1
|
Klekowski J, Chabowski M, Krzystek-Korpacka M, Fleszar M. The Utility of Lipidomic Analysis in Colorectal Cancer Diagnosis and Prognosis-A Systematic Review of Recent Literature. Int J Mol Sci 2024; 25:7722. [PMID: 39062964 PMCID: PMC11277303 DOI: 10.3390/ijms25147722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/07/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Colorectal cancer (CRC) is among the most prevalent and lethal malignancies. Lipidomic investigations have revealed numerous disruptions in lipid profiles across various cancers. Studies on CRC exhibit potential for identifying novel diagnostic or prognostic indicators through lipidomic signatures. This review examines recent literature regarding lipidomic markers for CRC. PubMed database was searched for eligible articles concerning lipidomic biomarkers of CRC. After selection, 36 articles were included in the review. Several studies endeavor to establish sets of lipid biomarkers that demonstrate promising potential to diagnose CRC based on blood samples. Phosphatidylcholine, phosphatidylethanolamine, ceramides, and triacylglycerols (TAGs) appear to offer the highest diagnostic accuracy. In tissues, lysophospholipids, ceramides, and TAGs were among the most altered lipids, while unsaturated fatty acids also emerged as potential biomarkers. In-depth analysis requires both cell culture and animal studies. CRC involves multiple lipid metabolism alterations. Although numerous lipid species have been suggested as potential diagnostic markers, the establishment of standardized methods and the conduct of large-scale studies are necessary to facilitate their clinical application.
Collapse
Affiliation(s)
- Jakub Klekowski
- Department of Nursing and Obstetrics, Division of Anesthesiological and Surgical Nursing, Faculty of Health Science, Wroclaw Medical University, 50-367 Wroclaw, Poland;
- Department of Surgery, 4th Military Clinical Hospital, 50-981 Wroclaw, Poland
| | - Mariusz Chabowski
- Department of Surgery, 4th Military Clinical Hospital, 50-981 Wroclaw, Poland
- Department of Clinical Surgical Sciences, Faculty of Medicine, Wroclaw University of Science and Technology, 50-556 Wroclaw, Poland
| | - Małgorzata Krzystek-Korpacka
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.K.-K.); (M.F.)
| | - Mariusz Fleszar
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.K.-K.); (M.F.)
- Omics Research Center, Wroclaw Medical University, 50-368 Wroclaw, Poland
| |
Collapse
|
2
|
Zhang S, Xu R, Hu M, Choueiry F, Jin N, Li J, Mo X, Zhu J. Distinct plasma molecular profiles between early-onset and late-onset colorectal cancer patients revealed by metabolic and lipidomic analyses. J Pharm Biomed Anal 2024; 241:115978. [PMID: 38237540 PMCID: PMC11181242 DOI: 10.1016/j.jpba.2024.115978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/24/2023] [Accepted: 01/09/2024] [Indexed: 02/21/2024]
Abstract
Colorectal cancer (CRC) incidence in younger adults has been steadily rising, warranting an in-depth investigation into the distinctions between early-onset CRC (EOCRC, < 50 years) and late-onset CRC (LOCRC, ≥ 50 years). Despite extensive study of clinical, pathological, and molecular traits, differentiating EOCRC from LOCRC and identifying potential biomarkers remain elusive. We analyzed plasma samples from healthy individuals, EOCRC, and LOCRC patients using liquid-chromatography mass spectrometry (LC/MS)-based metabolomics and lipidomics. Distinct polar metabolite and lipid profiles with significant metabolites altered in CRC group (e.g., choline and DG 40:4) were identified. Notably, EOCRC exhibited distinct polar metabolomic and differential lipidomic profiles compared to LOCRC, with polar metabolites like aminoadipate and uridine contributing significantly to the difference, and originating from pathways such as lysine biosynthesis and nucleotide metabolism. Furthermore, gene set enrichment analysis (GSEA) using independent TCGA gene expression data identified pathways significantly enriched in either EOCRC or LOCRC. Integrating gene expression and metabolomics data revealed numerous associations differentiating EOCRC and LOCRC. Our multi-omics integration underscores critical molecular distinctions, offers insights into the EOCRC development mechanisms and potential plasma biomarkers for diagnosis.
