research. Therefore, this article aims to describe, in a straightforward and simplified way, the steps necessary for obtention and assessment of mosquito viromes. In brief, this article explores: the capture and preservation of specimens; sampling strategies; treatment of samples before DNA/RNA extraction; extraction methodologies; enrichment and purification processes; sequencing choices; and bioinformatics analysis.
Collapse
Affiliation(s)
- Amanda Gonzalez Da Silva
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Postgraduate Program in Genetics and Molecular Biology (PPGBM), Universidade Federal do Rio Grande do Sul (UFRGS), UFRGS. Av. Bento Gonçalves, 9500, Porto Alegre, Rio Grande do Sul, Brazil
| | - Evelise Bach
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Postgraduate Program in Genetics and Molecular Biology (PPGBM), Universidade Federal do Rio Grande do Sul (UFRGS), UFRGS. Av. Bento Gonçalves, 9500, Porto Alegre, Rio Grande do Sul, Brazil
| | - Joel Henrique Ellwanger
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Postgraduate Program in Genetics and Molecular Biology (PPGBM), Universidade Federal do Rio Grande do Sul (UFRGS), UFRGS. Av. Bento Gonçalves, 9500, Porto Alegre, Rio Grande do Sul, Brazil
| | - José Artur Bogo Chies
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Postgraduate Program in Genetics and Molecular Biology (PPGBM), Universidade Federal do Rio Grande do Sul (UFRGS), UFRGS. Av. Bento Gonçalves, 9500, Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
4
|
Gómez M, Martínez D, Páez-Triana L, Luna N, Ramírez A, Medina J, Cruz-Saavedra L, Hernández C, Castañeda S, Bohórquez Melo R, Suarez LA, Palma-Cuero M, Murcia LM, González Páez L, Estrada Bustos L, Medina MA, Ariza Campo K, Padilla HD, Zamora Flórez A, De las Salas JL, Muñoz M, Ramírez JD. Influence of dengue virus serotypes on the abundance of Aedes aegypti insect-specific viruses (ISVs). J Virol 2024; 98:e0150723. [PMID: 38095414 PMCID: PMC10804971 DOI: 10.1128/jvi.01507-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/13/2023] [Indexed: 01/24/2024] Open
Abstract
A comprehensive understanding of the virome in mosquito vectors is crucial for assessing the potential transmission of viral agents, designing effective vector control strategies, and advancing our knowledge of insect-specific viruses (ISVs). In this study, we utilized Oxford Nanopore Technologies metagenomics to characterize the virome of Aedes aegypti mosquitoes collected in various regions of Colombia, a country hyperendemic for dengue virus (DENV). Analyses were conducted on groups of insects with previous natural DENV infection (DENV-1 and DENV-2 serotypes), as well as mosquito samples that tested negative for virus infection (DENV-negative). Our findings indicate that the Ae. aegypti virome exhibits a similar viral composition at the ISV family and species levels in both DENV-positive and DENV-negative samples across all study sites. However, differences were observed in the relative abundance of viral families such as Phenuiviridae, Partitiviridae, Flaviviridae, Rhabdoviridae, Picornaviridae, Bromoviridae, and Virgaviridae, depending on the serotype of DENV-1 and DENV-2. In addition, ISVs are frequently found in the core virome of Ae. aegypti, such as Phasi Charoen-like phasivirus (PCLV), which was the most prevalent and showed variable abundance in relation to the presence of specific DENV serotypes. Phylogenetic analyses of the L, M, and S segments of the PCLV genome are associated with sequences from different regions of the world but show close clustering with sequences from Brazil and Guadeloupe, indicating a shared evolutionary relationship. The profiling of the Ae. aegypti virome in Colombia presented here improves our understanding of viral diversity within mosquito vectors and provides information that opens the way to possible connections between ISVs and arboviruses. Future studies aimed at deepening our understanding of the mechanisms underlying the interactions between ISVs and DENV serotypes in Ae. aegypti could provide valuable information for the design of effective vector-borne viral disease control and prevention strategies.IMPORTANCEIn this study, we employed a metagenomic approach to characterize the virome of Aedes aegypti mosquitoes, with and without natural DENV infection, in several regions of Colombia. Our findings indicate that the mosquito virome is predominantly composed of insect-specific viruses (ISVs) and that infection with different DENV serotypes (DENV-1 and DENV-2) could lead to alterations in the relative abundance of viral families and species constituting the core virome in Aedes spp. The study also sheds light on the identification of the genome and evolutionary relationships of the Phasi Charoen-like phasivirus in Ae. aegypti in Colombia, a widespread ISV in areas with high DENV incidence.
Collapse
Affiliation(s)
- Marcela Gómez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
- Grupo de Investigación en Ciencias Básicas (NÚCLEO), Facultad de Ciencias e Ingeniería, Universidad de Boyacá, Tunja, Colombia
| | - David Martínez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
| | - Luisa Páez-Triana
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
| | - Nicolás Luna
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
| | - Angie Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
| | - Julián Medina
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
| | - Lissa Cruz-Saavedra
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
| | - Carolina Hernández
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
- Centro de Tecnología en Salud (CETESA), Innovaseq SAS, Bogotá, Colombia
| | - Sergio Castañeda
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
| | - Ramiro Bohórquez Melo
- Grupo de Estudios en Salud Pública de la Amazonía, Laboratorio de Salud Pública de Amazonas, Leticia, Colombia
| | - Luis Alejandro Suarez
- Grupo de Estudios en Salud Pública de la Amazonía, Laboratorio de Salud Pública de Amazonas, Leticia, Colombia
| | - Mónica Palma-Cuero
- Grupo de Estudios en Salud Pública de la Amazonía, Laboratorio de Salud Pública de Amazonas, Leticia, Colombia
| | - Luz Mila Murcia
- Grupo de Estudios en Salud Pública de la Amazonía, Laboratorio de Salud Pública de Amazonas, Leticia, Colombia
| | | | | | | | | | | | | | | | - Marina Muñoz
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
- Department of Pathology, Molecular and Cell-Based Medicine, Molecular Microbiology Laboratory, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
5
|
Harikrishnan S, Sudarshan S, Sivasubramani K, Nandini MS, Narenkumar J, Ramachandran V, Almutairi BO, Arunkumar P, Rajasekar A, Jayalakshmi S. Larvicidal and anti-termite activities of microbial biosurfactant produced by Enterobacter cloacae SJ2 isolated from marine sponge Clathria sp. Sci Rep 2023; 13:15153. [PMID: 37704703 PMCID: PMC10499797 DOI: 10.1038/s41598-023-42475-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 09/11/2023] [Indexed: 09/15/2023] Open
Abstract
The widespread use of synthetic pesticides has resulted in a number of issues, including a rise in insecticide-resistant organisms, environmental degradation, and a hazard to human health. As a result, new microbial derived insecticides that are safe for human health and the environment are urgently needed. In this study, rhamnolipid biosurfactants produced from Enterobacter cloacae SJ2 was used to evaluate the toxicity towards mosquito larvae (Culex quinquefasciatus) and termites (Odontotermes obesus). Results showed dose dependent mortality rate was observed between the treatments. The 48 h LC50 (median lethal concentration) values of the biosurfactant were determined for termite and mosquito larvae following the non-linear regression curve fit method. Results showed larvicidal activity and anti-termite activity of biosurfactants with 48 h LC50 value (95% confidence interval) of 26.49 mg/L (25.40 to 27.57) and 33.43 mg/L (31.09 to 35.68), respectively. According to a histopathological investigation, the biosurfactant treatment caused substantial tissue damage in cellular organelles of larvae and termites. The findings of this study suggest that the microbial biosurfactant produced by E. cloacae SJ2 is an excellent and potentially effective agent for controlling Cx. quinquefasciatus and O. obesus.
