1
|
Das S, Das A, Das N, Nath T, Langthasa M, Pandey P, Kumar V, Choure K, Kumar S, Pandey P. Harnessing the potential of microbial keratinases for bioconversion of keratin waste. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:57478-57507. [PMID: 38985428 DOI: 10.1007/s11356-024-34233-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/30/2024] [Indexed: 07/11/2024]
Abstract
The increasing global consumption of poultry meat has led to the generation of a vast quantity of feather keratin waste daily, posing significant environmental challenges due to improper disposal methods. A growing focus is on utilizing keratinous polymeric waste, amounting to millions of tons annually. Keratins are biochemically rigid, fibrous, recalcitrant, physiologically insoluble, and resistant to most common proteolytic enzymes. Microbial biodegradation of feather keratin provides a viable solution for augmenting feather waste's nutritional value while mitigating environmental contamination. This approach offers an alternative to traditional physical and chemical treatments. This review focuses on the recent findings and work trends in the field of keratin degradation by microorganisms (bacteria, actinomycetes, and fungi) via keratinolytic and proteolytic enzymes, as well as the limitations and challenges encountered due to the low thermal stability of keratinase, and degradation in the complex environmental conditions. Therefore, recent biotechnological interventions such as designing novel keratinase with high keratinolytic activity, thermostability, and binding affinity have been elaborated here. Enhancing protein structural rigidity through critical engineering approaches, such as rational design, has shown promise in improving the thermal stability of proteins. Concurrently, metagenomic annotation offers insights into the genetic foundations of keratin breakdown, primarily predicting metabolic potential and identifying probable keratinases. This may extend the understanding of microbial keratinolytic mechanisms in a complex community, recognizing the significance of synergistic interactions, which could be further utilized in optimizing industrial keratin degradation processes.
Collapse
Affiliation(s)
- Sandeep Das
- Department of Microbiology, Assam University, Silchar, 788011, Assam, India
| | - Ankita Das
- Department of Microbiology, Assam University, Silchar, 788011, Assam, India
| | - Nandita Das
- Department of Microbiology, Assam University, Silchar, 788011, Assam, India
| | - Tamanna Nath
- Department of Microbiology, Assam University, Silchar, 788011, Assam, India
| | | | - Prisha Pandey
- Department of Biotechnology, Royal Global University, Guwahati, 781035, Assam, India
| | - Vijay Kumar
- Himalayan School of Biosciences, Swami Rama Himalayan University, Dehradun, India, 248016
| | - Kamlesh Choure
- Department of Biotechnology, AKS University, Satna, 485001, Madhya Pradesh, India
| | - Sanjeev Kumar
- Department of Life Sciences and Bioinformatics, Assam University, Silchar, 788011, Assam, India
| | - Piyush Pandey
- Department of Microbiology, Assam University, Silchar, 788011, Assam, India.
| |
Collapse
|
2
|
Xia W, Jin M, Li X, Dong C, Han Y. Construction of artificial microbial consortia for efficient degradation of chicken feathers and optimization of degradation conditions. World J Microbiol Biotechnol 2024; 40:312. [PMID: 39198372 DOI: 10.1007/s11274-024-04113-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/17/2024] [Indexed: 09/01/2024]
Abstract
Microbes within a consortium exhibit a synergistic interaction, enhancing their collective capacity to perform functions more effectively than a single species, especially in the degradation of keratin-rich substrates. To achieve a more stable and efficient breakdown of chicken feathers, a comprehensive screening of over 9,000 microbial strains was undertaken. This meticulous selection process identified strains with the capability to degrade keratin effectively. Subsequently, antagonistic tests were conducted to isolate strains of fungi and bacteria that were non-antagonistic, which were then used to form the artificial microbial consortia. The optimal fermentation conditions for the keratinophilic microbial consortia were determined through the optimization of response surface methodology. The results revealed that 11 microbial strains-comprising of 4 fungi and 7 bacteria-were particularly proficient in degrading chicken feathers. The artificially constructed microbial consortia (AMC) comprised two bacterial strains and one fungal strain. The optimal conditions for feathers degradation were identified as a 10 g/L concentration of chicken feathers, a 2.6% microbial inoculation volume and a fermentation fluid pH of 9. Under these conditions, the degradation rate for chicken feathers reached a significant 74.02%, representing an 11.45% increase over the pre-optimization rate. The AMC developed in this study demonstrates the potential for efficient and economical process of livestock and poultry feathers. It provides innovative insights and a theoretical foundation for tackling the challenging degradation of keratin-rich materials. Furthermore, this research lays the groundwork for the separation and purification of keratins, as well as the development of novel proteases, which could have profound implications for a range of applications.