Collapse
Affiliation(s)
- Shiqi Zhang
- Human Nutrition Program, Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Rui Xu
- Human Nutrition Program, Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Ming Hu
- Human Nutrition Program, Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Fouad Choueiry
- Human Nutrition Program, Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Ning Jin
- Medical Oncology, The Ohio State University, Columbus, OH 43210, USA
| | - Jieli Li
- Department of Pathology, The Ohio State University, Columbus, OH 43210, USA
| | - Xiaokui Mo
- Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA
| | - Jiangjiang Zhu
- Human Nutrition Program, Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA; James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
3
|
Shimizu Y, Tamiya-Koizumi K, Tsutsumi T, Kyogashima M, Kannagi R, Iwaki S, Aoyama M, Tokumura A. Hypoxia increases cellular levels of phosphatidic acid and lysophospholipids in undifferentiated Caco-2 cells. Lipids 2023; 58:93-103. [PMID: 36708255 DOI: 10.1002/lipd.12366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/29/2023]
Abstract
Cancer cells are known to survive in a hypoxic microenvironment by altering their lipid metabolism as well as their energy metabolism. In this study, Caco-2 cells derived from human colon cancer, were found to have elevated intracellular levels of phosphatidic acid and its lysoform, lysophosphatidic acid (LPA), under hypoxic conditions. Our results suggested that the elevation of LPA in Caco-2 cells was mainly due to the combined increases in cellular levels of lysophosphatidylcholine and lysophosphatidylethanolamine by phospholipase A2 and subsequent hydrolysis to LPA by lysophospholipase D. We detected the Ca2+ -stimulated choline-producing activities toward exogenous lysophosphatidylcholines in whole Caco-2 cell homogenates, indicating their involvement in the LPA production in intact Caco-2 cells.
Collapse
Affiliation(s)
- Yoshibumi Shimizu
- Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Keiko Tamiya-Koizumi
- Department of Pathobiology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Toshihiko Tsutsumi
- Graduate School of Clinical Pharmacy, Kyushu University of Health and Welfare, Nobeoka, Japan
| | - Mamoru Kyogashima
- Department of Microbiology and Molecular Cell Biology, Nihon Pharmaceutical University, Saitama, Japan
| | - Reiji Kannagi
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Soichiro Iwaki
- Department of Pathobiology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Mineyoshi Aoyama
- Department of Pathobiology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Akira Tokumura
- Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan.,Department of Pharmacy, Yasuda Women's University, Hiroshima, Japan
| |
Collapse
|
4
|
Alketbi L, Al-Ali A, Talaat IM, Hamid Q, Bajbouj K. The Role of ATP-Binding Cassette Subfamily A in Colorectal Cancer Progression and Resistance. Int J Mol Sci 2023; 24:1344. [PMID: 36674859 PMCID: PMC9860967 DOI: 10.3390/ijms24021344] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/29/2022] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignancies worldwide; it is the fourth leading cause of cancer-related deaths. CRC arises due to mutations that can affect oncogenes, tumour suppressor genes and DNA repair genes. The lack of novel diagnostic and therapeutic targets and the development of chemoresistance are some of the major issues when dealing with CRC. The overexpression of ATP-binding cassette (ABC) transporters is considered one facilitating mechanism for chemoresistance. Furthermore, ABC transporters have additional roles in cancer development beyond multidrug resistance. In CRC, lipid dysregulation has a key role in tumour development and progression, as cancer cells rely on lipids for energy and rapid cell proliferation. ABC subfamily A (ABCA) contains the largest members of ABC proteins, mainly known for their role in lipid transport, mostly membrane lipids such as cholesterol and phospholipids. Although the exact mechanism of action of these members is not confirmed, their expression is usually correlated with tumour progression and therapy resistance, probably due to their role in lipid homeostasis. CRC shows alteration in the expression of ABCA transporters, which is usually linked to poor prognosis and overall survival. Therefore, as lipid transporters, their role in CRC is investigated, and their diagnostic and prognostic potential is evaluated. This minireview presents evidence from various studies suggesting that ABCA transporters might have an active role in CRC and can be utilized as potential diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Latifa Alketbi
- College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Abeer Al-Ali
- College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Iman M. Talaat
- College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Faculty of Medicine, Alexandria University, Alexandria 21544, Egypt
| | - Qutayba Hamid
