1
|
Dias A, Alvarez M, Gándola Y, Deisting A, Alba Posse E, Arnaldi H, Asorey H, Bertou X, Colque A, Favela-Pérez F, Gasulla J, Gómez Berisso M, Guerra-Pulido JO, Lipovetzky J, Lobera J, Lovino MB, Marpegan L, Martín D, Mejía Muñoz S, Monroe J, Nadra AD, Pregliasco R, Rumi G, Rossen A, Tallis M, Thompson A, Triana M, Vazquez Miranda ML. PlomBOX: a low cost bioassay for the sensitive detection of lead in drinking water. COMMUNICATIONS ENGINEERING 2025; 4:2. [PMID: 39774792 PMCID: PMC11707191 DOI: 10.1038/s44172-024-00337-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025]
Abstract
This paper reports the design of a biosensor for sensitive, low-cost measurement of lead in drinking water. The biosensor uses a genetically-modified strain of Escherichia coli, which serves as both signal amplifier and reporter of lead in water, measured via colour change. We developed the PlomBOX measurement platform to image this colour change and we demonstrate its capability to detect concentrations as low as the World Health Organisation upper limit for drinking water of 10 ppb. Our approach does not require expensive infrastructure or expert operators, and its automated sensing, detection and result visualisation platform is user-friendly and robust compared to existing lead biosensors-critical features to enable measurement by non-experts at the point of use.
Collapse
Affiliation(s)
- A Dias
- Department of Physics, Royal Holloway, University of London, Egham, UK.
| | - M Alvarez
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina.
| | - Y Gándola
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina.
| | - A Deisting
- Department of Physics, Royal Holloway, University of London, Egham, UK.
- Institut für Physik & Exzellenzcluster PRISMA+, Johannes Gutenberg-Universität Mainz, Mainz, Germany.
| | - E Alba Posse
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - H Arnaldi
- Centro Atómico Bariloche and Instituto Balseiro, Comisión Nacional de Energía Atómica (CNEA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo (UNCUYO), San Carlos de Bariloche, Argentina
| | - H Asorey
- Centro Atómico Bariloche and Instituto Balseiro, Comisión Nacional de Energía Atómica (CNEA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo (UNCUYO), San Carlos de Bariloche, Argentina
- Instituto de Tecnologías en Detección y Astropartículas, Comisión Nacional de Energía Atómica (CNEA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de San Martín (UNSAM), Buenos Aires, Argentina
| | - X Bertou
- Centro Atómico Bariloche and Instituto Balseiro, Comisión Nacional de Energía Atómica (CNEA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo (UNCUYO), San Carlos de Bariloche, Argentina
| | - A Colque
- Facultad de Arquitectura, Diseño y Urbanismo, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - F Favela-Pérez
- Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, CDMX, Mexico
| | - J Gasulla
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - M Gómez Berisso
- Centro Atómico Bariloche and Instituto Balseiro, Comisión Nacional de Energía Atómica (CNEA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo (UNCUYO), San Carlos de Bariloche, Argentina
| | - J O Guerra-Pulido
- Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, CDMX, Mexico
| | - J Lipovetzky
- Centro Atómico Bariloche and Instituto Balseiro, Comisión Nacional de Energía Atómica (CNEA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo (UNCUYO), San Carlos de Bariloche, Argentina
| | - J Lobera
- Centro Atómico Bariloche and Instituto Balseiro, Comisión Nacional de Energía Atómica (CNEA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo (UNCUYO), San Carlos de Bariloche, Argentina
| | - M B Lovino
- Centro Atómico Bariloche and Instituto Balseiro, Comisión Nacional de Energía Atómica (CNEA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo (UNCUYO), San Carlos de Bariloche, Argentina
| | - L Marpegan
- Centro Atómico Bariloche and Instituto Balseiro, Comisión Nacional de Energía Atómica (CNEA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo (UNCUYO), San Carlos de Bariloche, Argentina
| | - D Martín
- Facultad de Arquitectura, Diseño y Urbanismo, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - S Mejía Muñoz
- Facultad de Arquitectura, Diseño y Urbanismo, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - J Monroe
- Department of Physics, Royal Holloway, University of London, Egham, UK
- Department of Physics, University of Oxford, Oxford, UK
| | - A D Nadra
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - R Pregliasco
- Centro Atómico Bariloche and Instituto Balseiro, Comisión Nacional de Energía Atómica (CNEA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo (UNCUYO), San Carlos de Bariloche, Argentina
| | - G Rumi
- Centro Atómico Bariloche and Instituto Balseiro, Comisión Nacional de Energía Atómica (CNEA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo (UNCUYO), San Carlos de Bariloche, Argentina
| | - A Rossen
- Subgerencia Laboratorio de Calidad de Agua, Instituto Nacional del Agua, Buenos Aires, Argentina
| | - M Tallis
- Centro Atómico Bariloche and Instituto Balseiro, Comisión Nacional de Energía Atómica (CNEA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo (UNCUYO), San Carlos de Bariloche, Argentina
| | - A Thompson
- Department of Physics, Royal Holloway, University of London, Egham, UK
| | - M Triana
- Facultad de Arquitectura, Diseño y Urbanismo, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - M L Vazquez Miranda
- Facultad Regional Avellaneda, Universidad Tecnológica Nacional, Buenos Aires, Argentina
| |
Collapse
|
2
|
Phillips-Rose LS, Yu CK, West NP, Fraser JA. A Chimeric ORF Fusion Phenotypic Reporter for Cryptococcus neoformans. J Fungi (Basel) 2024; 10:567. [PMID: 39194893 DOI: 10.3390/jof10080567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024] Open
Abstract
