1
|
Zavelinski VAB, Vieira VI, Bassi LS, de Almeida LM, Schramm VG, Maiorka A, de Oliveira SG. The effect of protease supplementation in broiler chicken diets containing maize from different batches on growth performance and nutrient digestibility. Animal 2024; 18:101363. [PMID: 39566363 DOI: 10.1016/j.animal.2024.101363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 11/22/2024] Open
Abstract
Maize is the primary energy source in poultry diets. Nutritional and physical traits related to maize composition can affect nutrient utilization, as well as the efficacy of exogenous enzymes. A study was conducted to evaluate the effect of maize from different batches and protease supplementation on growth performance and ileal nutrient digestibility of broiler chickens from 1 to 40 days of age. A total of 1 920-day-old Ross 308 male chicks were assigned in a complete randomized design distributed into a 2 × 2 factorial arrangement comprising maize from two different batches (A and B) without and with protease (0 and 200 g/t), totaling 4 treatments and 12 replicates of 40 broiler chickens each. Experimental diets were divided into starter, grower I, grower II, and finisher phases. Both maize types were analyzed for nutritional composition, hardness, and structural differences in the starch granules via scanning electron microscopy. Feed intake, weight gain (WG), and feed conversion ratio (FCR) were evaluated. Ileal digesta was collected at 35 days to determine the apparent ileal digestibility (AID) of DM, CP, and ileal digestible energy (IDE). Hardness was higher in maize grains from batch A (P < 0.05), which may be associated with the denser and compact starch granules observed in electron microscopy. Broiler chickens fed maize from batch B and supplemented with protease showed greater WG and better FCR from 9 to 19 days (P < 0.05). From 1 to 40 days, birds fed the maize B diet had greater WG and lower FCR compared to those fed the maize A diet (P < 0.05). In the total period, protease supplementation reduced FCR (P < 0.01). No differences were found for AID of DM and CP, but broilers fed maize B diets had greater IDE (P < 0.05). In conclusion, although nutrient ileal digestibility was unaffected by treatments, the use of maize B led to superior growth performance and energy utilization due to its softer endosperm and starch composition, and protease supplementation reduced FCR and increased IDE regardless of maize batch.
Collapse
Affiliation(s)
- V A B Zavelinski
- Department of Animal Science, Federal University of Parana (UFPR), Curitiba, 80035-050 PR, Brazil
| | - V I Vieira
- Department of Animal Science, Federal University of Parana (UFPR), Curitiba, 80035-050 PR, Brazil.
| | - L S Bassi
- Department of Animal Science, Federal University of Parana (UFPR), Curitiba, 80035-050 PR, Brazil
| | - L M de Almeida
- Department of Animal Science, Federal University of Parana (UFPR), Curitiba, 80035-050 PR, Brazil
| | - V G Schramm
- Department of Animal Science, Federal University of Parana (UFPR), Curitiba, 80035-050 PR, Brazil
| | - A Maiorka
- Department of Animal Science, Federal University of Parana (UFPR), Curitiba, 80035-050 PR, Brazil
| | - S G de Oliveira
- Department of Animal Science, Federal University of Parana (UFPR), Curitiba, 80035-050 PR, Brazil
| |
Collapse
|
2
|
Li Z, Xu J, Zhang F, Wang L, Yue Y, Wang L, Chen J, Ma H, Feng J, Min Y. Dietary starch structure modulates nitrogen metabolism in laying hens via modifying glucose release rate. Int J Biol Macromol 2024; 279:135554. [PMID: 39270891 DOI: 10.1016/j.ijbiomac.2024.135554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024]
Abstract
The objective of this study was to investigate the effects of starch structure (Amylopectin/Amylose, AP/AM) in a low-protein diet on production performance, nitrogen utilization efficiency, and cecal flora in laying hens. Four hundred eighty 45-wk-age Hy-Line Gray laying hens were randomly allocated to five dietary groups and subjected to a 12-wk feeding trial. The AP/AM ratios of the five experiment diets were 1.0, 1.5, 2.0, 3.0, and 4.0. The results indicated that compared to other groups, laying hens fed with AP/AM 4.0 diets showed significantly improved average egg weight and feed conversion ratio (P < 0.05). Furthermore, as the AP/AM ratio increased, there was a significant linear enhancement in intestinal amino acids apparent digestibility, apparent metabolizable energy, and villus area (P < 0.05). Compared to the high AP groups, high-AM diets significantly increased eggshell thickness, crude protein digestibility, and reduced energy supply from amino acid oxidation in ileum (P < 0.05). Additionally, moderate-AM diets enriched with short-chain fatty acid-producing bacteria in the cecum, such as Lactobacillus, Rikenellaceae_RC9_gut_group, and Christensenellaceae_R-7_group, which are associated with the promoting nitrogen utilization. These findings may offer useful information on optimizing starch structure for the design of food products and relevant therapies due to the potential effects on nutrient metabolism and gut homeostasis.