- College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Meakins-Christie Laboratories, McGill University, Montreal, QC H3A 0G4, Canada
| | - Khuloud Bajbouj
- College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| |
Collapse
|
5
|
Huang Y, Liang J, Hu W, Liang Y, Xiao X, Zhao W, Zhong X, Yang Y, Pan X, Zhou X, Zhang Z, Cai Y. Integration Profiling Between Plasma Lipidomics, Epstein–Barr Virus and Clinical Phenomes in Nasopharyngeal Carcinoma Patients. Front Microbiol 2022; 13:919496. [PMID: 35847074 PMCID: PMC9281874 DOI: 10.3389/fmicb.2022.919496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/13/2022] [Indexed: 11/26/2022] Open
Abstract
Plasma lipidomics has been commonly used for biomarker discovery. Studies in cancer have suggested a significant alteration of circulating metabolite profiles which is correlated with cancer characteristics and treatment outcome. However, the lipidomics characteristics of nasopharyngeal carcinoma (NPC) have rarely been studied. We previously described the phenomenon of lipid droplet accumulation in NPC cells and showed that such accumulation could be regulated by latent infection of Epstein–Barr virus (EBV). Here, we compared the plasma lipidome of NPC patients to that of healthy controls by liquid chromatography-tandem mass spectrometry (LC–MS/MS). We found 19 lipids (e.g., phosphatidylinositols 18:0/20:4 and 18:0/18:2 and free fatty acid 22:6) to be remarkably decreased, whereas 2 lipids (i.e., diacylglycerols 16:0/16:1 and 16:0/20:3) to be increased, in the plasma of NPC patients, compared with controls. Different lipid profiles were also observed between patients with different titers of EBV antibodies (e.g., EA-IgA and VCA-IgA) as well as between patients with and without lymph node or distant organ metastasis. In conclusion, plasma lipidomics might help to differentiate NPC cases from controls, whereas EBV infection might influence the risk and prognosis of NPC through modulating lipid metabolism in both tumor cells and peripheral blood.
Collapse
Affiliation(s)
- Yi Huang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jinfeng Liang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wenjin Hu
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Bio-refinery, National Engineering Research Center for Non-Food Biorefinery, Guangxi Biomass Engineering Technology Research Center, Guangxi Academy of Sciences, Nanning, China
| | - Yushan Liang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xue Xiao
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Weilin Zhao
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xuemin Zhong
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumor, Guangxi Key Laboratory of High-Incidence-Tumor Prevention and Treatment, Ministry of Education, Guangxi Medical University, Nanning, China
| | - Yanping Yang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumor, Guangxi Key Laboratory of High-Incidence-Tumor Prevention and Treatment, Ministry of Education, Guangxi Medical University, Nanning, China
| | - Xinli Pan
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning, China
| | - Xiaoying Zhou
- Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumor, Guangxi Key Laboratory of High-Incidence-Tumor Prevention and Treatment, Ministry of Education, Guangxi Medical University, Nanning, China
| | - Zhe Zhang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumor, Guangxi Key Laboratory of High-Incidence-Tumor Prevention and Treatment, Ministry of Education, Guangxi Medical University, Nanning, China
- *Correspondence: Zhe Zhang,
| | - Yonglin Cai
- Guangxi Health Commission Key Laboratory of Molecular Epidemiology of Nasopharyngeal Carcinoma, Wuzhou Red Cross Hospital, Wuzhou, China
- Yonglin Cai,
| |
Collapse
|
6
|
Stoica C, Ferreira AK, Hannan K, Bakovic M. Bilayer Forming Phospholipids as Targets for Cancer Therapy. Int J Mol Sci 2022; 23:ijms23095266. [PMID: 35563655 PMCID: PMC9100777 DOI: 10.3390/ijms23095266] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/28/2022] [Accepted: 05/02/2022] [Indexed: 12/15/2022] Open
Abstract
Phospholipids represent a crucial component for the structure of cell membranes. Phosphatidylcholine and phosphatidylethanolamine are two phospholipids that comprise the majority of cell membranes. De novo biosynthesis of phosphatidylcholine and phosphatidylethanolamine occurs via the Kennedy pathway, and perturbations in the regulation of this pathway are linked to a variety of human diseases, including cancer. Altered phosphatidylcholine and phosphatidylethanolamine membrane content, phospholipid metabolite levels, and fatty acid profiles are frequently identified as hallmarks of cancer development and progression. This review summarizes the research on how phospholipid metabolism changes over oncogenic transformation, and how phospholipid profiling can differentiate between human cancer and healthy tissues, with a focus on colorectal cancer, breast cancer, and non-small cell lung cancer. The potential for phospholipids to serve as biomarkers for diagnostics, or as anticancer therapy targets, is also discussed.