The plethora of genome sequences produced in the postgenomic age has not resolved many of our most pressing biological questions. Correlating gene expression with an interrogatable and easily observable characteristic such as the surrogate phenotype conferred by a reporter gene is a valuable approach to gaining insight into gene function. Many reporters including lacZ, amdS, and the fluorescent proteins mRuby3 and mNeonGreen have been used across all manners of organisms. Described here is an investigation into the creation of a robust, synthetic, fusion reporter system for Cryptococcus neoformans that combines some of the most useful fluorophores available in this system with the versatility of the counter-selectable nature of amdS. The reporters generated include multiple composition and orientation variants, all of which were investigated for differences in expression. Evaluation of known promoters from the TEF1 and GAL7 genes was undertaken, elucidating novel expression tendencies of these biologically relevant C. neoformans regulators of transcription. Smaller than lacZ but providing multiple useful surrogate phenotypes for interrogation, the fusion ORF serves as a superior whole-cell assay compared to traditional systems. Ultimately, the work described here bolsters the array of relevant genetic tools that may be employed in furthering manipulation and understanding of the WHO fungal priority group pathogen C. neoformans.
Collapse
Affiliation(s)
- Louis S Phillips-Rose
- Australian Infectious Diseases Research Centre, School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Chendi K Yu
- Australian Infectious Diseases Research Centre, School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Nicholas P West
- Australian Infectious Diseases Research Centre, School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - James A Fraser
- Australian Infectious Diseases Research Centre, School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
3
|
Guo Y, Hu SY, Wu C, Gao CX, Hui CY. Biosynthesis of Indigo Dyes and Their Application in Green Chemical and Visual Biosensing for Heavy Metals. ACS OMEGA 2024; 9:33868-33881. [PMID: 39130558 PMCID: PMC11308077 DOI: 10.1021/acsomega.4c03613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 08/13/2024]
Abstract
Fermentative production of natural colorants using microbial strains has emerged as a cost-effective and sustainable alternative to chemical synthesis. Visual pigments are used as signal outputs in colorimetric bacterial biosensors, a promising method for monitoring environmental pollutants. In this study, we engineered four self-sufficient indigo-forming enzymes, including HbpAv, bFMO, cFMO, and rFPMO, in a model bacterium E. coli. TrxA-bFMO was chosen for its strong ability to produce indigo under T7 lac and mer promoters' regulation. The choice of bacterial hosts, the supplementation of substrate l-tryptophan, and ventilation were crucial factors affecting indigo production. The indigo reporter validated the biosensors for Hg(II), Pb(II), As(III), and Cd(II). The biosensors reported Hg(II) as low as 14.1 nM, Pb(II) as low as 1.5 nM, and As(III) as low as 4.5 nM but increased to 25 μM for Cd(II). The detection ranges for Hg(II), Pb(II), As(III), and Cd(II) were quantified from 14.1 to 225 nM, 1.5 to 24.4 nM, 4.5 to 73.2 nM, and 25 to 200 μM, respectively. The sensitivity, responsive concentration range, and selectivity are comparable to β-galactosidase and luciferase reporter enzymes. This study suggests that engineered enzymes for indigo production have great potential for green chemical synthesis. Additionally, heterologous biosynthesis of indigo production can lead to the development of novel, low-cost, and mini-equipment bacterial biosensors with zero background noise for visual monitoring of pollutant heavy metals.
Collapse
Affiliation(s)
- Yan Guo
- National
Key Clinical Specialty of Occupational Diseases, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen 518020, China
| | - Shun-Yu Hu
- Department
of Pathology and Toxicology, Shenzhen Prevention
and Treatment Center for Occupational Diseases, Shenzhen 518020, China
- Department
of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Can Wu
- Department
of Pathology and Toxicology, Shenzhen Prevention
and Treatment Center for Occupational Diseases, Shenzhen 518020, China
- Department
of Environmental Health, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Chao-Xian Gao
- Department
of Pathology and Toxicology, Shenzhen Prevention
and Treatment Center for Occupational Diseases, Shenzhen 518020, China
| | - Chang-Ye Hui
- Department
of Pathology and Toxicology, Shenzhen Prevention
and Treatment Center for Occupational Diseases, Shenzhen 518020, China
| |
Collapse
|
4
|
Feng B, Hu W, Duan Y, Li Z. A flexible 'plug and play' bicistronic construct and its application in the screening of protein expression system in Escherichia coli. J Microbiol Methods 2024; 221:106928. [PMID: 38583783 DOI: 10.1016/j.mimet.2024.106928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
The bicistronic expression system that utilizes fluorescent reporters has been demonstrated to be a straightforward method for detecting recombinant protein expression levels, particularly when compared to polyacrylamide gel electrophoresis and immunoblot analysis, which are tedious and labor-intensive. However, existing bicistronic reporter systems are less capable of quantitative measurement due to the lag in reporter expression and its negative impact on target protein. In this work, a plug and play bicistronic construct using mCherry as reporter was applied in the screening of optimal replicon and promoter for Sortase expression in Escherichia coli (E. coli). The bicistronic construct allowed the reporter gene and target open reading frame (ORF) to be co-transcribed under the same promoter, resulting in a highly positive quantitative correlation between the expression titer of Sortase and the fluorescent intensity (R2 > 0.97). With the correlation model, the titer of target protein can be quantified by noninvasively measuring the fluorescent intensity. On top of this, the expression of reporter has no significant effect on the yield of target protein, thus favoring a plug and play design for removing reporter gene to generate a plain plasmid for industrial use.