Collapse
Grants
- [Qian Ke He [2020] 6005] ?Hundred? Talent Projects of Guizhou Province
- [Qian Ke He [2020] 6005] ?Hundred? Talent Projects of Guizhou Province
- [Qian Ke He [2020] 6005] ?Hundred? Talent Projects of Guizhou Province
- [Qian Ke He [2020] 6005] ?Hundred? Talent Projects of Guizhou Province
- [Qian Ke He [2020] 6005] ?Hundred? Talent Projects of Guizhou Province
- [No.32060011, 32160007, 32260003] The National Natural Science Foundation of China
- [No.32060011, 32160007, 32260003] The National Natural Science Foundation of China
- [No.32060011, 32160007, 32260003] The National Natural Science Foundation of China
- [No.32060011, 32160007, 32260003] The National Natural Science Foundation of China
- [No.32060011, 32160007, 32260003] The National Natural Science Foundation of China
- [GNYL [2017]009] Construction Program of Biology First-class Discipline in Guizhou
- [GNYL [2017]009] Construction Program of Biology First-class Discipline in Guizhou
- [GNYL [2017]009] Construction Program of Biology First-class Discipline in Guizhou
- [GNYL [2017]009] Construction Program of Biology First-class Discipline in Guizhou
- [GNYL [2017]009] Construction Program of Biology First-class Discipline in Guizhou
Collapse
Affiliation(s)
- Wencai Xia
- Institute of Fungus Resources, Department of Ecology/Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Mei Jin
- Institute of Fungus Resources, Department of Ecology/Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Xin Li
- Institute of Fungus Resources, Department of Ecology/Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Chunbo Dong
- Institute of Fungus Resources, Department of Ecology/Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Yanfeng Han
- Institute of Fungus Resources, Department of Ecology/Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang, 550025, Guizhou, China.
| |
Collapse
|
3
|
Han S, Lu Y, Peng L, Dong X, Zhu L, Han Y. Transcriptomics Reveals the Mechanism of Purpureocillium lilacinum GZAC18-2JMP in Degrading Keratin Material. Curr Microbiol 2024; 81:227. [PMID: 38879855 DOI: 10.1007/s00284-024-03757-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/03/2024] [Indexed: 07/21/2024]
Abstract
Microbial degradation of keratin is characterized by its inherent safety, remarkable efficiency, and the production of copious degradation products. All these attributes contribute to the effective management of waste materials at high value-added and in a sustainable manner. Microbial degradation of keratin materials remains unclear, however, with variations observed in the degradation genes and pathways among different microorganisms. In this study, we sequenced the transcriptome of Purpureocillium lilacinum GZAC18-2JMP mycelia on control medium and the medium containing 1% feather powder, analyzed the differentially expressed genes, and revealed the degradation mechanism of chicken feathers by P. lilacinum GZAC18-2JMP. The results showed that the chicken feather degradation rate of P. lilacinum GZAC18-2JMP reached 64% after 216 h of incubation in the fermentation medium, reaching a peak value of 148.9 μg·mL-1 at 192 h, and the keratinase enzyme activity reached a peak value of 211 U·mL-1 at 168 h, which revealed that P. lilacinum GZAC18-2JMP had a better keratin degradation effect. A total of 1001 differentially expressed genes (DEGs) were identified from the transcriptome database, including 475 upregulated genes and 577 downregulated genes. Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis of the DEGs revealed that the metabolic pathways related to keratin degradation were mainly sulfur metabolism, ABC transporters, and amino acid metabolism. Therefore, the results of this study provide an opportunity to gain further insight into keratin degradation and promote the biotransformation of feather wastes.