Collapse
Affiliation(s)
- Celine Stoica
- Department of Human Health and Nutritional Science, College of Biological Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada; (C.S.); (K.H.)
| | - Adilson Kleber Ferreira
- Department of Immunology, Laboratory of Tumor Immunology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-000, Brazil;
- Department of Oncology, Alchemypet—Veterinary Dignostic Medicine, São Paulo 05024-000, Brazil
| | - Kayleigh Hannan
- Department of Human Health and Nutritional Science, College of Biological Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada; (C.S.); (K.H.)
| | - Marica Bakovic
- Department of Human Health and Nutritional Science, College of Biological Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada; (C.S.); (K.H.)
- Correspondence:
| |
Collapse
|
7
|
Pakiet A, Sikora K, Kobiela J, Rostkowska O, Mika A, Sledzinski T. Alterations in complex lipids in tumor tissue of patients with colorectal cancer. Lipids Health Dis 2021; 20:85. [PMID: 34348720 PMCID: PMC8340484 DOI: 10.1186/s12944-021-01512-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 07/26/2021] [Indexed: 12/29/2022] Open
Abstract
Background Accumulating evidence indicates alterations in lipid metabolism and lipid composition in neoplastic tissue. Earlier nuclear magnetic resonance studies showed that the contents of major lipid groups, such as triacylglycerols, phospholipids and cholesterol, are changed in colon cancer tissue. Methods In this study, a more detailed analysis of lipids in cancer and tumor adjacent tissues from colorectal cancer patients, using liquid chromatography–mass spectrometry, allowed for comparison of 199 different lipids between cancer tissue and tumor adjacent tissue using principal component analysis. Results Significant differences were found in 67 lipid compounds between the two types of tissue; many of these lipid compounds are bioactive lipids such as ceramides, lysophospholipids or sterols and can influence the development of cancer. Additionally, increased levels of phospholipids and sphingolipids were present, which are major components of the cell membrane, and increases in these lipids can lead to changes in cell membrane properties. Conclusions This study showed that many complex lipids are significantly increased or decreased in colon cancer tissue, reflecting significant alterations in lipid metabolism. This knowledge can be used for the selection of potential molecular targets of novel anticancer strategies based on the modulation of lipid metabolism and the composition of the cell membrane in colorectal cancer cells. Supplementary Information The online version contains supplementary material available at 10.1186/s12944-021-01512-x.
Collapse
Affiliation(s)
- Alicja Pakiet
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308, Gdansk, Poland
| | - Kinga Sikora
- Physics-Chemistry Workshops, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308, Gdansk, Poland
| | - Jarek Kobiela
- Department of General, Endocrine and Transplant Surgery, Medical University of Gdansk, Smoluchowskiego 17, 80-214, Gdansk, Poland
| | - Olga Rostkowska
- Department of General, Endocrine and Transplant Surgery, Medical University of Gdansk, Smoluchowskiego 17, 80-214, Gdansk, Poland
| | - Adriana Mika
- Department of Pharmaceutical Biochemistry, Medical University of Gdansk, Debinki 1, 80-211, Gdansk, Poland
| | - Tomasz Sledzinski
- Department of Pharmaceutical Biochemistry, Medical University of Gdansk, Debinki 1, 80-211, Gdansk, Poland.