Collapse
Affiliation(s)
- Binbin Feng
- Microbial and Viral Platform, WuXi Biologics (Hangzhou FTZ) Co., Ltd, #9, 388 of No.16 street, Baiyang Avenue, Hangzhou Free Trade Zone, Hangzhou, Zhejiang Province, China
| | - Weiwei Hu
- Microbial and Viral Platform, WuXi Biologics (Hangzhou FTZ) Co., Ltd, #9, 388 of No.16 street, Baiyang Avenue, Hangzhou Free Trade Zone, Hangzhou, Zhejiang Province, China
| | - Yingyi Duan
- Microbial and Viral Platform, WuXi Biologics (Hangzhou FTZ) Co., Ltd, #9, 388 of No.16 street, Baiyang Avenue, Hangzhou Free Trade Zone, Hangzhou, Zhejiang Province, China.
| | - Zhaopeng Li
- Microbial and Viral Platform, WuXi Biologics (Hangzhou FTZ) Co., Ltd, #9, 388 of No.16 street, Baiyang Avenue, Hangzhou Free Trade Zone, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
5
|
Hui CY, Liu MQ, Guo Y. Synthetic bacteria designed using ars operons: a promising solution for arsenic biosensing and bioremediation. World J Microbiol Biotechnol 2024; 40:192. [PMID: 38709285 DOI: 10.1007/s11274-024-04001-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 04/22/2024] [Indexed: 05/07/2024]
Abstract
The global concern over arsenic contamination in water due to its natural occurrence and human activities has led to the development of innovative solutions for its detection and remediation. Microbial metabolism and mobilization play crucial roles in the global cycle of arsenic. Many microbial arsenic-resistance systems, especially the ars operons, prevalent in bacterial plasmids and genomes, play vital roles in arsenic resistance and are utilized as templates for designing synthetic bacteria. This review novelty focuses on the use of these tailored bacteria, engineered with ars operons, for arsenic biosensing and bioremediation. We discuss the advantages and disadvantages of using synthetic bacteria in arsenic pollution treatment. We highlight the importance of genetic circuit design, reporter development, and chassis cell optimization to improve biosensors' performance. Bacterial arsenic resistances involving several processes, such as uptake, transformation, and methylation, engineered in customized bacteria have been summarized for arsenic bioaccumulation, detoxification, and biosorption. In this review, we present recent insights on the use of synthetic bacteria designed with ars operons for developing tailored bacteria for controlling arsenic pollution, offering a promising avenue for future research and application in environmental protection.
Collapse
Affiliation(s)
- Chang-Ye Hui
- Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China.
| | - Ming-Qi Liu
- Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
- School of Public Health, Guangdong Medical University, Dongguan, China
| | - Yan Guo
- Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| |
Collapse
|
6
|
Hui CY, Ma BC, Hu SY, Wu C. Tailored bacteria tackling with environmental mercury: Inspired by natural mercuric detoxification operons. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:123016. [PMID: 38008253 DOI: 10.1016/j.envpol.2023.123016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/30/2023] [Accepted: 11/19/2023] [Indexed: 11/28/2023]
Abstract
Mercury (Hg) and its inorganic and organic compounds significantly threaten the ecosystem and human health. However, the natural and anthropogenic Hg environmental inputs exceed 5000 metric tons annually. Hg is usually discharged in elemental or ionic forms, accumulating in surface water and sediments where Hg-methylating microbes-mediated biotransformation occurs. Microbial genetic factors such as the mer operon play a significant role in the complex Hg biogeochemical cycle. Previous reviews summarize the fate of environmental Hg, its biogeochemistry, and the mechanism of bacterial Hg resistance. This review mainly focuses on the mer operon and its components in detecting, absorbing, bioaccumulating, and detoxifying environmental Hg. Four components of the mer operon, including the MerR regulator, divergent mer promoter, and detoxification factors MerA and MerB, are rare bio-parts for assembling synthetic bacteria, which tackle pollutant Hg. Bacteria are designed to integrate synthetic biology, protein engineering, and metabolic engineering. In summary, this review highlights that designed bacteria based on the mer operon can potentially sense and bioremediate pollutant Hg in a green and low-cost manner.