Collapse
Affiliation(s)
- Zhuorui Li
- College of Animal Science & Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jingya Xu
- College of Animal Science & Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Fengdong Zhang
- College of Animal Science & Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Leiqing Wang
- College of Animal Science & Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yanrui Yue
- College of Animal Science & Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lijun Wang
- College of Animal Science & Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jian Chen
- College of Animal Science & Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hui Ma
- College of Animal Science & Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jia Feng
- College of Animal Science & Technology, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Yuna Min
- College of Animal Science & Technology, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
3
|
Diehl JJE, van Eerden E, Duijster M, Kwakkel RP. Supply organ development of young broilers in response to increased carbohydrates and amino acids in the starter period. Poult Sci 2024; 103:104092. [PMID: 39116662 PMCID: PMC11363853 DOI: 10.1016/j.psj.2024.104092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/27/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
The growth of broiler chickens is marked by high fluctuations, varying nutrient requirement, early growth is characterized by high allometric growth rates of supply organs, which if underdeveloped, can impede nutrient efficiency and growth of demand organs like muscle and skeleton. This study aimed to investigate the impact of carbohydrate- and amino-acid-rich diets on the development of supply organs in broiler chickens. Four dietary treatments were used in a 2 × 2 factorial arrangement of treatments with apparent metabolizable energy (AME) at 2 levels (low: 2,750 kcal/kg and high: 3,050 kcal/kg) and standardized ileal digestible (SID) lysine at 2 levels (low: 1.0% and high: 1.2%) in the starter diets. Feed intake (FI) and BW gain were measured weekly; dissections were conducted at d 4 and d 11 to determine supply organ weights. Allometric growth of the liver was higher (P < 0.001) in the high AME and low lysine group compared to the other groups. For the pancreas, the highest (P < 0.001) allometric growth rate was in the high lysine groups. The small intestines responded differently; the duodenum had the highest (P < 0.001) allometric growth rate in the high AME groups and the jejunum in the low lysine groups, whereas the ileum showed an effect of diet density. For performance, high AME from carbohydrates, via maize starch, had a negative effect (P < 0.001) on FI and BW gain. High lysine had a positive effect (P < 0.001) on BW gain and FI, and high lysine alleviated part of the detrimental effect of high AME from carbohydrates. This effect was visible from d 0 to d 11, and persisted till the end of the trial on d 35. In conclusion, feeding a diet with a high AME from carbohydrates has negative consequences for the development of the supply organs of broilers.
Collapse
Affiliation(s)
- J J E Diehl
- Animal Nutrition Group, Department of Animal Sciences, Wageningen University, 6700AH Wageningen, The Netherlands.
| | - E van Eerden
- Schothorst Feed Research, 8200AM Lelystad, The Netherlands
| | - M Duijster
- Global Nutrition Department, De Heus Animal Nutrition B.V., 6710BJ Ede, The Netherlands
| | - R P Kwakkel
- Animal Nutrition Group, Department of Animal Sciences, Wageningen University, 6700AH Wageningen, The Netherlands
| |
Collapse
|
4
|
Morgan NK, Kim E, González-Ortiz G. Holo-analysis of the effects of xylo-oligosaccharides on broiler chicken performance. Br Poult Sci 2024; 65:79-86. [PMID: 37955138 DOI: 10.1080/00071668.2023.2280963] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/18/2023] [Indexed: 11/14/2023]
Abstract
1. Xylo-oligosaccharides (XOS) stimulate proliferation of beneficial bacteria in the gastrointestinal tract of broiler chickens. This results in enhanced utilisation of dietary non-starch polysaccharides and increased production of valuable short-chain fatty acids. However, these positive effects do not always translate into improved bird productive performance, with inconsistent performance responses observed between bird trials.2. A holo-analysis was conducted to determine the effects of supplementing XOS into broiler diets on bird feed intake, body weight gain, feed conversion and mortality. This was done by comparing the XOS supplemented treatment to the control treatment. A total of 53 studies which met the criteria for inclusion were used in the analysis.3. The results showed that XOS had a notable positive impact on bird mortality; XOS reduced mortality by 0.69% for every 1% increment in the control group. XOS supplementation induced a positive effect on the feed conversion ratio (FCR). However, the efficacy of XOS at improving FCR was dependent on the efficiency of the control group (performance of the flock), and the concentration of total arabinoxylan, protein and phytase in the diet. There were insufficient data points to predict the effect of XOS on body weight and feed intake.4. In conclusion, the holo-analysis revealed that supplementing XOS to broiler chicken diets reduces bird mortality. XOS can also improve FCR, but the scale of response is dependent on the diet composition and control flock performance. Additional studies are required to confirm the effects of XOS on body weight and feed intake.