Collapse
Affiliation(s)
- Sekar Harikrishnan
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, Tamil Nadu, 608502, India.
| | - Shanmugam Sudarshan
- Department of Aquatic Environment Management, TNJFU- Dr. M.G.R Fisheries College and Research Institute, Thalainayeru, Tamil Nadu, 614712, India
| | - Kandasamy Sivasubramani
- Department of Microbiology, Faculty of Science, Annamalai University, Annamalai Nagar, Chidambaram, Tamil Nadu, India
| | - M S Nandini
- Department of Microbiology, Sree Balaji Medical College and Hospital, Chennai, Tamil Nadu, India
| | - Jayaraman Narenkumar
- Department of Environmental & Water Resources Engineering, School of Civil Engineering (SCE), Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| | - Vasudevan Ramachandran
- Department of Medical Sciences, University College of MAIWP International, Taman Batu Muda, 68100, Batu Caves, Kuala Lumpur, Malaysia
- Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Bader O Almutairi
- Department of Zoology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Paulraj Arunkumar
- School of Chemical Engineering, Chonnam National University, Gwangju, South Korea
| | - Aruliah Rajasekar
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, Tamil Nadu, 632115, India
| | - Singaram Jayalakshmi
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, Tamil Nadu, 608502, India
| |
Collapse
|
6
|
Mohamed Ali S, Rakotonirina A, Heng K, Jacquemet E, Volant S, Temmam S, Boyer S, Eloit M. Longitudinal Study of Viral Diversity Associated with Mosquito Species Circulating in Cambodia. Viruses 2023; 15:1831. [PMID: 37766237 PMCID: PMC10535147 DOI: 10.3390/v15091831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Arthropod-borne viruses (arboviruses) pose a significant global health threat and are primarily transmitted by mosquitoes. In Cambodia, there are currently 290 recorded mosquito species, with at least 17 of them considered potential vectors of arboviruses to humans. Effective surveillance of virome profiles in mosquitoes from Cambodia is vital, as it could help prevent and control arbovirus diseases in a country where epidemics occur frequently. The objective of this study was to identify and characterize the viral diversity in mosquitoes collected during a one-year longitudinal study conducted in various habitats across Cambodia. For this purpose, we used a metatranscriptomics approach and detected the presence of chikungunya virus in the collected mosquitoes. Additionally, we identified viruses categorized into 26 taxa, including those known to harbor arboviruses such as Flaviviridae and Orthomyxoviridae, along with a group of viruses not yet taxonomically identified and provisionally named "unclassified viruses". Interestingly, the taxa detected varied in abundance and composition depending on the mosquito genus, with no significant influence of the collection season. Furthermore, most of the identified viruses were either closely related to viruses found exclusively in insects or represented new viruses belonging to the Rhabdoviridae and Birnaviridae families. The transmission capabilities of these novel viruses to vertebrates remain unknown.
Collapse
Affiliation(s)
- Souand Mohamed Ali
- Pathogen Discovery Laboratory, Institut Pasteur, Université de Paris, 75015 Paris, France; (S.M.A.); (S.T.)
| | - Antsa Rakotonirina
- Medical and Veterinary Entomology Unit, Institut Pasteur du Cambodge, Phnom Penh 12201, Cambodia; (A.R.); (S.B.)
| | - Kimly Heng
- Medical and Veterinary Entomology Unit, Institut Pasteur du Cambodge, Phnom Penh 12201, Cambodia; (A.R.); (S.B.)
| | - Elise Jacquemet
- Bioinformatics and Biostatistics Hub, Institut Pasteur, Université Paris Cité, 75015 Paris, France (S.V.)
| | - Stevenn Volant
- Bioinformatics and Biostatistics Hub, Institut Pasteur, Université Paris Cité, 75015 Paris, France (S.V.)
| | - Sarah Temmam
- Pathogen Discovery Laboratory, Institut Pasteur, Université de Paris, 75015 Paris, France; (S.M.A.); (S.T.)
| | - Sebastien Boyer
- Medical and Veterinary Entomology Unit, Institut Pasteur du Cambodge, Phnom Penh 12201, Cambodia; (A.R.); (S.B.)
- Ecology and Emergence of Arthropod-Borne Diseases, Institut Pasteur, 75015 Paris, France
| | - Marc Eloit
- Pathogen Discovery Laboratory, Institut Pasteur, Université de Paris, 75015 Paris, France; (S.M.A.); (S.T.)