Collapse
Affiliation(s)
- Chang-Ye Hui
- Shenzhen Prevention and Treatment Center for Occupational Diseases, 2019 Buxin Road, Shenzhen, 518020, China.
| | - Bing-Chan Ma
- Shenzhen Prevention and Treatment Center for Occupational Diseases, 2019 Buxin Road, Shenzhen, 518020, China; School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Shun-Yu Hu
- Shenzhen Prevention and Treatment Center for Occupational Diseases, 2019 Buxin Road, Shenzhen, 518020, China; Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Can Wu
- Shenzhen Prevention and Treatment Center for Occupational Diseases, 2019 Buxin Road, Shenzhen, 518020, China; Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
7
|
Hui CY, Ma BC, Wang YQ, Yang XQ, Cai JM. Designed bacteria based on natural pbr operons for detecting and detoxifying environmental lead: A mini-review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115662. [PMID: 37939554 DOI: 10.1016/j.ecoenv.2023.115662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 11/10/2023]
Abstract
Lead (Pb), a naturally occurring element, is redistributed in the environment mainly due to anthropogenic activities. Pb pollution is a crucial public health problem worldwide due to its adverse effects. Environmental bacteria have evolved various protective mechanisms against high levels of Pb. The pbr operon, first identified in Cupriavidus metallidurans CH34, encodes a unique Pb(II) resistance mechanism involving transport, efflux, sequestration, biomineralization, and precipitation. Similar pbr operons are gradually found in diverse bacterial strains. This review focuses on the pbr-encoded Pb(II) resistance system. It summarizes various whole-cell biosensors harboring artificially designed pbr operons for Pb(II) biomonitoring with fluorescent, luminescent, and colorimetric signal output. Optimization of genetic circuits, employment of pigment-based reporters, and screening of host cells are promising in improving the sensitivity, selectivity, and response range of whole-cell biosensors. Engineered bacteria displaying Pb(II) binding and sequestration proteins, including PbrR and its derivatives, PbrR2 and PbrD, for adsorption are involved. Although synthetic bacteria show great potential in determining and removing Pb at the nanomolar level for environmental protection and food safety, some challenges must be addressed to meet demanding application requirements.
Collapse
Affiliation(s)
- Chang-Ye Hui
- Shenzhen Prevention and Treatment Center for Occupational Diseases, 2019 Buxin Road, Shenzhen 518020, China.
| | - Bing-Chan Ma
- Shenzhen Prevention and Treatment Center for Occupational Diseases, 2019 Buxin Road, Shenzhen 518020, China; School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Yong-Qiang Wang
- Shenzhen Prevention and Treatment Center for Occupational Diseases, 2019 Buxin Road, Shenzhen 518020, China
| | - Xue-Qin Yang
- Shenzhen Prevention and Treatment Center for Occupational Diseases, 2019 Buxin Road, Shenzhen 518020, China
| | - Jin-Min Cai
- Shenzhen Prevention and Treatment Center for Occupational Diseases, 2019 Buxin Road, Shenzhen 518020, China
| |
Collapse
|
8
|
Guo Y, Huang ZL, Zhu DL, Hu SY, Li H, Hui CY. Anthocyanin biosynthetic pathway switched by metalloregulator PbrR to enable a biosensor for the detection of lead toxicity. Front Microbiol 2022; 13:975421. [PMID: 36267188 PMCID: PMC9577363 DOI: 10.3389/fmicb.2022.975421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/21/2022] [Indexed: 11/26/2022] Open
Abstract
Environmental lead pollution mainly caused by previous anthropogenic activities continuously threatens human health. The determination of bioavailable lead is of great significance to predict its ecological risk. Bacterial biosensors using visual pigments as output signals have been demonstrated to have great potential in developing minimal-equipment biosensors for environmental pollutant detection. In this study, the biosynthesis pathway of anthocyanin was heterogeneously reconstructed under the control of the PbrR-based Pb(II) sensory element in Escherichia coli. The resultant metabolic engineered biosensor with colored anthocyanin derivatives as the visual signal selectively responded to concentrations as low as 0.012 μM Pb(II), which is lower than the detection limit of traditional fluorescent protein-based biosensors. A good linear dose–response pattern in a wide Pb(II) concentration range (0.012–3.125 μM) was observed. The color deepening of culture was recognized to the naked eye in Pb(II) concentrations ranging from 0 to 200 μM. Importantly, the response of metabolic engineered biosensors toward Pb(II) was not significantly interfered with by organic and inorganic ingredients in environmental water samples. Our findings show that the metabolic engineering of natural colorants has great potential in developing visual, sensitive, and low-cost bacterial biosensors for the detection and determination of pollutant heavy metals.