Collapse
Affiliation(s)
- Shumei Han
- Institute of Fungus Resource, College of Life Science, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Yingxia Lu
- Institute of Fungus Resource, College of Life Science, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Lan Peng
- Institute of Fungus Resource, College of Life Science, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Xuan Dong
- Institute of Fungus Resource, College of Life Science, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Liping Zhu
- Institute of Fungus Resource, College of Life Science, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Yanfeng Han
- Institute of Fungus Resource, College of Life Science, Guizhou University, Guiyang, 550025, Guizhou, China.
| |
Collapse
|
4
|
Jacquiod S, Olsen NMC, Blouin M, Røder HL, Burmølle M. Genotypic variations and interspecific interactions modify gene expression and biofilm formation of Xanthomonas retroflexus. Environ Microbiol 2023; 25:3225-3238. [PMID: 37740256 DOI: 10.1111/1462-2920.16503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/08/2023] [Indexed: 09/24/2023]
Abstract
Multispecies biofilms are important models for studying the evolution of microbial interactions. Co-cultivation of Xanthomonas retroflexus (XR) and Paenibacillus amylolyticus (PA) systemically leads to the appearance of an XR wrinkled mutant (XRW), increasing biofilm production. The nature of this new interaction and the role of each partner remain unclear. We tested the involvement of secreted molecular cues in this interaction by exposing XR and XRW to PA or its supernatant and analysing the response using RNA-seq, colony-forming unit (CFU) estimates, biofilm quantification, and microscopy. Compared to wild type, the mutations in XRW altered its gene expression and increased its CFU number. These changes matched the reported effects for one of the mutated genes: a response regulator part of a two-component system involved in environmental sensing. When XRW was co-cultured with PA or its supernatant, the mutations effects on XRW gene expression were masked, except for genes involved in sedentary lifestyle, being consistent with the higher biofilm production. It appears that the higher biofilm production was the result of the interaction between the genetic context (mutations) and the biotic environment (PA signals). Regulatory genes involved in environmental sensing need to be considered to shed further light on microbial interactions.
Collapse
Affiliation(s)
- Samuel Jacquiod
- Agroécologie, INRAE, Institut Agro Dijon, Université de Bourgogne, University Bourgogne Franche-Comté, Dijon, France
| | - Nanna Mee Coops Olsen
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Manuel Blouin
- Agroécologie, INRAE, Institut Agro Dijon, Université de Bourgogne, University Bourgogne Franche-Comté, Dijon, France
| | - Henriette Lyng Røder
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Section of Microbiology and Fermentation, Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| | - Mette Burmølle
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Fessler M, Madsen JS, Zhang Y. Microbial Interactions in Electroactive Biofilms for Environmental Engineering Applications: A Role for Nonexoelectrogens. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15273-15279. [PMID: 36223388 DOI: 10.1021/acs.est.2c04368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Microbial electrochemical systems have gained much attention over the past decade due to their potential for various environmental engineering applications ranging from energy production to wastewater treatment to bioproduction. At the heart of these systems lie exoelectrogens-microorganisms capable of exporting electrons generated during metabolism to external electron acceptors such as electrodes. The bacterial biofilm communities on these electrodes are dominated by exoelectrogens but are nonetheless extremely diverse. So far, within the field, the main focus has been on the electroactive bacteria. However, to broaden our understanding of these communities, it is crucial to clarify how the remaining inhabitants of electrode-respiring biofilms contribute to the overall function of the biofilm. Ultimately, such insights may enable improvement of microbial electrochemical systems by reshaping the community structure with naturally occurring beneficial strains.