- Ecole Nationale Vétérinaire d’Alfort, University of Paris-Est, 94704 Maisons-Alfort, France
| |
Collapse
|
7
|
Ferreira QR, Lemos FFB, Moura MN, Nascimento JODS, Novaes AF, Barcelos IS, Fernandes LA, Amaral LSDB, Barreto FK, de Melo FF. Role of the Microbiome in Aedes spp. Vector Competence: What Do We Know? Viruses 2023; 15:779. [PMID: 36992487 PMCID: PMC10051417 DOI: 10.3390/v15030779] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/03/2023] [Accepted: 03/15/2023] [Indexed: 03/31/2023] Open
Abstract
Aedes aegypti and Aedes albopictus are the vectors of important arboviruses: dengue fever, chikungunya, Zika, and yellow fever. Female mosquitoes acquire arboviruses by feeding on the infected host blood, thus being able to transmit it to their offspring. The intrinsic ability of a vector to infect itself and transmit a pathogen is known as vector competence. Several factors influence the susceptibility of these females to be infected by these arboviruses, such as the activation of the innate immune system through the Toll, immunodeficiency (Imd), JAK-STAT pathways, and the interference of specific antiviral response pathways of RNAi. It is also believed that the presence of non-pathogenic microorganisms in the microbiota of these arthropods could influence this immune response, as it provides a baseline activation of the innate immune system, which may generate resistance against arboviruses. In addition, this microbiome has direct action against arboviruses, mainly due to the ability of Wolbachia spp. to block viral genome replication, added to the competition for resources within the mosquito organism. Despite major advances in the area, studies are still needed to evaluate the microbiota profiles of Aedes spp. and their vector competence, as well as further exploration of the individual roles of microbiome components in activating the innate immune system.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Fernanda Khouri Barreto
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Brazil
| | - Fabrício Freire de Melo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Brazil
| |
Collapse
|
8
|
Moonen JP, Schinkel M, van der Most T, Miesen P, van Rij RP. Composition and global distribution of the mosquito virome - A comprehensive database of insect-specific viruses. One Health 2023; 16:100490. [PMID: 36817977 PMCID: PMC9929601 DOI: 10.1016/j.onehlt.2023.100490] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
Mosquitoes are vectors for emerging and re-emerging infectious viral diseases of humans, livestock and other animals. In addition to these arthropod-borne (arbo)viruses, mosquitoes are host to an array of insect-specific viruses, collectively referred to as the mosquito virome. Mapping the mosquito virome and understanding if and how its composition modulates arbovirus transmission is critical to understand arboviral disease emergence and outbreak dynamics. In recent years, next-generation sequencing as well as PCR and culture-based methods have been extensively used to identify mosquito-associated viruses, providing insights into virus ecology and evolution. Until now, the large amount of mosquito virome data, specifically those acquired by metagenomic sequencing, has not been comprehensively integrated. We have constructed a searchable database of insect-specific viruses associated with vector mosquitoes from 175 studies, published between October 2000 and February 2022. We identify the most frequently detected and widespread viruses of the Culex, Aedes and Anopheles mosquito genera and report their global distribution. In addition, we highlight the challenges of extracting and integrating published virome data and we propose that a standardized reporting format will facilitate data interpretation and re-use by other scientists. We expect our comprehensive database, summarizing mosquito virome data collected over 20 years, to be a useful resource for future studies.
Collapse
|
9
|
Olmo RP, Todjro YMH, Aguiar ERGR, de Almeida JPP, Ferreira FV, Armache JN, de Faria IJS, Ferreira AGA, Amadou SCG, Silva ATS, de Souza KPR, Vilela APP, Babarit A, Tan CH, Diallo M, Gaye A, Paupy C, Obame-Nkoghe J, Visser TM, Koenraadt CJM, Wongsokarijo MA, Cruz ALC, Prieto MT, Parra MCP, Nogueira ML, Avelino-Silva V, Mota RN, Borges MAZ, Drumond BP, Kroon EG, Recker M, Sedda L, Marois E, Imler JL, Marques JT. Mosquito vector competence for dengue is modulated by insect-specific viruses. Nat Microbiol 2023; 8:135-149. [PMID: 36604511 DOI: 10.1038/s41564-022-01289-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/16/2022] [Indexed: 01/07/2023]
Abstract
Aedes aegypti and A. albopictus mosquitoes are the main vectors for dengue virus (DENV) and other arboviruses, including Zika virus (ZIKV). Understanding the factors that affect transmission of arboviruses from mosquitoes to humans is a priority because it could inform public health and targeted interventions. Reasoning that interactions among viruses in the vector insect might affect transmission, we analysed the viromes of 815 urban Aedes mosquitoes collected from 12 countries worldwide. Two mosquito-specific viruses, Phasi Charoen-like virus (PCLV) and Humaita Tubiacanga virus (HTV), were the most abundant in A. aegypti worldwide. Spatiotemporal analyses of virus circulation in an endemic urban area revealed a 200% increase in chances of having DENV in wild A. aegypti mosquitoes when both HTV and PCLV were present. Using a mouse model in the laboratory, we showed that the presence of HTV and PCLV increased the ability of mosquitoes to transmit DENV and ZIKV to a vertebrate host. By transcriptomic analysis, we found that in DENV-infected mosquitoes, HTV and PCLV block the downregulation of histone H4, which we identify as an important proviral host factor in vivo.
Collapse
Affiliation(s)
- Roenick P Olmo
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Université de Strasbourg, CNRS UPR9022, INSERM U1257, Strasbourg, France
| | - Yaovi M H Todjro
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Eric R G R Aguiar
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Department of Biological Sciences (DCB), Center of Biotechnology and Genetics (CBG), State University of Santa Cruz (UESC), Ilhéus, Brazil
| | - João Paulo P de Almeida
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Flávia V Ferreira
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Juliana N Armache
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Isaque J S de Faria
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Alvaro G A Ferreira
- Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor, Instituto René Rachou-Fiocruz, Belo Horizonte, Minas Gerais, Brazil
| | - Siad C G Amadou
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ana Teresa S Silva
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Kátia P R de Souza
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ana Paula P Vilela
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Antinea Babarit
- Université de Strasbourg, CNRS UPR9022, INSERM U1257, Strasbourg, France
| | - Cheong H Tan
- Environmental Health Institute, Vector Biology and Control Division, National Environment Agency, Singapore, Singapore
| | - Mawlouth Diallo
- Pôle de Zoologie Médicale, Institut Pasteur de Dakar, Dakar, Senegal
| | - Alioune Gaye
- Pôle de Zoologie Médicale, Institut Pasteur de Dakar, Dakar, Senegal
| | - Christophe Paupy
- Maladies Infectieuses et Vecteurs: Écologie, Génétique, Évolution et Contrôle (MIVEGEC); Université de Montpellier, Institut de Recherche pour le Développement, CNRS, Montpellier, France
| | - Judicaël Obame-Nkoghe
- Laboratoire de Biologie Moléculaire et Cellulaire, Département de Biologie, Université des Sciences et Techniques de Masuku, Franceville, Gabon.,Écologie des Systèmes Vectoriels, Centre Interdisciplinaire de Recherches Médicales de Franceville, Franceville, Gabon
| | - Tessa M Visser
- Laboratory of Entomology, Wageningen University and Research, Wageningen, the Netherlands
| | | | | | - Ana Luiza C Cruz
- Department of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Mariliza T Prieto
- Secretaria Municipal de Saúde, Seção de Controle de Vetores, Santos City Hall, Santos, Brazil
| | - Maisa C P Parra
- Laboratory of Research in Virology, Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto, Brazil
| | - Maurício L Nogueira
- Laboratory of Research in Virology, Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto, Brazil.,Departament of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Vivian Avelino-Silva
- Department of Infectious and Parasitic Diseases, Faculdade de Medicina da Universidade de São Paulo (FMUSP), Cerqueira Cesar, Brazil
| | - Renato N Mota
- Health Surveillance (Zoonosis Control), Brumadinho City Hall, Brumadinho, Brazil
| | - Magno A Z Borges
- Center for Biological and Health Sciences, Universidade Estadual de Montes Claros, Montes Claros, Brazil
| | - Betânia P Drumond
- Department of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Erna G Kroon
- Department of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Mario Recker
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, UK.,Institute of Tropical Medicine, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Luigi Sedda
- Lancaster Medical School, Lancaster University, Lancaster, UK
| | - Eric Marois
- Université de Strasbourg, CNRS UPR9022, INSERM U1257, Strasbourg, France
| | - Jean-Luc Imler
- Université de Strasbourg, CNRS UPR9022, INSERM U1257, Strasbourg, France
| | - João T Marques
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil. .,Université de Strasbourg, CNRS UPR9022, INSERM U1257, Strasbourg, France.