Collapse
Affiliation(s)
- Yan Guo
- National Key Clinical Specialty of Occupational Diseases, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Zhen-lie Huang
- Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, China
| | - De-long Zhu
- School of Public Health, Guangdong Medical University, Dongguan, China
- Department of Pathology and Toxicology, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Shun-yu Hu
- National Key Clinical Specialty of Occupational Diseases, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
- Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Han Li
- Department of Pathology and Toxicology, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
- College of Lab Medicine, Hebei North University, Zhangjiakou, China
| | - Chang-ye Hui
- Department of Pathology and Toxicology, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
- *Correspondence: Chang-ye Hui,
| |
Collapse
|
9
|
Berhanu S, Ueda T, Alix JH. The E. coli DnaK chaperone stimulates the α-complementation of β-galactosidase. J Basic Microbiol 2022; 62:669-688. [PMID: 35289419 DOI: 10.1002/jobm.202100487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/11/2022] [Accepted: 02/20/2022] [Indexed: 11/09/2022]
Abstract
pUC18 and pUC19 are well-known high copy-number plasmid vectors routinely used for DNA cloning purposes. We show here that, in E. coli transformed by native pUC18, the α-complementation of β-galactosidase (i.e., mediated by the peptide LacZα18) is intrinsically weak and slow, but is greatly stimulated by the DnaK/DnaJ/GrpE chaperone system. In contrast, the α-complementation mediated by the peptide LacZα19 (in E. coli transformed by the native pUC19) is much more efficient, and therefore does not require the assistance of the DnaK chaperone machinery. The marked difference between these two LacZα peptides is reproduced in cell-free protein expression system coupled with α-complementation. We conclude that: (i) α-complementation of β-galactosidase is DnaK-mediated depending upon the LacZα peptide donor. (ii) DnaK, sensu stricto, is not necessary for α-complementation, but can enhance it to a great extent. (iii) this observation could be used to establish an easy and inexpensive method for screening small molecules libraries in search of DnaK inhibitors and also for deciphering the DnaK-mediated protein quality control mechanism. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Samuel Berhanu
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha, Kashiwa, Chiba Prefecture, Japan
| | - Takuya Ueda
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha, Kashiwa, Chiba Prefecture, Japan
| | - Jean-Hervé Alix
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha, Kashiwa, Chiba Prefecture, Japan
| |
Collapse
|
10
|
Hui CY, Guo Y, Liu L, Yi J. Recent advances in bacterial biosensing and bioremediation of cadmium pollution: a mini-review. World J Microbiol Biotechnol 2021; 38:9. [PMID: 34850291 DOI: 10.1007/s11274-021-03198-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/23/2021] [Indexed: 12/27/2022]
Abstract
Cadmium (Cd) pollution has become a global environmental issue because Cd gets easily accumulated and translocated in the food chain, threatening human health. Considering the detrimental effects and non-biodegradability of environmental Cd, this is an urgent issue that needs to be addressed through the development of robust, cost-effective, and eco-friendly green routes for monitoring and remediating toxic levels of Cd. This article attempts to review various bacterial approaches toward biosensing and bioremediation of Cd in the environment. This review focuses on the recent development of bacterial cell-based biosensors for the detection of bioavailable Cd and the bioremediation of toxic Cd by natural or genetically-engineered bacteria. The present limitations and future perspectives of these available bacterial approaches are outlined. New trends for integrating synthetic biology and metabolic engineering into the design of bacterial biosensors and bioadsorbers are additionally highlighted.
Collapse
Affiliation(s)
- Chang-Ye Hui
- Department of Pathology & Toxicology, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China.
| | - Yan Guo
- National Key Clinical Specialty of Occupational Diseases, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Lisa Liu
- Lewis Katz School of Medicine, Temple University, Pennsylvania, USA
| | - Juan Yi
- Department of Pathology & Toxicology, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| |
Collapse
|
11
|
Hui CY, Guo Y, Wu J, Liu L, Yang XQ, Guo X, Xie Y, Yi J. Detection of Bioavailable Cadmium by Double-Color Fluorescence Based on a Dual-Sensing Bioreporter System. Front Microbiol 2021; 12:696195. [PMID: 34603225 PMCID: PMC8481780 DOI: 10.3389/fmicb.2021.696195] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/18/2021] [Indexed: 01/04/2023] Open
Abstract
Cadmium (Cd) is carcinogenic to humans and can accumulate in the liver, kidneys, and bones. There is widespread presence of cadmium in the environment as a consequence of anthropogenic activities. It is important to detect cadmium in the environment to prevent further exposure to humans. Previous whole-cell biosensor designs were focused on single-sensing constructs but have had difficulty in distinguishing cadmium from other metal ions such as lead (Pb) and mercury (Hg). We developed a dual-sensing bacterial bioreporter system to detect bioavailable cadmium by employing CadC and CadR as separate metal sensory elements and eGFP and mCherry as fluorescent reporters in one genetic construct. The capability of this dual-sensing biosensor was proved to simultaneously detect bioavailable cadmium and its toxic effects using two sets of sensing systems while still maintaining similar specificity and sensitivity of respective signal-sensing biosensors. The productions of double-color fluorescence were directly proportional to the exposure concentration of cadmium, thereby serving as an effective quantitative biosensor to detect bioavailable cadmium. This novel dual-sensing biosensor was then validated to respond to Cd(II) spiked in environmental water samples. This is the first report of the development of a novel dual-sensing, whole-cell biosensor for simultaneous detection of bioavailable cadmium. The application of two biosensing modules provides versatile biosensing signals and improved performance that can make a significant impact on monitoring high concentration of bioavailable Cd(II) in environmental water to reduce human exposure to the harmful effects of cadmium.