Collapse
Affiliation(s)
- Mathias Fessler
- Department of Environmental and Resource Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Jonas Stenløkke Madsen
- Section of Microbiology, Department of Biology, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Yifeng Zhang
- Department of Environmental and Resource Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
6
|
Konop M, Rybka M, Drapała A. Keratin Biomaterials in Skin Wound Healing, an Old Player in Modern Medicine: A Mini Review. Pharmaceutics 2021; 13:2029. [PMID: 34959311 PMCID: PMC8705570 DOI: 10.3390/pharmaceutics13122029] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/20/2021] [Accepted: 11/26/2021] [Indexed: 12/26/2022] Open
Abstract
Impaired wound healing is a major medical problem. To solve it, researchers around the world have turned their attention to the use of tissue-engineered products to aid in skin regeneration in case of acute and chronic wounds. One of the primary goals of tissue engineering and regenerative medicine is to develop a matrix or scaffold system that mimics the structure and function of native tissue. Keratin biomaterials derived from wool, hair, and bristle have been the subjects of active research in the context of tissue regeneration for over a decade. Keratin derivatives, which can be either soluble or insoluble, are utilized as wound dressings since keratins are dynamically up-regulated and needed in skin wound healing. Tissue biocompatibility, biodegradability, mechanical durability, and natural abundance are only a few of the keratin biomaterials' properties, making them excellent wound dressing materials to treat acute and chronic wounds. Several experimental and pre-clinical studies described the beneficial effects of the keratin-based wound dressing in faster wound healing. This review focuses exclusively on the biomedical application of a different type of keratin biomaterials as a wound dressing in pre-clinical and clinical conditions.
Collapse
Affiliation(s)
- Marek Konop
- Laboratory of Center for Preclinical Research, Department of Experimental Physiology and Pathophysiology, Medical University of Warsaw, 02-106 Warsaw, Poland; (M.R.); (A.D.)
| | | | | |
Collapse
|
7
|
Immobilization and Biochemical Characterization of Keratinase 2S1 onto Magnetic Cross-Linked Enzyme Aggregates and its Application on the Hydrolysis of Keratin Waste. Catal Letters 2021. [DOI: 10.1007/s10562-021-03833-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Espersen R, Huang Y, Falco FC, Hägglund P, Gernaey KV, Lange L, Svensson B. Exceptionally rich keratinolytic enzyme profile found in the rare actinomycetes Amycolatopsis keratiniphila D2 T. Appl Microbiol Biotechnol 2021; 105:8129-8138. [PMID: 34605969 DOI: 10.1007/s00253-021-11579-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 11/25/2022]
Abstract
The non-spore forming Gram-positive actinomycetes Amycolatopsis keratiniphila subsp. keratiniphila D2T (DSM 44,409) has a high potential for keratin valorization as demonstrated by a novel biotechnological microbial conversion process consisting of a bacterial growth phase and a keratinolytic phase, respectively. Compared to the most gifted keratinolytic Bacillus species, a very large number of 621 putative proteases are encoded by the genome of Amycolatopsis keratiniphila subsp. keratiniphila D2T, as predicted by using Peptide Pattern Recognition (PPR) analysis. Proteome analysis by using LC-MS/MS on aliquots of the supernatant of A. keratiniphila subsp. keratiniphila D2T culture on slaughterhouse pig bristle meal, removed at 24, 48, 96 and 120 h of growth, identified 43 proteases. This was supplemented by proteome analysis of specific fractions after enrichment of the supernatant by anion exchange chromatography leading to identification of 50 proteases. Overall 57 different proteases were identified corresponding to 30% of the 186 proteins identified from the culture supernatant and distributed as 17 metalloproteases from 11 families, including an M36 protease, 38 serine proteases from 4 families, and 13 proteolytic enzymes from other families. Notably, M36 keratinolytic proteases are prominent in fungi, but seem not to have been discovered in bacteria previously. Two S01 family peptidases, named T- and C-like proteases, prominent in the culture supernatant, were purified and shown to possess a high azo-keratin/azo-casein hydrolytic activity ratio. The C-like protease revealed excellent thermostability, giving promise for successful applications in biorefinery processes. Notably, the bacterium seems not to secrete enzymes for cleavage of disulfides in the keratinous substrates. KEY POINTS: • A. keratiniphila subsp. keratiniphila D2T is predicted to encode 621 proteases. • This actinomycete efficiently converts bristle meal to a protein hydrolysate. • Proteome analysis identified 57 proteases in its secretome.