| |
Collapse
|
10
|
Abundance of Phasi-Charoen-like virus in Aedes aegypti mosquito populations in different states of India. PLoS One 2022; 17:e0277276. [PMID: 36490242 PMCID: PMC9733876 DOI: 10.1371/journal.pone.0277276] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 10/24/2022] [Indexed: 12/13/2022] Open
Abstract
Mosquitoes are known to harbor a large number of insect specific viruses (ISV) in addition to viruses of public health importance. These ISVs are highly species specific and are non-pathogenic to humans or domestic animals. However, there is a potential threat of these ISVs evolving into human pathogens by genome alterations. Some ISVs are known to modulate replication of pathogenic viruses by altering the susceptibility of vector mosquitoes to pathogenic viruses, thereby either inhibiting or enhancing transmission of the latter. In the present study, we report predominance of Phasi Charoen-like virus (PCLV, Family: Phenuviridae) contributing to >60% of the total reads in Aedes aegypti mosquitoes collected from Pune district of Maharashtra state using next generation sequencing based metagenomic analysis of viromes. Similar results were also obtained with mosquitoes from Assam, Tamil Nadu and Karnataka states of India. Comparison of Pune mosquito sequences with PCLV Rio (Brazil) isolate showed 98.90%, 99.027% and 98.88% homologies in the S, M and L segments respectively indicating less genetic heterogeneity of PCLV. The study also demonstrated occurrence of transovarial transmission as seen by detection of PCLV in eggs, larvae, pupae and male mosquitoes. Ae. aegypti mosquitoes collected from Pune also showed a large number of reads for viruses belonging to Baculoviridae, Rhabdoviridae, Genomoviridae and Bunyaviridae families. The role of PCLV in the replication of dengue and chikungunya virus is yet not clear. It warrants further studies to know the significance of PCLV and other ISVs on the replication and transmission of Ae. aegypti borne pathogenic viruses, especially in the absence of prophylactics or therapeutics.
Collapse
|
11
|
Yang C, Xie W, Zhang H, Xie W, Tian T, Qin Z. Recent two-year advances in anti-dengue small-molecule inhibitors. Eur J Med Chem 2022; 243:114753. [PMID: 36167010 DOI: 10.1016/j.ejmech.2022.114753] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/05/2022] [Accepted: 09/05/2022] [Indexed: 11/04/2022]
Abstract
Dengue is an acute tropical infectious disease transmitted by mosquitoes, which has posed a major challenge to global public health. Unfortunately, there is a lack of clinically proven dengue-specific drugs for its prevention and treatment. As the pathogenesis of dengue has not been fully elucidated, the development of specific drugs is seriously hindered. This article briefly describes the pathogenesis of dengue fever, the molecular characteristics, and epidemiology of dengue virus, and focuses on the potential small-molecule inhibitors of dengue virus, including on-target and multi-targeted inhibitors, which have been reported in the past two years.
Collapse
Affiliation(s)
- Chao Yang
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macao University of Science and Technology, Macao, 999078, China
| | - Wansheng Xie
- Hainan Center for Drug and Medical Device Evaluation and Service, Hainan Provincial Drug Administration, Haikou, Hainan, 570206, China
| | - Heqian Zhang
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, Guangdong, 519087, China
| | - Wenjian Xie
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, PR China
| | - Tiantian Tian
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, Guangdong, 519087, China.
| | - Zhiwei Qin
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, Guangdong, 519087, China.
| |
Collapse
|
12
|
Gómez M, Martinez D, Muñoz M, Ramírez JD. Aedes aegypti and Ae. albopictus microbiome/virome: new strategies for controlling arboviral transmission? Parasit Vectors 2022; 15:287. [PMID: 35945559 PMCID: PMC9364528 DOI: 10.1186/s13071-022-05401-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/14/2022] [Indexed: 02/07/2023] Open
Abstract
Aedes aegypti and Aedes albopictus are the main vectors of highly pathogenic viruses for humans, such as dengue (DENV), chikungunya (CHIKV), and Zika (ZIKV), which cause febrile, hemorrhagic, and neurological diseases and remain a major threat to global public health. The high ecological plasticity, opportunistic feeding patterns, and versatility in the use of urban and natural breeding sites of these vectors have favored their dispersal and adaptation in tropical, subtropical, and even temperate zones. Due to the lack of available treatments and vaccines, mosquito population control is the most effective way to prevent arboviral diseases. Resident microorganisms play a crucial role in host fitness by preventing or enhancing its vectorial ability to transmit viral pathogens. High-throughput sequencing and metagenomic analyses have advanced our understanding of the composition and functionality of the microbiota of Aedes spp. Interestingly, shotgun metagenomics studies have established that mosquito vectors harbor a highly conserved virome composed of insect-specific viruses (ISV). Although ISVs are not infectious to vertebrates, they can alter different phases of the arboviral cycle, interfering with transmission to the human host. Therefore, this review focuses on the description of Ae. aegypti and Ae. albopictus as vectors susceptible to infection by viral pathogens, highlighting the role of the microbiota-virome in vectorial competence and its potential in control strategies for new emerging and re-emerging arboviruses.