| |
Collapse
|
8
|
Complex Alterations of Fatty Acid Metabolism and Phospholipidome Uncovered in Isolated Colon Cancer Epithelial Cells. Int J Mol Sci 2021; 22:ijms22136650. [PMID: 34206240 PMCID: PMC8268957 DOI: 10.3390/ijms22136650] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 12/15/2022] Open
Abstract
The development of colon cancer, one of the most common malignancies, is accompanied with numerous lipid alterations. However, analyses of whole tumor samples may not always provide an accurate description of specific changes occurring directly in tumor epithelial cells. Here, we analyzed in detail the phospholipid (PL), lysophospholipid (lysoPL), and fatty acid (FA) profiles of purified EpCAM+ cells, isolated from tumor and adjacent non-tumor tissues of colon cancer patients. We found that a number of FAs increased significantly in isolated tumor cells, which also included a number of long polyunsaturated FAs. Higher levels of FAs were associated with increased expression of FA synthesis genes, as well as with altered expression of enzymes involved in FA elongation and desaturation, including particularly fatty acid synthase, stearoyl-CoA desaturase, fatty acid desaturase 2 and ELOVL5 fatty acid elongase 5 We identified significant changes in ratios of specific lysoPLs and corresponding PLs. A number of lysophosphatidylcholine and lysophosphatidylethanolamine species, containing long-chain and very-long chain FAs, often with high numbers of double bonds, were significantly upregulated in tumor cells. Increased de novo synthesis of very long-chain FAs, or, altered uptake or incorporation of these FAs into specific lysoPLs in tumor cells, may thus contribute to reprogramming of cellular phospholipidome and membrane alterations observed in colon cancer.
Collapse
|
9
|
Nabi MM, Mamun MA, Islam A, Hasan MM, Waliullah ASM, Tamannaa Z, Sato T, Kahyo T, Setou M. Mass spectrometry in the lipid study of cancer. Expert Rev Proteomics 2021; 18:201-219. [PMID: 33793353 DOI: 10.1080/14789450.2021.1912602] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Cancer is a heterogeneous disease that exploits various metabolic pathways to meet the demand for increased energy and structural components. Lipids are biomolecules that play essential roles as high energy sources, mediators, and structural components of biological membranes. Accumulating evidence has established that altered lipid metabolism is a hallmark of cancer.Areas covered: Mass spectrometry (MS) is a label-free analytical tool that can simultaneously identify and quantify hundreds of analytes. To date, comprehensive lipid studies exclusively rely on this technique. Here, we reviewed the use of MS in the study of lipids in various cancers and discuss its instrumental limitations and challenges.Expert opinion: MS and MS imaging have significantly contributed to revealing altered lipid metabolism in a variety of cancers. Currently, a single MS approach cannot profile the entire lipidome because of its lack of sensitivity and specificity for all lipid classes. For the metabolic pathway investigation, lipid study requires the integration of MS with other molecular approaches. Future developments regarding the high spatial resolution, mass resolution, and sensitivity of MS instruments are warranted.
Collapse
Affiliation(s)
- Md Mahamodun Nabi
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan.,Institute of Food and Radiation Biology, Atomic Energy Research Establishment, Ganakbari, Savar, Dhaka, Bangladesh
| | - Md Al Mamun
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Ariful Islam
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Md Mahmudul Hasan
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - A S M Waliullah
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Zinat Tamannaa
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Tomohito Sato
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Tomoaki Kahyo
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan.,International Mass Imaging Center, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Mitsutoshi Setou
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan.,International Mass Imaging Center, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan.,Department of Systems Molecular Anatomy, Institute for Medical Photonics Research, Preeminent Medical Photonics Education & Research Center, Hamamatsu, Shizuoka, Japan
| |
Collapse
|
10
|
Zaytseva Y. Lipid Metabolism as a Targetable Metabolic Vulnerability in Colorectal Cancer. Cancers (Basel) 2021; 13:cancers13020301. [PMID: 33467532 PMCID: PMC7830794 DOI: 10.3390/cancers13020301] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 01/28/2023] Open
Abstract
Colorectal cancer (CRC), the second leading cause of cancer-related deaths according to the World Health Organization, remains a substantial public health problem worldwide [...].