Collapse
Affiliation(s)
- Roall Espersen
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads Building 224, DK 2800 Kgs., Lyngby, Denmark
- Center for Vaccine Research, Statens Serum Institut, Artillerivej 5 Building 81, DK 2300, Copenhagen S, Denmark
| | - Yuhong Huang
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads Building 227, DK 2800 Kgs., Lyngby, Denmark
- Beijing Key Laboratory of Ionic Liquids Clean Process, Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, 100190, Beijing, People's Republic of China
| | - Francesco C Falco
- Process and Systems Engineering Center, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads Building 228 A, DK 2800 Kgs., Lyngby, Denmark
| | - Per Hägglund
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads Building 224, DK 2800 Kgs., Lyngby, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3B, DK 2200, Copenhagen N, Denmark
| | - Krist V Gernaey
- Process and Systems Engineering Center, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads Building 228 A, DK 2800 Kgs., Lyngby, Denmark
| | - Lene Lange
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads Building 227, DK 2800 Kgs., Lyngby, Denmark
- Bioeconomy, Research & Advisory, Karensgade 5, DK 2500, Valby, Denmark
| | - Birte Svensson
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads Building 224, DK 2800 Kgs., Lyngby, Denmark.
| |
Collapse
|
9
|
Li Q. Structure, Application, and Biochemistry of Microbial Keratinases. Front Microbiol 2021; 12:674345. [PMID: 34248885 PMCID: PMC8260994 DOI: 10.3389/fmicb.2021.674345] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/17/2021] [Indexed: 12/17/2022] Open
Abstract
Keratinases belong to a class of proteases that are able to degrade keratins into amino acids. Microbial keratinases play important roles in turning keratin-containing wastes into value-added products by participating in the degradation of keratin. Keratin is found in human and animal hard tissues, and its complicated structures make it resistant to degradation by common proteases. Although breaking disulfide bonds are involved in keratin degradation, keratinase is responsible for the cleavage of peptides, making it attractive in pharmaceutical and feather industries. Keratinase can serve as an important tool to convert keratin-rich wastes such as feathers from poultry industry into diverse products applicable to many fields. Despite of some progress made in isolating keratinase-producing microorganisms, structural studies of keratinases, and biochemical characterization of these enzymes, effort is still required to expand the biotechnological application of keratinase in diverse fields by identifying more keratinases, understanding the mechanism of action and constructing more active enzymes through molecular biology and protein engineering. Herein, this review covers structures, applications, biochemistry of microbial keratinases, and strategies to improve its efficiency in keratin degradation.
Collapse
Affiliation(s)
- Qingxin Li
- Guangdong Provincial Engineering Laboratory of Biomass High Value Utilization, Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
10
|
Chukwuma OB, Rafatullah M, Tajarudin HA, Ismail N. Bacterial Diversity and Community Structure of a Municipal Solid Waste Landfill: A Source of Lignocellulolytic Potential. Life (Basel) 2021; 11:493. [PMID: 34071172 PMCID: PMC8228822 DOI: 10.3390/life11060493] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/16/2021] [Accepted: 05/24/2021] [Indexed: 11/24/2022] Open
Abstract
Omics have given rise to research on sparsely studied microbial communities such as the landfill, lignocellulolytic microorganisms and enzymes. The bacterial diversity of Municipal Solid Waste sediments was determined using the illumina MiSeq system after DNA extraction and Polymerase chain reactions. Data analysis was used to determine the community's richness, diversity, and correlation with environmental factors. Physicochemical studies revealed sites with mesophilic and thermophilic temperature ranges and a mixture of acidic and alkaline pH values. Temperature and moisture content showed the highest correlation with the bacteria community. The bacterial analysis of the community DNA revealed 357,030 effective sequences and 1891 operational taxonomic units (OTUs) assigned. Forty phyla were found, with the dominant phyla Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidota, while Aerococcus, Stenotrophomonas, and Sporosarcina were the dominant species. PICRUSt provided insight on community's metabolic function, which was narrowed down to search for lignocellulolytic enzymes' function. Cellulase, xylanase, esterase, and peroxidase were gene functions inferred from the data. This article reports on the first phylogenetic analysis of the Pulau Burung landfill bacterial community. These results will help to improve the understanding of organisms dominant in the landfill and the corresponding enzymes that contribute to lignocellulose breakdown.