Collapse
Affiliation(s)
- Marcela Gómez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia.,Grupo de Investigación en Ciencias Básicas (NÚCLEO) Facultad de Ciencias e Ingeniería, Universidad de Boyacá, Tunja, Colombia
| | - David Martinez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Marina Muñoz
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia. .,Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
13
|
Calle-Tobón A, Pérez-Pérez J, Forero-Pineda N, Chávez OT, Rojas-Montoya W, Rúa-Uribe G, Gómez-Palacio A. Local-scale virome depiction in Medellín, Colombia, supports significant differences between Aedes aegypti and Aedes albopictus. PLoS One 2022; 17:e0263143. [PMID: 35895627 PMCID: PMC9328524 DOI: 10.1371/journal.pone.0263143] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 07/04/2022] [Indexed: 11/19/2022] Open
Abstract
Aedes spp. comprise the primary group of mosquitoes that transmit arboviruses such as dengue, Zika, and chikungunya viruses to humans, and thus these insects pose a significant burden on public health worldwide. Advancements in next-generation sequencing and metagenomics have expanded our knowledge on the richness of RNA viruses harbored by arthropods such as Ae. aegypti and Ae. albopictus. Increasing evidence suggests that vector competence can be modified by the microbiome (comprising both bacteriome and virome) of mosquitoes present in endemic zones. Using an RNA-seq-based metataxonomic approach, this study determined the virome structure, Wolbachia presence and mitochondrial diversity of field-caught Ae. aegypti and Ae. albopictus mosquitoes in Medellín, Colombia, a municipality with a high incidence of mosquito-transmitted arboviruses. The two species are sympatric, but their core viromes differed considerably in richness, diversity, and abundance; although the community of viral species identified was large and complex, the viromes were dominated by few virus species. BLAST searches of assembled contigs suggested that at least 17 virus species (16 of which are insect-specific viruses [ISVs]) infect the Ae. aegypti population. Dengue virus 3 was detected in one sample and it was the only pathogenic virus detected. In Ae. albopictus, up to 11 ISVs and one plant virus were detected. Therefore, the virome composition appears to be species-specific. The bacterial endosymbiont Wolbachia was identified in all Ae. albopictus samples and in some Ae. aegypti samples collected after 2017. The presence of Wolbachia sp. in Ae. aegypti was not related to significant changes in the richness, diversity, or abundance of this mosquito’s virome, although it was related to an increase in the abundance of Aedes aegypti To virus 2 (Metaviridae). The mitochondrial diversity of these mosquitoes suggested that the Ae. aegypti population underwent a change that started in the second half of 2017, which coincides with the release of Wolbachia-infected mosquitoes in Medellín, indicating that the population of wMel-infected mosquitoes released has introduced new alleles into the wild Ae. aegypti population of Medellín. However, additional studies are required on the dispersal speed and intergenerational stability of wMel in Medellín and nearby areas as well as on the introgression of genetic variants in the native mosquito population.
Collapse
Affiliation(s)
- Arley Calle-Tobón
- Grupo Entomología Médica–GEM, Universidad de Antioquia, Medellín, Colombia
- * E-mail:
| | | | - Nicolás Forero-Pineda
- Laboratorio de Investigación en Genética Evolutiva–LIGE, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Boyacá, Colombia
| | - Omar Triana Chávez
- Grupo de Biología y Control de Enfermedades Infecciosas–BCEI, Universidad de Antioquia, Medellín, Colombia
| | | | | | - Andrés Gómez-Palacio
- Laboratorio de Investigación en Genética Evolutiva–LIGE, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Boyacá, Colombia
| |
Collapse
|
14
|
Antiviral RNAi Mechanisms to Arboviruses in Mosquitoes: microRNA Profile of Aedes aegypti and Culex quinquefasciatus from Grenada, West Indies. Appl Microbiol 2022. [DOI: 10.3390/applmicrobiol2020029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mosquito-borne arboviruses, such as dengue virus, West Nile virus, Zika virus and yellow fever virus, impose a tremendous cost on the health of populations around the world. As a result, much effort has gone into the study of the impact of these viruses on human infections. Comparatively less effort, however, has been made to study the way these viruses interact with mosquitoes themselves. As ingested arboviruses infect their midgut and subsequently other tissue, the mosquito mounts a multifaceted innate immune response. RNA interference, the central intracellular antiviral defense mechanism in mosquitoes and other invertebrates can be induced and modulated through outside triggers (small RNAs) and treatments (transgenesis or viral-vector delivery). Accordingly, modulation of this facet of the mosquito’s immune system would thereby suggest a practical strategy for vector control. However, this requires a detailed understanding of mosquitoes’ endogenous small RNAs and their effects on the mosquito and viral proliferation. This paper provides an up-to-date overview of the mosquito’s immune system along with novel data describing miRNA profiles for Aedes aegypti and Culex quinquefasiatus in Grenada, West Indies.
Collapse
|
15
|
Abstract
Increasing data volumes on high-throughput sequencing instruments such as the NovaSeq 6000 leads to long computational bottlenecks for common metagenomics data preprocessing tasks such as adaptor and primer trimming and host removal. Here, we test whether faster recently developed computational tools (Fastp and Minimap2) can replace widely used choices (Atropos and Bowtie2), obtaining dramatic accelerations with additional sensitivity and minimal loss of specificity for these tasks. Furthermore, the taxonomic tables resulting from downstream processing provide biologically comparable results. However, we demonstrate that for taxonomic assignment, Bowtie2’s specificity is still required. We suggest that periodic reevaluation of pipeline components, together with improvements to standardized APIs to chain them together, will greatly enhance the efficiency of common bioinformatics tasks while also facilitating incorporation of further optimized steps running on GPUs, FPGAs, or other architectures. We also note that a detailed exploration of available algorithms and pipeline components is an important step that should be taken before optimization of less efficient algorithms on advanced or nonstandard hardware. IMPORTANCE In shotgun metagenomics studies that seek to relate changes in microbial DNA across samples, processing the data on a computer often takes longer than obtaining the data from the sequencing instrument. Recently developed software packages that perform individual steps in the pipeline of data processing in principle offer speed advantages, but in practice they may contain pitfalls that prevent their use, for example, they may make approximations that introduce unacceptable errors in the data. Here, we show that differences in choices of these components can speed up overall data processing by 5-fold or more on the same hardware while maintaining a high degree of correctness, greatly reducing the time taken to interpret results. This is an important step for using the data in clinical settings, where the time taken to obtain the results may be critical for guiding treatment.
Collapse
|
16
|
Munivenkatappa A, Nyayanit DA, Yadav PD, Rangappa M, Patil S, Majumdar T, Mohandas S, Sinha DP, Jayaswamy MM, OmPrakash P. Identification of Phasi Charoen-Like Phasivirus in Field Collected Aedes aegypti from Karnataka State, India. Vector Borne Zoonotic Dis 2021; 21:900-909. [PMID: 34520272 DOI: 10.1089/vbz.2021.0011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: A wide range of insect-specific viruses (ISVs) have been reported worldwide. There are no studies from India that have reported ISVs. The current study describes the identification of Phasi Charoen-like virus (PCLV) from Aedes aegypti mosquito-pools from six districts of Karnataka state, India. Materials and Methods: During the Chikungunya virus (CHIKV) outbreak in the Bangalore Urban district in 2019, using conventional PCR, it was found that both human and mosquito samples were positive for CHIKV. For retrieve the complete genome sequence, mosquito samples were subjected to next generation sequencing (NGS) analysis and PCLV was also found. During 2019, as part of a vector-borne disease surveillance, we received 50 mosquito pool samples from 6 districts of the state, all of them were subjected to NGS to identify PCLV. Results: The A. aegypti mosquito-pools samples were subjected to the NGS platform that led to identification of an ISV, PCLV. PCLV was identified in 26 A. aegypti mosquito-pools collected from 6 districts. We also found mixed infection of PCLV with the Dengue virus (DENV; genotypes 1 and 3) and CHIKV from five pools. The nucleotide identity for the L gene of Indian PCLV sequences ranged between 97.1% and 98.3% in comparison with the Thailand sequences. Conclusions: To the best of our knowledge, this is the first report of PCLV dual infection with DENV and CHIKV in India. The present study confirms the presence of PCLV in A. aegypti mosquitoes from Karnataka state. The study adds India in the global geographical distribution of PCLV.