Collapse
Affiliation(s)
- Chang-ye Hui
- Department of Pathology & Toxicology, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Yan Guo
- National Key Clinical Specialty of Occupational Diseases, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Jian Wu
- National Key Clinical Specialty of Occupational Diseases, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Lisa Liu
- Lewis Katz School of Medicine, Temple University, Ambler, PA, United States
| | - Xue-qin Yang
- Department of Pathology & Toxicology, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Xiang Guo
- National Key Clinical Specialty of Occupational Diseases, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Ying Xie
- National Key Clinical Specialty of Occupational Diseases, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Juan Yi
- Department of Pathology & Toxicology, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| |
Collapse
|
12
|
Hui CY, Guo Y, Li LM, Liu L, Chen YT, Yi J, Zhang NX. Indigoidine biosynthesis triggered by the heavy metal-responsive transcription regulator: a visual whole-cell biosensor. Appl Microbiol Biotechnol 2021; 105:6087-6102. [PMID: 34291315 DOI: 10.1007/s00253-021-11441-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/22/2021] [Accepted: 07/03/2021] [Indexed: 10/20/2022]
Abstract
During the last few decades, whole-cell biosensors have attracted increasing attention for their enormous potential in monitoring bioavailable heavy metal contaminations in the ecosystem. Visual and measurable output signals by employing natural pigments have been demonstrated to offer another potential choice to indicate the existence of bioavailable heavy metals in recent years. The biosynthesis of the blue pigment indigoidine has been achieved in E. coli following heterologous expression of both BpsA (a single-module non-ribosomal peptide synthetase) and PcpS (a PPTase to activate apo-BpsA). Moreover, we demonstrated herein the development of the indigoidine-based whole-cell biosensors to detect bioavailable Hg(II) and Pb(II) in water samples by employing metal-responsive transcriptional regulator MerR and PbrR as the sensory elements, and the indigoidine biosynthesis gene cluster as a reporter element. The resulting indigoidine-based biosensors presented a good selectivity and high sensitivity to target metal ions. High concentration of target metal exposure could be clearly recognized by the naked eye due to the color change by the secretion of indigoidine, and quantified by measuring the absorbance of the culture supernatants at 600 nm. Dose-response relationships existed between the exposure concentrations of target heavy metals and the production of indigoidine. Although fairly good linear relationships were obtained in a relatively limited concentration range of the concentrations of heavy metal ions, these findings suggest that genetically controlled indigoidine biosynthesis triggered by the MerR family transcriptional regulator can enable a sensitive, visual, and qualitative whole-cell biosensor for bioindicating the presence of bioaccessible heavy metal in environmental water samples. KEY POINTS: • Biosynthesis pathway of indigoidine reconstructed in a high copy number plasmid in E. coli. • Visual and colorimetric detection of Hg(II) and Pb(II) by manipulation of indigoidine biosynthesis through MerR family metalloregulator. •Enhanced detection sensitivity toward Hg(II) and Pb(II) achieved using novel pigment-based whole-cell biosensors.
Collapse
Affiliation(s)
- Chang-Ye Hui
- Department of Pathology & Toxicology, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China.
| | - Yan Guo
- National Key Clinical Specialty of Occupational Diseases, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Li-Mei Li
- Department of Pathology & Toxicology, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Lisa Liu
- Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Yu-Ting Chen
- Department of Pathology & Toxicology, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Juan Yi
- Department of Pathology & Toxicology, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Nai-Xing Zhang
- National Key Clinical Specialty of Occupational Diseases, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China.
| |
Collapse
|
13
|
Guo Y, Hui CY, Liu L, Chen MP, Huang HY. Development of a bioavailable Hg(II) sensing system based on MerR-regulated visual pigment biosynthesis. Sci Rep 2021; 11:13516. [PMID: 34188121 PMCID: PMC8242042 DOI: 10.1038/s41598-021-92878-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/14/2021] [Indexed: 12/02/2022] Open
Abstract
Engineered microorganisms have proven to be a highly effective and robust tool to specifically detect heavy metals in the environment. In this study, a highly specific pigment-based whole-cell biosensor has been investigated for the detection of bioavailable Hg(II) based on an artificial heavy metal resistance operon. The basic working principle of biosensors is based on the violacein biosynthesis under the control of mercury resistance (mer) promoter and mercury resistance regulator (MerR). Engineered biosensor cells have been demonstrated to selectively respond to Hg(II), and the specific response was not influenced by interfering metal ions. The response of violacein could be recognized by the naked eye, and the time required for the maximum response of violacein (5 h) was less than that of enhanced green fluorescence protein (eGFP) (8 h) in the single-signal output constructs. The response of violacein was almost unaffected by the eGFP in a double-promoter controlled dual-signals output construct. However, the response strength of eGFP was significantly decreased in this genetic construct. Exponentially growing violacein-based biosensor detected concentrations as low as 0.39 μM Hg(II) in a colorimetric method, and the linear relationship was observed in the concentration range of 0.78-12.5 μM. Non-growing biosensor cells responded to concentrations as low as 0.006 μM Hg(II) in a colorimetric method and in a Hg(II) containing plate sensitive assay, and the linear relationship was demonstrated in a very narrow concentration range. The developed biosensor was finally validated for the detection of spiked bioavailable Hg(II) in environmental water samples.