Collapse
Affiliation(s)
| | - Mohd Rafatullah
- School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; (O.B.C.); (H.A.T.); (N.I.)
| | | | | |
Collapse
|
11
|
Kang D, Shoaie S, Jacquiod S, Sørensen SJ, Ledesma-Amaro R. Comparative Genomics Analysis of Keratin-Degrading Chryseobacterium Species Reveals Their Keratinolytic Potential for Secondary Metabolite Production. Microorganisms 2021; 9:microorganisms9051042. [PMID: 34066089 PMCID: PMC8151938 DOI: 10.3390/microorganisms9051042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/25/2021] [Accepted: 05/06/2021] [Indexed: 01/07/2023] Open
Abstract
A promising keratin-degrading strain from the genus Chryseobacterium (Chryseobacterium sp. KMC2) was investigated using comparative genomic tools against three publicly available reference genomes to reveal the keratinolytic potential for biosynthesis of valuable secondary metabolites. Genomic features and metabolic potential of four species were compared, showing genomic differences but similar functional categories. Eleven different secondary metabolite gene clusters of interest were mined from the four genomes successfully, including five common ones shared across all genomes. Among the common metabolites, we identified gene clusters involved in biosynthesis of flexirubin-type pigment, microviridin, and siderophore, showing remarkable conservation across the four genomes. Unique secondary metabolite gene clusters were also discovered, for example, ladderane from Chryseobacterium sp. KMC2. Additionally, this study provides a more comprehensive understanding of the potential metabolic pathways of keratin utilization in Chryseobacterium sp. KMC2, with the involvement of amino acid metabolism, TCA cycle, glycolysis/gluconeogenesis, propanoate metabolism, and sulfate reduction. This work uncovers the biosynthesis of secondary metabolite gene clusters from four keratinolytic Chryseobacterium species and shades lights on the keratinolytic potential of Chryseobacterium sp. KMC2 from a genome-mining perspective, can provide alternatives to valorize keratinous materials into high-value bioactive natural products.
Collapse
Affiliation(s)
- Dingrong Kang
- Section of Microbiology, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark;
- Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, UK
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, Lodon SE1 9RT, UK;
- TERRA Research and Teaching Centre, Microbial Processes and Interactions (MiPI), Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
- Correspondence: (D.K.); (R.L-A.)
| | - Saeed Shoaie
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, Lodon SE1 9RT, UK;
- Science for Life Laboratory, Department of Protein Science, KTH Royal Institute of Technology, 114 17 Stockholm, Sweden
| | - Samuel Jacquiod
- Agroécologie, AgroSup Dijon, INRAE, Université de Bourgogne Franche-Comté, F-21000 Dijon, France;
| | - Søren J. Sørensen
- Section of Microbiology, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark;
| | - Rodrigo Ledesma-Amaro
- Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, UK
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
- Correspondence: (D.K.); (R.L-A.)