Collapse
Affiliation(s)
- Ashok Munivenkatappa
- Indian Council of Medical Research (ICMR)-National Institute of Virology, Bangalore, Karnataka, India
| | - Dimpal A Nyayanit
- Indian Council of Medical Research (ICMR)-National Institute of Virology, Pune, Maharashtra, India
| | - Pragya D Yadav
- Indian Council of Medical Research (ICMR)-National Institute of Virology, Pune, Maharashtra, India
| | - Manjushree Rangappa
- National Anti-Malaria Programme Bangalore Zone, Directorate of Health and Family Welfare Services, Bangalore, Karnataka, India
| | - Savita Patil
- Indian Council of Medical Research (ICMR)-National Institute of Virology, Pune, Maharashtra, India
| | - Triparna Majumdar
- Indian Council of Medical Research (ICMR)-National Institute of Virology, Pune, Maharashtra, India
| | - Sreelekshmy Mohandas
- Indian Council of Medical Research (ICMR)-National Institute of Virology, Pune, Maharashtra, India
| | - Diamond Prakash Sinha
- Indian Council of Medical Research (ICMR)-National Institute of Virology, Bangalore, Karnataka, India
| | - Manjunath M Jayaswamy
- Indian Council of Medical Research (ICMR)-National Institute of Virology, Bangalore, Karnataka, India
| | - Patil OmPrakash
- Directorate of Health and Family Welfare Services, Bangalore, Karnataka, India
| |
Collapse
|
17
|
Ali R, Jayaraj J, Mohammed A, Chinnaraja C, Carrington CVF, Severson DW, Ramsubhag A. Characterization of the virome associated with Haemagogus mosquitoes in Trinidad, West Indies. Sci Rep 2021; 11:16584. [PMID: 34400676 PMCID: PMC8368243 DOI: 10.1038/s41598-021-95842-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/28/2021] [Indexed: 02/07/2023] Open
Abstract
Currently, there are increasing concerns about the possibility of a new epidemic due to emerging reports of Mayaro virus (MAYV) fever outbreaks in areas of South and Central America. Haemagogus mosquitoes, the primary sylvan vectors of MAYV are poorly characterized and a better understanding of the mosquito's viral transmission dynamics and interactions with MAYV and other microorganisms would be important in devising effective control strategies. In this study, a metatranscriptomic based approach was utilized to determine the prevalence of RNA viruses in field-caught mosquitoes morphologically identified as Haemagogus janthinomys from twelve (12) forest locations in Trinidad, West Indies. Known insect specific viruses including the Phasi Charoen-like and Humaiata-Tubiacanga virus dominated the virome of the mosquitoes throughout sampling locations while other viruses such as the avian leukosis virus, MAYV and several unclassified viruses had a narrower distribution. Additionally, assembled contigs from the Ecclesville location suggests the presence of a unique uncharacterized picorna-like virus. Mapping of RNA sequencing reads to reference mitochondrial sequences of potential feeding host animals showed hits against avian and rodent sequences, which putatively adds to the growing body of evidence of a potentially wide feeding host-range for the Haemagogus mosquito vector.
Collapse
Affiliation(s)
- Renee Ali
- grid.430529.9Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies, St. Augustine Campus, St. Augustine, Trinidad and Tobago
| | - Jayaraman Jayaraj
- grid.430529.9Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies, St. Augustine Campus, St. Augustine, Trinidad and Tobago
| | - Azad Mohammed
- grid.430529.9Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies, St. Augustine Campus, St. Augustine, Trinidad and Tobago
| | - Chinnadurai Chinnaraja
- grid.430529.9Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies, St. Augustine Campus, St. Augustine, Trinidad and Tobago
| | - Christine V. F. Carrington
- grid.430529.9Department of Preclinical Sciences, Faculty of Medical Sciences, The University of the West Indies, St. Augustine Campus, St. Augustine, Trinidad and Tobago
| | - David W. Severson
- grid.430529.9Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies, St. Augustine Campus, St. Augustine, Trinidad and Tobago ,grid.131063.60000 0001 2168 0066Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN USA ,grid.257425.30000 0000 8679 3494Department of Medical and Molecular Genetics, Indiana University School of Medicine, South Bend, IN USA
| | - Adesh Ramsubhag
- grid.430529.9Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies, St. Augustine Campus, St. Augustine, Trinidad and Tobago
| |
Collapse
|
18
|
Ramos-Nino ME, Fitzpatrick DM, Eckstrom KM, Tighe S, Dragon JA, Cheetham S. The Kidney-Associated Microbiome of Wild-Caught Artibeus spp. in Grenada, West Indies. Animals (Basel) 2021; 11:ani11061571. [PMID: 34072244 PMCID: PMC8227013 DOI: 10.3390/ani11061571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary Bats are increasingly being recognized as important integrants of zoonotic disease cycles. Studying bat microbiomes could potentially contribute to the epidemiology of emerging infectious diseases in humans. Furthermore, studying the bat’s microbiome gives us the opportunity to look at the microbiome evolution in mammals. Bat microbiome studies have focused mainly on the gut microbiome, but little is known of the microbiome of the kidney, another potential source of disease transmission. Furthermore, many studies on microbiome found in the literature are based on captive animals, which usually alters the natural microbiome. Here, we analyzed kidney samples of wild-caught Artibeus spp., a fructivorous bat species from Grenada, West Indies, using metagenomics. Abstract Bats are capable of asymptomatically carrying a diverse number of microorganisms, including human pathogens, due to their unique immune system. Because of the close contact between bats and humans, there is a possibility for interspecies transmission and consequential disease outbreaks. Herein, high-throughput sequencing was used to determine the kidney-associated microbiome of a bat species abundant in Grenada, West Indies, Artibeus spp. Results indicate that the kidney of these bats can carry potential human pathogens. An endogenous retrovirus, Desmodus rotundus endogenous retrovirus isolate 824, phylogenetically related to betaretroviruses from rodents and New World primates, was also identified.