Collapse
Affiliation(s)
- Yekaterina Zaytseva
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536-0305, USA
| |
Collapse
|
11
|
Habib O, Mohd Sakri R, Ghazalli N, Chau DM, Ling KH, Abdullah S. Limited expression of non-integrating CpG-free plasmid is associated with increased nucleosome enrichment. PLoS One 2020; 15:e0244386. [PMID: 33347482 PMCID: PMC7751972 DOI: 10.1371/journal.pone.0244386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 12/08/2020] [Indexed: 11/18/2022] Open
Abstract
CpG-free pDNA was reported to facilitate sustained transgene expression with minimal inflammation in vivo as compared to CpG-containing pDNA. However, the expression potential and impact of CpG-free pDNA in in vitro model have never been described. Hence, in this study, we analyzed the transgene expression profiles of CpG-free pDNA in vitro to determine the influence of CpG depletion from the transgene. We found that in contrast to the published in vivo studies, CpG-free pDNA expressed a significantly lower level of luciferase than CpG-rich pDNA in several human cell lines. By comparing novel CpG-free pDNA carrying CpG-free GFP (pZGFP: 0 CpG) to CpG-rich GFP (pRGFP: 60 CpGs), we further showed that the discrepancy was not influenced by external factors such as gene transfer agent, cell species, cell type, and cytotoxicity. Moreover, pZGFP exhibited reduced expression despite having equal gene dosage as pRGFP. Analysis of mRNA distribution revealed that the mRNA export of pZGFP and pRGFP was similar; however, the steady state mRNA level of pZGFP was significantly lower. Upon further investigation, we found that the CpG-free transgene in non-integrating CpG-free pDNA backbone acquired increased nucleosome enrichment as compared with CpG-rich transgene, which may explain the observed reduced level of steady state mRNA. Our findings suggest that nucleosome enrichment could regulate non-integrating CpG-free pDNA expression and has implications on pDNA design.
Collapse
Affiliation(s)
- Omar Habib
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
| | - Rozita Mohd Sakri
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
- Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Shah Alam, Selangor, Malaysia
| | - Nadiah Ghazalli
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
| | - De-Ming Chau
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
| | - King-Hwa Ling
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
| | - Syahril Abdullah
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
- * E-mail:
| |
Collapse
|
12
|
Zhu Y, Zou R, Sha H, Lu Y, Zhang Y, Wu J, Feng J, Wang D. Lipid metabolism-related proteins of relevant evolutionary and lymphoid interest (PRELI) domain containing family proteins in cancer. Am J Transl Res 2020; 12:6015-6026. [PMID: 33194011 PMCID: PMC7653579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/11/2020] [Indexed: 06/11/2023]
Abstract
Metabolic reprogramming of tumor cells plays a critical role in the tumor microenvironment, including disorder of lipid metabolism. Recently, lipid metabolism has received increasing attention in cancer research. The proteins of relevant evolutionary and lymphoid interest (PRELI) domain containing family contains 6 proteins. Functionally, the PRELI-like family proteins were mainly involved in mitochondrial lipid transport and correlated with several types of diseases and malignant tumors. Here we review current knowledge of the functions, structures, biological functions and underlying mechanisms of the PRELI-like family proteins in cancer progression, which provide insights into the clinical translational application.
Collapse
Affiliation(s)
- Yue Zhu
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research Nanjing, Jiangsu, China
| | - Renrui Zou
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research Nanjing, Jiangsu, China
| | - Huanhuan Sha
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research Nanjing, Jiangsu, China
| | - Ya Lu
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research Nanjing, Jiangsu, China
| | - Yuan Zhang
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research Nanjing, Jiangsu, China
| | - Jianzhong Wu
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research Nanjing, Jiangsu, China
| | - Jifeng Feng
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research Nanjing, Jiangsu, China
| | - Dongfeng Wang
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research Nanjing, Jiangsu, China
| |
Collapse
|
13
|
Procházková J, Slavík J, Bouchal J, Levková M, Hušková Z, Ehrmann J, Ovesná P, Kolář Z, Skalický P, Straková N, Zapletal O, Kozubík A, Hofmanová J, Vondráček J, Machala M. Specific alterations of sphingolipid metabolism identified in EpCAM-positive cells isolated from human colon tumors. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158742. [PMID: 32447053 DOI: 10.1016/j.bbalip.2020.158742] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/17/2020] [Accepted: 05/15/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Jiřina Procházková
- Department of Chemistry and Toxicology, Veterinary Research Institute, Brno, Czech Republic
| | - Josef Slavík
- Department of Chemistry and Toxicology, Veterinary Research Institute, Brno, Czech Republic
| | - Jan Bouchal
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine, Palacký University, Olomouc, Czech Republic
| | - Monika Levková
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine, Palacký University, Olomouc, Czech Republic
| | - Zlata Hušková
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine, Palacký University, Olomouc, Czech Republic
| | - Jiří Ehrmann
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine, Palacký University, Olomouc, Czech Republic
| | - Petra Ovesná
- Institute of Biostatistics and Analyses, Masaryk University, Brno, Czech Republic
| | | | | | - Nicol Straková
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Ondřej Zapletal
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Alois Kozubík
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Jiřina Hofmanová
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Jan Vondráček
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic.