| |
Collapse
|
12
|
Kang D, Huang Y, Nesme J, Herschend J, Jacquiod S, Kot W, Hansen LH, Lange L, Sørensen SJ. Metagenomic analysis of a keratin-degrading bacterial consortium provides insight into the keratinolytic mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 761:143281. [PMID: 33190895 DOI: 10.1016/j.scitotenv.2020.143281] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/11/2020] [Accepted: 10/24/2020] [Indexed: 06/11/2023]
Abstract
Keratin is an insoluble fibrous protein from natural environments, which can be recycled to value-added products by keratinolytic microorganisms. A microbial consortium with efficient keratinolytic activity was previously enriched from soil, but the genetic basis behind its remarkable degradation properties was not investigated yet. To identify the metabolic pathways involved in keratinolysis and clarify the observed synergy among community members, shotgun metagenomic sequencing was performed to reconstruct metagenome-assembled genomes. More than 90% genera of the enriched bacterial consortium were affiliated to Chryseobacterium, Stenotrophomonas, and Pseudomonas. Metabolic potential and putative keratinases were predicted from the metagenomic annotation, providing the genetic basis of keratin degradation. Furthermore, metabolic pathways associated with keratinolytic processes such as amino acid metabolism, disulfide reduction and urea cycle were investigated from seven high-quality metagenome-assembled genomes, revealing the potential metabolic cooperation related to keratin degradation. This knowledge deepens the understanding of microbial keratinolytic mechanisms at play in a complex community, pinpointing the significance of synergistic interactions, which could be further used to optimize industrial keratin degradation processes.
Collapse
Affiliation(s)
- Dingrong Kang
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark; TERRA Research and Teaching Centre, Microbial Processes and Interactions (MiPI), Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Yuhong Huang
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Building 224, Søltofts Plads, 2800 Kongens Lyngby, Denmark; Beijing Key Laboratory of Ionic Liquids Clean Process, Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Joseph Nesme
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jakob Herschend
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Samuel Jacquiod
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark; Agroécologie, AgroSup Dijon, INRA, Univ. Bourgogne Franche-Comté, France
| | - Witold Kot
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Lars Hestbjerg Hansen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Lene Lange
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Building 224, Søltofts Plads, 2800 Kongens Lyngby, Denmark; Bioeconomy, Research & Advisory, Karensgade 5, DK-2500 Valby, Denmark
| | - Søren J Sørensen
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
13
|
Zhu Z, Shan L, Zhang X, Hu F, Zhong D, Yuan Y, Zhang J. Effects of bacterial community composition and structure in drinking water distribution systems on biofilm formation and chlorine resistance. CHEMOSPHERE 2021; 264:128410. [PMID: 33002803 DOI: 10.1016/j.chemosphere.2020.128410] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/25/2020] [Accepted: 09/19/2020] [Indexed: 06/11/2023]
Abstract
Community-intrinsic properties affect the composition and function of a microbial community. Understanding the microbial community-intrinsic properties in drinking water distribution systems (DWDS) could help to select disinfection strategies and aid in the prevention of waterborne infectious diseases. In this study, we investigated the formation of multi-species biofilms in six groups, each consisting of four or five mixed bacterial strains isolated from a simulated DWDS, at different incubation times (24, 48, and 72 h). We then evaluated the chlorine resistance of the 72-h multi-species biofilms in the presence of 0.3, 0.6, 1, 2, 4, and 10 mg/L residual chlorine. Microbacterium laevaniformans inhibited the formation of multi-species biofilms, Sphingomonas sp., Acinetobacter sp. and A. deluvii had the effect of promoting their growth, and B. cereus has little effect on the growth of multi-species biofilms. However, these inhibition and promotion effects were weak and inadequate to completely control the growth of multi-species biofilms. All multi-species produced strong biofilms after 72 h incubation, which could be due to microbial community-intrinsic properties. Community-intrinsic properties could maintain high EPS production and cell-to-cell connections in multi-species biofilms, and could affect the formation of multi-species biofilms. The chlorine resistance of multi-species biofilms was significantly improved by B. cereus, but significantly reduced by M. laevaniformans. These results indicated that the microbial community-intrinsic properties were influenced by the environment. At a relatively low disinfectant concentration (<2 mg/L residual chlorine), the community-intrinsic properties were maintained; however, when the disinfectant concentration was increased to 2-4 mg/L residual chlorine, the community-intrinsic properties weakened, and significantly affected the resistance of the microbial communities to the disinfectant. With further increases in concentration, to >4 mg/L residual chlorine, no significant difference was observed in the disinfectant resistance of the microbial community.