Collapse
Affiliation(s)
- Maria E. Ramos-Nino
- Department of Microbiology, Immunology, and Pharmacology, School of Medicine, St. George’s University, West Indies, Grenada
- Correspondence: ; Tel.: +1-802-8936358
| | - Daniel M. Fitzpatrick
- Department of Pathobiology, School of Veterinary Medicine, St. George’s University, West Indies, Grenada; (D.M.F.); (S.C.)
| | - Korin M. Eckstrom
- Larner School of Medicine, University of Vermont Massively Parallel Sequencing Facility, Burlington, VT 05401, USA; (K.M.E.); (S.T.); (J.A.D.)
| | - Scott Tighe
- Larner School of Medicine, University of Vermont Massively Parallel Sequencing Facility, Burlington, VT 05401, USA; (K.M.E.); (S.T.); (J.A.D.)
| | - Julie A. Dragon
- Larner School of Medicine, University of Vermont Massively Parallel Sequencing Facility, Burlington, VT 05401, USA; (K.M.E.); (S.T.); (J.A.D.)
| | - Sonia Cheetham
- Department of Pathobiology, School of Veterinary Medicine, St. George’s University, West Indies, Grenada; (D.M.F.); (S.C.)
| |
Collapse
|
19
|
de Almeida JP, Aguiar ER, Armache JN, Olmo RP, Marques JT. The virome of vector mosquitoes. Curr Opin Virol 2021; 49:7-12. [PMID: 33991759 DOI: 10.1016/j.coviro.2021.04.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/05/2021] [Accepted: 04/05/2021] [Indexed: 11/30/2022]
Abstract
Mosquitoes are the major vectors for arthropod-borne viruses (arboviruses) of medical importance. Aedes aegypti and A. albopictus are the most prolific and widespread mosquito vectors being responsible for global transmission of dengue, Zika and Chikungunya viruses. Characterizing the collection of viruses circulating in mosquitoes, the virome, has long been of special interest. In addition to arboviruses, mosquitoes carry insect-specific viruses (ISVs) that do not directly infect vertebrates. Mounting evidence indicates that ISVs interact with arboviruses and may affect mosquito vector competence. Here, we review our current knowledge about the virome of vector mosquitoes and discuss the challenges for the field that may lead to novel strategies to prevent outbreaks of arboviruses.
Collapse
Affiliation(s)
- João Pp de Almeida
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte CEP 31270901, Minas Gerais, Brazil
| | - Eric Rgr Aguiar
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte CEP 31270901, Minas Gerais, Brazil; Department of Biological Science (DCB), Center of Biotechnology and Genetics (CBG), State University of Santa Cruz (UESC), Rodovia Ilhéus-Itabuna km 16, Ilhéus 45652-900, Brazil
| | - Juliana N Armache
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte CEP 31270901, Minas Gerais, Brazil
| | - Roenick P Olmo
- Université de Strasbourg, CNRS UPR9022, INSERM U1257, Strasbourg 67084, France
| | - João T Marques
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte CEP 31270901, Minas Gerais, Brazil; Université de Strasbourg, CNRS UPR9022, INSERM U1257, Strasbourg 67084, France.
| |
Collapse
|
20
|
Huy Hung N, Ngoc Dai D, Satyal P, Thi Huong L, Thi Chinh B, Quang Hung D, Anh Tai T, Setzer WN. Lantana camara Essential Oils from Vietnam: Chemical Composition, Molluscicidal, and Mosquito Larvicidal Activity. Chem Biodivers 2021; 18:e2100145. [PMID: 33780581 DOI: 10.1002/cbdv.202100145] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 03/29/2021] [Indexed: 11/08/2022]
Abstract
Lantana camara is a troublesome invasive plant introduced to many tropical regions, including Southeast Asia. However, the plant does hold promise as a source of essential oils that may be explored for potential use. Fresh water snails such as Pomacea canaliculata, Gyraulus convexiusculus, and Tarebia granifera can be problematic agricultural pests as well as hosts for parasitic worms. Aedes and Culex mosquitoes are notorious vectors of numerous viral pathogens. Control of these vectors is of utmost importance. In this work, the essential oil compositions, molluscicidal, and mosquito larvicidal activities of four collections of L. camara from north-central Vietnam have been investigated. The sesquiterpene-rich L. camara essential oils showed wide variation in their compositions, not only compared to essential oils from other geographical locations (at least six possible chemotypes), but also between the four samples from Vietnam. L. camara essential oils showed molluscicidal activities comparable to the positive control, tea saponin, as well as other botanical agents. The median lethal concentrations (LC50 ) against the snails were 23.6-40.2 μg/mL (P. canaliculata), 7.9-29.6 μg/mL (G. convexiusculus), and 15.0-29.6 μg/mL (T. granifera). The essential oils showed good mosquito larvicidal activities with 24-h LC50 values of 15.1-29.0 μg/mL, 26.4-53.8 μg/mL, and 20.8-59.3 μg/mL against Ae. aegypti, Ae. albopictus, and Cx. quinquefasciatus, respectively. The essential oils were more toxic to snails and mosquito larvae than they were to the non-target water bug, Diplonychus rusticus (24-h LC50 =103.7-162.5 μg/mL). Sesquiterpene components of the essential oils may be acting as acetylcholinesterase (AChE) inhibitors. These results suggest that the invasive plant, L. camara, may be a renewable botanical pesticidal agent.
Collapse
Affiliation(s)
- Nguyen Huy Hung
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang, 50000, Vietnam.,Department of Pharmacy, Duy Tan University, 03 Quang Trung, Da Nang, 50000, Vietnam
| | - Do Ngoc Dai
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, Cau Giay, Hanoi, 10000, Vietnam.,Faculty of Agriculture, Forestry and Fishery, Nghe An College of Economics, 51-Ly Tu Trong, Vinh City, 43000, Nghe An Province, Vietnam
| | - Prabodh Satyal
- Aromatic Plant Research Center, 230 N 1200 E, Suite 100, Lehi, UT 84043, USA
| | - Le Thi Huong
- School of Natural Science Education, Vinh University, 182 Le Duan, Vinh City, 43000, Nghe An Province, Vietnam
| | - Bui Thi Chinh
- Faculty of Biology, College of Education, Hue University, 34 Le Loi, Hue City, 49000, Vietnam
| | - Dinh Quang Hung
- Department of Pharmacy, Duy Tan University, 03 Quang Trung, Da Nang, 50000, Vietnam
| | - Thieu Anh Tai
- Department of Pharmacy, Duy Tan University, 03 Quang Trung, Da Nang, 50000, Vietnam
| | - William N Setzer
- Aromatic Plant Research Center, 230 N 1200 E, Suite 100, Lehi, UT 84043, USA.,Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA
| |
Collapse
|
21
|
Jeffries CL, White M, Wilson L, Yakob L, Walker T. Detection of Cell-Fusing Agent virus across ecologically diverse populations of Aedes aegypti on the Caribbean island of Saint Lucia. Wellcome Open Res 2020; 5:149. [PMID: 33869790 PMCID: PMC8030115 DOI: 10.12688/wellcomeopenres.16030.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2020] [Indexed: 11/20/2022] Open
Abstract
Background. Outbreaks of mosquito-borne arboviral diseases including dengue virus (DENV), Zika virus (ZIKV), yellow fever virus (YFV) and chikungunya virus (CHIKV) have recently occurred in the Caribbean. The geographical range of the principal vectors responsible for transmission, Aedes (Ae.) aegypti and Ae. albopictus are increasing and greater mosquito surveillance is needed in the Caribbean given international tourism is so prominent. The island of Saint Lucia has seen outbreaks of DENV and CHIKV in the past five years but vector surveillance has been limited with the last studies dating back to the late 1970s. Natural disasters have changed the landscape of Saint Lucia and the island has gone through significant urbanisation. Methods. In this study, we conducted an entomological survey of Ae. aegypti and Ae. albopictus distribution across the island and analysed environmental parameters associated with the presence of these species in addition to screening for medically important arboviruses and other flaviviruses. Results. Although we collected Ae. aegypti across a range of sites across the island, no Ae. albopictus were collected despite traps being placed in diverse ecological settings. The number of Ae. aegypti collected was significantly associated with higher elevation, and semi-urban settings yielded female mosquito counts per trap-day that were five-fold lower than urban settings. Screening for arboviruses revealed a high prevalence of cell-fusing agent virus (CFAV). Conclusions. Outbreaks of arboviruses transmitted by Ae. aegypti and Ae. albopictus have a history of occurring in small tropical islands and Saint Lucia is particularly vulnerable given the limited resources available to undertake vector control and manage outbreaks. Surveillance strategies can identify risk areas for predicting future outbreaks. Further research is needed to determine the diversity of current mosquito species, investigate insect-specific viruses, as well as pathogenic arboviruses, and this should also be extended to the neighbouring smaller Caribbean islands.