Collapse
Affiliation(s)
- N K Morgan
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - E Kim
- School of Environmental and Rural Science, University of New England, Armidale, New South Wales, Australia
| | | |
Collapse
|
5
|
Bassi LS, Hejdysz M, Pruszyńska-Oszmalek E, Wolc A, Cowieson AJ, Sorbara JOB, Svihus B, Kaczmarek SA. The effect of amylase supplementation on individual variation, growth performance, and starch digestibility in broiler chickens. Poult Sci 2023; 102:102563. [PMID: 36871332 PMCID: PMC9995474 DOI: 10.1016/j.psj.2023.102563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
The objective of this study was to evaluate the variance of starch digestibility in broilers individually fed diets without or with supplemental exogenous amylase. A total of 120 d-of-hatch male chicks were individually reared from 5 to 42 d in metallic cages and fed maize-based basal diets or diets containing 80 kilo-novo-α-amylase units/kg (60 birds or replicates per treatment). Beginning on d 7, feed intake, body weight gain, and feed conversion ratio were recorded; partial excreta collection was conducted every Monday, Wednesday, and Friday until 42 d, when all birds were sacrificed for individual collection of duodenal and ileal digesta. Lower feed intake (4,675 vs. 4,815 g) and feed conversion ratio (1.470 vs. 1.508) were observed in amylase-fed broilers during the overall period (7-43 d; P < 0.01), whereas body weight gain was not affected. Amylase supplementation improved total tract starch (TTS) digestibility (P < 0.05) on each day of excreta collection (except for d 28, where no difference was found), averaging 0.982 vs. 0.973 compared to basal-fed broilers from d 7 to 42. Both apparent ileal starch (AIS) digestibility and apparent metabolizable energy (AMEN) were increased (P <0.05) from 0.968 to 0.976 and from 3,119 to 3,198 kcal/kg, respectively, with enzyme supplementation. Activity of amylase in the duodenum was higher (18.6 vs. 50.1 IU/g of digesta) in supplemented birds. Amylase supplementation led to a reduced coefficient of variation for both TTS (averaged 2.41 vs. 0.92% from 7 to 42 d) and AIS digestibilities (1.96 vs. 1.03%), as well as AMEN (0.49 vs. 0.35%), when compared to the nonsupplemented group, indicating lower individual heterogenity. An age effect was detected for TTS digestibility, as both groups saw an increase during the first weeks (slightly more pronounced in the supplemented group); older birds (d 30 onwards) presented a lower TTS digestibility compared to ages between 7 and 25 d. In conclusion, amylase supplementation in maize diets for broilers can attenuate individual bird variation for starch and energy utilization by increasing amylase activity and enhancing starch digestibility.