Collapse
Affiliation(s)
- Zebing Zhu
- School of Civil Engineering and Architecture, East China Jiao Tong University, Nanchang, 330013, PR China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
| | - Lili Shan
- School of Civil Engineering and Architecture, East China Jiao Tong University, Nanchang, 330013, PR China
| | - Xinyun Zhang
- School of Civil Engineering and Architecture, East China Jiao Tong University, Nanchang, 330013, PR China
| | - Fengping Hu
- School of Civil Engineering and Architecture, East China Jiao Tong University, Nanchang, 330013, PR China.
| | - Dan Zhong
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Yixing Yuan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Jie Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| |
Collapse
|
14
|
Bengtsson-Palme J. Microbial model communities: To understand complexity, harness the power of simplicity. Comput Struct Biotechnol J 2020; 18:3987-4001. [PMID: 33363696 PMCID: PMC7744646 DOI: 10.1016/j.csbj.2020.11.043] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 12/14/2022] Open
Abstract
Natural microbial communities are complex ecosystems with myriads of interactions. To deal with this complexity, we can apply lessons learned from the study of model organisms and try to find simpler systems that can shed light on the same questions. Here, microbial model communities are essential, as they can allow us to learn about the metabolic interactions, genetic mechanisms and ecological principles governing and structuring communities. A variety of microbial model communities of varying complexity have already been developed, representing different purposes, environments and phenomena. However, choosing a suitable model community for one's research question is no easy task. This review aims to be a guide in the selection process, which can help the researcher to select a sufficiently well-studied model community that also fulfills other relevant criteria. For example, a good model community should consist of species that are easy to grow, have been evaluated for community behaviors, provide simple readouts and - in some cases - be of relevance for natural ecosystems. Finally, there is a need to standardize growth conditions for microbial model communities and agree on definitions of community-specific phenomena and frameworks for community interactions. Such developments would be the key to harnessing the power of simplicity to start disentangling complex community interactions.
Collapse
Affiliation(s)
- Johan Bengtsson-Palme
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Guldhedsgatan 10, SE-413 46 Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
15
|
Microbial enzymes catalyzing keratin degradation: Classification, structure, function. Biotechnol Adv 2020; 44:107607. [PMID: 32768519 PMCID: PMC7405893 DOI: 10.1016/j.biotechadv.2020.107607] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/11/2022]
Abstract
Keratin is an insoluble and protein-rich epidermal material found in e.g. feather, wool, hair. It is produced in substantial amounts as co-product from poultry processing plants and pig slaughterhouses. Keratin is packed by disulfide bonds and hydrogen bonds. Based on the secondary structure, keratin can be classified into α-keratin and β-keratin. Keratinases (EC 3.4.-.- peptide hydrolases) have major potential to degrade keratin for sustainable recycling of the protein and amino acids. Currently, the known keratinolytic enzymes belong to at least 14 different protease families: S1, S8, S9, S10, S16, M3, M4, M14, M16, M28, M32, M36, M38, M55 (MEROPS database). The various keratinolytic enzymes act via endo-attack (proteases in families S1, S8, S16, M4, M16, M36), exo-attack (proteases in families S9, S10, M14, M28, M38, M55) or by action only on oligopeptides (proteases in families M3, M32), respectively. Other enzymes, particularly disulfide reductases, also play a key role in keratin degradation as they catalyze the breakage of disulfide bonds for better keratinase catalysis. This review aims to contribute an overview of keratin biomass as an enzyme substrate and a systematic analysis of currently sequenced keratinolytic enzymes and their classification and reaction mechanisms. We also summarize and discuss keratinase assays, available keratinase structures and finally examine the available data on uses of keratinases in practical biorefinery protein upcycling applications.
Collapse
|