Collapse
Affiliation(s)
- Claire L. Jeffries
- Department of Disease Control, London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Mia White
- Department of Disease Control, London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Louisia Wilson
- Department of Disease Control, London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Laith Yakob
- Department of Disease Control, London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Thomas Walker
- Department of Disease Control, London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| |
Collapse
|
22
|
Jeffries CL, White M, Wilson L, Yakob L, Walker T. Detection of a novel insect-specific flavivirus across ecologically diverse populations of Aedes aegypti on the Caribbean island of Saint Lucia. Wellcome Open Res 2020; 5:149. [PMID: 33869790 PMCID: PMC8030115 DOI: 10.12688/wellcomeopenres.16030.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2020] [Indexed: 04/01/2024] Open
Abstract
Background. Outbreaks of mosquito-borne arboviral diseases including dengue virus (DENV), Zika virus (ZIKV), yellow fever virus (YFV) and chikungunya virus (CHIKV) have recently occurred in the Caribbean. The geographical range of the principle vectors responsible for transmission, Aedes (Ae.) aegypti and Ae. albopictus is increasing and greater mosquito surveillance is needed in the Caribbean given international tourism is so prominent. The island of Saint Lucia has seen outbreaks of DENV and CHIKV in the past five years but vector surveillance has been limited with the last studies dating back to the late 1970s. Natural disasters have changed the landscape of Saint Lucia and the island has gone through significant urbanisation. Methods. In this study, we conducted an entomological survey of Ae. aegypti and Ae. albopictus distribution across the island and analysed environmental parameters associated with the presence of these species in addition to screening for medically important arboviruses and other flaviviruses. Results. Although we collected Ae. aegypti across a range of sites across the island, no Ae. albopictus were collected despite traps being placed in diverse ecological settings. The number of Ae. aegypti collected was significantly associated with higher elevation, and semi-urban settings yielded female mosquito counts per trap-day that were five-fold lower than urban settings. Screening for arboviruses revealed a high prevalence of a novel insect-specific flavivirus closely related to cell fusing agent virus (CFAV). Conclusions. Outbreaks of arboviruses transmitted by Ae. aegypti and Ae. albopictus have a history of occurring in small tropical islands and Saint Lucia is particularly vulnerable given the limited resources available to undertake vector control and manage outbreaks. Surveillance strategies can identify risk areas for predicting future outbreaks and further research is needed to determine the diversity of current mosquito species and this should be extended to the neighbouring smaller Caribbean islands.
Collapse
Affiliation(s)
- Claire L. Jeffries
- Department of Disease Control, London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Mia White
- Department of Disease Control, London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Louisia Wilson
- Department of Disease Control, London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Laith Yakob
- Department of Disease Control, London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Thomas Walker
- Department of Disease Control, London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| |
Collapse
|
23
|
Ramos-Nino ME, Fitzpatrick DM, Eckstrom KM, Tighe S, Hattaway LM, Hsueh AN, Stone DM, Dragon JA, Cheetham S. Metagenomic analysis of Aedes aegypti and Culex quinquefasciatus mosquitoes from Grenada, West Indies. PLoS One 2020; 15:e0231047. [PMID: 32282857 PMCID: PMC7153883 DOI: 10.1371/journal.pone.0231047] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 03/14/2020] [Indexed: 02/06/2023] Open
Abstract
The mosquitoes Aedes aegypti (Linnaeus, 1762) (Diptera: Culicidae) and Culex quinquefasciatus Say, 1823 (Diptera: Culicidae) are two major vectors of arthropod-borne pathogens in Grenada, West Indies. As conventional vector control methods present many challenges, alternatives are urgently needed. Manipulation of mosquito microbiota is emerging as a field for the development of vector control strategies. Critical to this vector control approach is knowledge of the microbiota of these mosquitoes and finding candidate microorganisms that are common to the vectors with properties that could be used in microbiota modification studies. Results showed that bacteria genera including Asaia, Escherichia, Pantoea, Pseudomonas, and Serratia are common to both major arboviral vectors in Grenada and have previously been shown to be good candidates for transgenetic studies. Also, for the first time, the presence of Grenada mosquito rhabdovirus 1 is reported in C. quinquefasciatus.
Collapse
Affiliation(s)
- Maria E. Ramos-Nino
- Department of Microbiology, Immunology, and Pharmacology, School of Medicine, St. George’s University, Grenada, West Indies
| | - Daniel M. Fitzpatrick
- Department of Pathobiology, School of Veterinary Medicine, St. George’s University, Grenada, West Indies
| | - Korin M. Eckstrom
- University of Vermont Massively Parallel Sequencing Facility, Burlington, Vermont, United States of America
| | - Scott Tighe
- University of Vermont Massively Parallel Sequencing Facility, Burlington, Vermont, United States of America
| | - Lindsey M. Hattaway
- Department of Pathobiology, School of Veterinary Medicine, St. George’s University, Grenada, West Indies
| | - Andy N. Hsueh
- Department of Pathobiology, School of Veterinary Medicine, St. George’s University, Grenada, West Indies
| | - Diana M. Stone
- Department of Pathobiology, School of Veterinary Medicine, St. George’s University, Grenada, West Indies
| | - Julie A. Dragon
- University of Vermont Massively Parallel Sequencing Facility, Burlington, Vermont, United States of America
| | - Sonia Cheetham
- Department of Pathobiology, School of Veterinary Medicine, St. George’s University, Grenada, West Indies
| |
Collapse
|