| | - Miroslav Machala
- Department of Chemistry and Toxicology, Veterinary Research Institute, Brno, Czech Republic.
| |
Collapse
|
14
|
Bestard-Escalas J, Maimó-Barceló A, Lopez DH, Reigada R, Guardiola-Serrano F, Ramos-Vivas J, Hornemann T, Okazaki T, Barceló-Coblijn G. Common and Differential Traits of the Membrane Lipidome of Colon Cancer Cell Lines and their Secreted Vesicles: Impact on Studies Using Cell Lines. Cancers (Basel) 2020; 12:E1293. [PMID: 32443825 PMCID: PMC7281030 DOI: 10.3390/cancers12051293] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/17/2020] [Accepted: 05/18/2020] [Indexed: 12/21/2022] Open
Abstract
Colorectal cancer (CRC) is the fourth leading cause of cancer death in the world. Despite the screening programs, its incidence in the population below the 50s is increasing. Therefore, new stratification protocols based on multiparametric approaches are highly needed. In this scenario, the lipidome is emerging as a powerful tool to classify tumors, including CRC, wherein it has proven to be highly sensitive to cell malignization. Hence, the possibility to describe the lipidome at the level of lipid species has renewed the interest to investigate the role of specific lipid species in pathologic mechanisms, being commercial cell lines, a model still heavily used for this purpose. Herein, we characterize the membrane lipidome of five commercial colon cell lines and their extracellular vesicles (EVs). The results demonstrate that both cell and EVs lipidome was able to segregate cells according to their malignancy. Furthermore, all CRC lines shared a specific and strikingly homogenous impact on ether lipid species. Finally, this study also cautions about the need of being aware of the singularities of each cell line at the level of lipid species. Altogether, this study firmly lays the groundwork of using the lipidome as a solid source of tumor biomarkers.
Collapse
Affiliation(s)
- Joan Bestard-Escalas
- Lipids in Human Pathology, Health Research Institute of the Balearic Islands (IdISBa), Research Unit, University Hospital Son Espases, 07120 Palma, Spain; (J.B.-E.); (A.M.-B.); (D.H.L.); (R.R.)
| | - Albert Maimó-Barceló
- Lipids in Human Pathology, Health Research Institute of the Balearic Islands (IdISBa), Research Unit, University Hospital Son Espases, 07120 Palma, Spain; (J.B.-E.); (A.M.-B.); (D.H.L.); (R.R.)
| | - Daniel H. Lopez
- Lipids in Human Pathology, Health Research Institute of the Balearic Islands (IdISBa), Research Unit, University Hospital Son Espases, 07120 Palma, Spain; (J.B.-E.); (A.M.-B.); (D.H.L.); (R.R.)
| | - Rebeca Reigada
- Lipids in Human Pathology, Health Research Institute of the Balearic Islands (IdISBa), Research Unit, University Hospital Son Espases, 07120 Palma, Spain; (J.B.-E.); (A.M.-B.); (D.H.L.); (R.R.)
| | | | - José Ramos-Vivas
- Valdecilla Research Institute (IDIVAL ), 39011 Santander, Spain;
- Microbiology Unit, University Hospital Marqués de Valdecilla, 39008 Santander, Spain
- Spanish Network for Research in Infectious Diseases (REIPI), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - Thorsten Hornemann
- Institute of Clinical Chemistry, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland;
| | - Toshiro Okazaki
- Department of Hematology/Immunity, Kanazawa Medical University, Uchinada-machi, Kahoku-gun, Ishikawa 920-0293, Japan;
| | - Gwendolyn Barceló-Coblijn
- Lipids in Human Pathology, Health Research Institute of the Balearic Islands (IdISBa), Research Unit, University Hospital Son Espases, 07120 Palma, Spain; (J.B.-E.); (A.M.-B.); (D.H.L.); (R.R.)
| |
Collapse
|