Collapse
Affiliation(s)
- Yan Guo
- National Key Clinical Specialty of Occupational Diseases, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Chang-Ye Hui
- Department of Pathology and Toxicology, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China.
| | - Lisa Liu
- Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Min-Peng Chen
- National Key Clinical Specialty of Occupational Diseases, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Hong-Ying Huang
- National Key Clinical Specialty of Occupational Diseases, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| |
Collapse
|
14
|
Zhang NX, Guo Y, Li H, Yang XQ, Gao CX, Hui CY. Versatile artificial mer operons in Escherichia coli towards whole cell biosensing and adsorption of mercury. PLoS One 2021; 16:e0252190. [PMID: 34038487 PMCID: PMC8153442 DOI: 10.1371/journal.pone.0252190] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 05/11/2021] [Indexed: 01/17/2023] Open
Abstract
Mercury exists naturally and mainly as a man-made pollutant in the environment, where it exerts adverse effects on local ecosystems and living organisms. It is important to develop an appropriate synthetic biological device that recognizes, detects and removes the bioavailable fraction of environmental mercury. Both single-signal and double-signal output mercury biosensors were assembled using a natural mer operon as a template. Selectivity and sensitivity of whole-cell biosensors based on artificial mer operons were determined. Three whole-cell biosensors were highly stable at very high concentrations of mercuric chloride, and could detect bioavailable Hg(II) in the concentration range of 6.25-200 μM HgCl2. A novel Hg(II) bioadsorption coupled with biosensing artificial mer operon was assembled. This would allow Hg(II)-induced Hg(II) binding protein cell surface display and green fluorescence emission to be achieved simultaneously while retaining the linear relationship between fluorescent signal and Hg(II) exposure concentration. The present study provides an innovative way to simultaneously detect, quantify, and remove bioavailable heavy metal ions using an artificially reconstructed heavy metal resistance operon.
Collapse
Affiliation(s)
- Nai-xing Zhang
- National Key Clinical Specialty of Occupational Diseases, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Yan Guo
- National Key Clinical Specialty of Occupational Diseases, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Hui Li
- National Key Clinical Specialty of Occupational Diseases, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Xue-Qin Yang
- Department of Pathology & Toxicology, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Chao-xian Gao
- Department of Pathology & Toxicology, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Chang-ye Hui
- Department of Pathology & Toxicology, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| |
Collapse
|
15
|
Ali SA, Mittal D, Kaur G. In-situ monitoring of xenobiotics using genetically engineered whole-cell-based microbial biosensors: recent advances and outlook. World J Microbiol Biotechnol 2021; 37:81. [PMID: 33843020 DOI: 10.1007/s11274-021-03024-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 02/25/2021] [Indexed: 02/07/2023]
Abstract
Industrialisation, directly or indirectly, exposes humans to various xenobiotics. The increased magnitude of chemical pesticides and toxic heavy metals in the environment, as well as their intrusion into the food chain, seriously threatens human health. Therefore, the surveillance of xenobiotics is crucial for social safety and security. Online investigation by traditional methods is not sufficient for the detection and identification of such compounds because of the high costs and their complexity. Advancement in the field of genetic engineering provides a potential opportunity to use genetically modified microorganisms. In this regard, whole-cell-based microbial biosensors (WCBMB) represent an essential tool that couples genetically engineered organisms with an operator/promoter derived from a heavy metal-resistant operon combined with a regulatory protein in the gene circuit. The plasmid controls the expression of the reporter gene, such as gfp, luc, lux and lacZ, to an inducible gene promoter and has been widely applied to assay toxicity and bioavailability. This review summarises the recent trends in the development and application of microbial biosensors and the use of mobile genes for biomedical and environmental safety concerns.
Collapse
Affiliation(s)
- Syed Azmal Ali
- Proteomics and Cell Biology Lab, Animal Biotechnology Center, National Dairy Research Institute, Karnal, Haryana, India. .,Proteomics and Cell Biology Lab, Animal Biotechnology Center, ICAR-National Dairy Research Institute, 132001, Karnal, Haryana, India.