Collapse
Affiliation(s)
- Lucas S Bassi
- Department of Animal Nutrition, Poznań University of Life Sciences, Poznań 60-637, Poland; Faculty of Biosciences, Norwegian University of Life Sciences, Ås 1430, Norway
| | - Marcin Hejdysz
- Department of Animal Breeding and Animal Product Quality Assessment, Poznań University of Life Sciences, Poznań 60-637, Poland
| | - Ewa Pruszyńska-Oszmalek
- Department of Animal Physiology and Biochemistry and Biostructure, Poznań University of Life Sciences, Poznań 60-637, Poland
| | - Anna Wolc
- Department of Animal Sciences, Iowa State University, Ames, IA 50011, USA; Hy-Line International, Dallas Center, IA 50063, USA
| | | | | | - Birger Svihus
- Faculty of Biosciences, Norwegian University of Life Sciences, Ås 1430, Norway
| | - Sebastian A Kaczmarek
- Department of Animal Nutrition, Poznań University of Life Sciences, Poznań 60-637, Poland.
| |
Collapse
|
6
|
Zurak D, Vlajsović D, Duvnjak M, Salajpal K, Kljak K. Factors affecting starch digestibility rate of maize grain in poultry. WORLD POULTRY SCI J 2023. [DOI: 10.1080/00439339.2023.2163043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- D. Zurak
- Department of Animal Nutrition, University of Zagreb Faculty of Agriculture, Zagreb, Croatia
| | - D. Vlajsović
- Department of Animal Nutrition, University of Zagreb Faculty of Agriculture, Zagreb, Croatia
| | - M. Duvnjak
- Department of Animal Nutrition, University of Zagreb Faculty of Agriculture, Zagreb, Croatia
| | - K. Salajpal
- Department of Animal Science, University of Zagreb Faculty of Agriculture, Zagreb, Croatia
| | - K. Kljak
- Department of Animal Nutrition, University of Zagreb Faculty of Agriculture, Zagreb, Croatia
| |
Collapse
|
7
|
Sharma NK, Ban Z, Classen HL, Yang H, Yan X, Choct M, Wu SB. Net energy, energy utilization, and nitrogen and energy balance affected by dietary pea supplementation in broilers. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2021; 7:506-511. [PMID: 34258439 PMCID: PMC8245792 DOI: 10.1016/j.aninu.2020.06.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 01/10/2023]
Abstract
Pea starch consists predominantly of C-type of amylopectin chain which is more resistant to digestive enzymes than A-type of starch thus slowly digested in poultry. It was hypothesized that the presence of slowly digested pea starch in broiler diets will increase net energy and the efficiency of energy utilization in broilers. Two experiments were performed to investigate starch digestibility of pea at different incubation times (in vitro study) and the effect of dietary pea on heat increment and net energy in broilers using an open-circuit respiratory calorimetry system (in vivo study). One-day-old Ross 308 male broilers were fed a common starter crumble from d 1 to 10 and standard grower diets thereafter. At d 21, birds were transferred to the chambers each housing 2 birds. Each treatment was replicated 6 times with 2 identical runs of 3 replicates per treatment. A wheat-soybean meal-based diet was used as a control and the treatment diet contained 500 g of pea/kg pea. In vitro study showed that pellet processing increased (P < 0.001) starch digestibility, particularly at shorter times for wheat and a much larger response for pea. Birds offered the pea-based diet had lower (P = 0.002) feed intake, lower (P = 0.020) body weight gain, but a similar (P > 0.05) FCR compared to those offered the wheat-based diet. Net energy (NE) and apparent metabolizable energy (AME) values were higher in the pea-based diet than in the wheat-based diet (P = 0.037 for NE and P = 0.018 for AME). Heat production, respiratory quotient, heat increment of feed, efficiency of utilization of gross energy for AME, and efficiency of utilization of AME for NE did not differ (P > 0.05) between the 2 treatments. There was no effect (P > 0.05) of pea on the total tract digestibilities of dry matter, crude protein and ash, but the total tract digestibility of starch was higher (P = 0.022) in the pea-based diet compared to the wheat-based diet. This study provides insight into the energy metabolism of broilers offered a pea-based diet and indicates that dietary pea supplementation increases dietary AME and NE but has no effect on heat increment of feed and the efficiency of energy utilization in broilers.