| | - Deepti Mittal
- Animal Biochemistry Division, National Dairy Research Institute, Karnal, Haryana, India
| | - Gurjeet Kaur
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, 2052, Sydney, NSW, Australia
| |
Collapse
|
16
|
Guo Y, Hui CY, Zhang NX, Liu L, Li H, Zheng HJ. Development of Cadmium Multiple-Signal Biosensing and Bioadsorption Systems Based on Artificial Cad Operons. Front Bioeng Biotechnol 2021; 9:585617. [PMID: 33644011 PMCID: PMC7902519 DOI: 10.3389/fbioe.2021.585617] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 01/22/2021] [Indexed: 02/04/2023] Open
Abstract
The development of genetic engineering, especially synthetic biology, greatly contributes to the development of novel metal biosensors. The cad operon encoding cadmium resistance was previously characterized from Pseudomonas putida. In this study, single-, dual-, and triple-signal output Cd(II) biosensors were successfully developed using artificial translationally coupled cad operons. Sensitivity, selectivity, and response toward Cd(II) and Hg(II), of three biosensors were all determined. Reporter signals of three biosensors all increased within the range 0.1-3.125 μM Cd(II). Three biosensors responded strongly to Cd(II), and weakly to Hg(II). However, the detection ranges of Cd(II) and Hg(II) do not overlap in all three biosensors. Next, novel Cd(II) biosensing coupled with bioadsorptive artificial cad operons were assembled for the first time. Cd(II)-induced fluorescence emission, enzymatic indication, and Cd(II) binding protein surface display can be achieved simultaneously. This study provides an example of one way to realize multiple signal outputs and bioadsorption based on the redesigned heavy metal resistance operons, which may be a potential strategy for biodetection and removal of toxic metal in the environment, facilitating the study of the mechanism and dynamics of bioremediation.
Collapse
Affiliation(s)
- Yan Guo
- National Key Clinical Specialty of Occupational Diseases, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Chang-ye Hui
- Department of Pathology and Toxicology, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Nai-xing Zhang
- National Key Clinical Specialty of Occupational Diseases, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Lisa Liu
- Institute of Translational Medicine, Shenzhen Second People's Hospital, Shenzhen, China
| | - Hui Li
- National Key Clinical Specialty of Occupational Diseases, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Hong-ju Zheng
- National Key Clinical Specialty of Occupational Diseases, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| |
Collapse
|
17
|
Hui CY, Guo Y, Liu L, Zhang NX, Gao CX, Yang XQ, Yi J. Genetic control of violacein biosynthesis to enable a pigment-based whole-cell lead biosensor. RSC Adv 2020; 10:28106-28113. [PMID: 35519119 PMCID: PMC9055639 DOI: 10.1039/d0ra04815a] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/16/2020] [Indexed: 12/13/2022] Open
Abstract
Environmental risks continue to grow due to heavy metal contamination caused by anthropogenic activities. Accumulation of harmful quantities of lead poses a threat to aquatic organisms, plants, and human beings. Whole-cell biosensors, which can proliferate independently, can detect the bioavailable fraction to assess the effect of target heavy metal on the environmental ecosystem. In this study, the biosynthesis pathway of violacein was heterogeneously constructed under the control of the T7 lac promoter in E. coli. A dose–response relationship existed between the inducer and the production of violacein. The biosynthesis pathway of violacein was finally engineered under the regulation of Pb(ii)-dependent metalloregulator PbrR to assemble Pb(ii)-inducible whole-cell biosensor. It permitted specific biosensing of Pb(ii) with extraordinary selectivity, and could resist the interferences from various metal ions. Color change by the intracellular accumulation of violacein could be recognized with the naked eye directly with high concentration of lead exposure, and quantified by determining the absorbance at 490 nm after butanol extraction. A good linear range for Pb(ii) concentrations of 0.1875–1.5 μM was obtained. The novel pigment-based whole-cell biosensor could detect concentrations as low as 0.1875 μM Pb(ii) based on in vitro quantification of violacein extracted by butanol, which is significantly lower than reported fluorescent protein-based PbrR-regulated biosensors based on direct measurement of whole cell fluorescence. These results indicate that genetically controlled violacein biosynthesis can enable a sensitive, visual, and qualitative biosensor for monitoring the presence of bioavailable Pb(ii) in lead-contaminated water. Genetically controlled violacein biosynthesis can enable a sensitive, visual, and qualitative biosensor for monitoring the presence of bioavailable lead.![]()
Collapse
Affiliation(s)
- Chang-ye Hui
- Department of Pathology & Toxicology
- Shenzhen Prevention and Treatment Center for Occupational Diseases
- Shenzhen
- China
| | - Yan Guo
- National Key Clinical Specialty of Occupational Diseases
- Shenzhen Prevention and Treatment Center for Occupational Diseases
- Shenzhen
- China
| | - Lisa Liu
- Institute of Translational Medicine
- Shenzhen Second People's Hospital
- Shenzhen
- China
| | - Nai-xing Zhang
- National Key Clinical Specialty of Occupational Diseases
- Shenzhen Prevention and Treatment Center for Occupational Diseases
- Shenzhen
- China
| | - Chao-xian Gao
- Department of Pathology & Toxicology
- Shenzhen Prevention and Treatment Center for Occupational Diseases
- Shenzhen
- China
| | - Xue-qin Yang
- Department of Pathology & Toxicology
- Shenzhen Prevention and Treatment Center for Occupational Diseases
- Shenzhen
- China
| | - Juan Yi
- Department of Pathology & Toxicology
- Shenzhen Prevention and Treatment Center for Occupational Diseases
- Shenzhen
- China
| |
Collapse
|