Collapse
Affiliation(s)
- Nishchal K. Sharma
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| | - Zhibin Ban
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
- Laboratory of Animal Nutrition Metabolism, Jilin Academy of Agricultural Sciences, Gongzhuling, Jilin 136100, China
| | - Hank L. Classen
- Department of Animal and Poultry Science, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada
| | - Huaming Yang
- Laboratory of Animal Nutrition Metabolism, Jilin Academy of Agricultural Sciences, Gongzhuling, Jilin 136100, China
| | - Xiaogang Yan
- Laboratory of Animal Nutrition Metabolism, Jilin Academy of Agricultural Sciences, Gongzhuling, Jilin 136100, China
| | - Mingan Choct
- Office of the Pro Vice-Chancellor External Relations, University of New England, Armidale, NSW 2351, Australia
| | - Shu-Biao Wu
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| |
Collapse
|
8
|
Otaru N, Ye K, Mujezinovic D, Berchtold L, Constancias F, Cornejo FA, Krzystek A, de Wouters T, Braegger C, Lacroix C, Pugin B. GABA Production by Human Intestinal Bacteroides spp.: Prevalence, Regulation, and Role in Acid Stress Tolerance. Front Microbiol 2021; 12:656895. [PMID: 33936013 PMCID: PMC8082179 DOI: 10.3389/fmicb.2021.656895] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/24/2021] [Indexed: 12/11/2022] Open
Abstract
The high neuroactive potential of metabolites produced by gut microbes has gained traction over the last few years, with metagenomic-based studies suggesting an important role of microbiota-derived γ-aminobutyric acid (GABA) in modulating mental health. Emerging evidence has revealed the presence of the glutamate decarboxylase (GAD)-encoding gene, a key enzyme to produce GABA, in the prominent human intestinal genus Bacteroides. Here, we investigated GABA production by Bacteroides in culture and metabolic assays combined with comparative genomics and phylogenetics. A total of 961 Bacteroides genomes were analyzed in silico and 17 metabolically and genetically diverse human intestinal isolates representing 11 species were screened in vitro. Using the model organism Bacteroides thetaiotaomicron DSM 2079, we determined GABA production kinetics, its impact on milieu pH, and we assessed its role in mitigating acid-induced cellular damage. We showed that the GAD-system consists of at least four highly conserved genes encoding a GAD, a glutaminase, a glutamate/GABA antiporter, and a potassium channel. We demonstrated a high prevalence of the GAD-system among Bacteroides with 90% of all Bacteroides genomes (96% in human gut isolates only) harboring all genes of the GAD-system and 16 intestinal Bacteroides strains producing GABA in vitro (ranging from 0.09 to 60.84 mM). We identified glutamate and glutamine as precursors of GABA production, showed that the production is regulated by pH, and that the GAD-system acts as a protective mechanism against acid stress in Bacteroides, mitigating cell death and preserving metabolic activity. Our data also indicate that the GAD-system might represent the only amino acid-dependent acid tolerance system in Bacteroides. Altogether, our results suggest an important contribution of Bacteroides in the regulation of the GABAergic system in the human gut.
Collapse
Affiliation(s)
- Nize Otaru
- Laboratory of Food Biotechnology, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland.,Nutrition Research Unit, University Children's Hospital Zürich, Zürich, Switzerland
| | - Kun Ye
- Laboratory of Food Biotechnology, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Denisa Mujezinovic
- Laboratory of Food Biotechnology, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Laura Berchtold
- Laboratory of Food Biotechnology, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland.,PharmaBiome AG, Zürich, Switzerland
| | - Florentin Constancias
- Laboratory of Food Biotechnology, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Fabián A Cornejo
- Max Planck Unit for the Science of Pathogens, Berlin, Germany.,Laboratory of Molecular Microbiology, Faculty of Chemistry and Biology, University of Santiago, Santiago, Chile
| | - Adam Krzystek
- Laboratory of Human Nutrition, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | | | - Christian Braegger
- Nutrition Research Unit, University Children's Hospital Zürich, Zürich, Switzerland
| | - Christophe Lacroix
- Laboratory of Food Biotechnology, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Benoit Pugin
- Laboratory of Food Biotechnology, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
9
|
Karunaratne ND, Classen HL, Ames NP, Bedford MR, Newkirk RW. Effects of hulless barley and exogenous beta-glucanase levels on ileal digesta soluble beta-glucan molecular weight, digestive tract characteristics, and performance of broiler chickens. Poult Sci 2021; 100:100967. [PMID: 33652524 PMCID: PMC7936222 DOI: 10.1016/j.psj.2020.12.064] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/16/2020] [Accepted: 12/20/2020] [Indexed: 01/07/2023] Open
Abstract
The reduced use of antibiotics in poultry feed has led to the investigation of alternatives to antibiotics, and one such substitution is fermentable carbohydrates. Exogenous β-glucanase (BGase) is commonly used in poultry fed barley-based diets to reduce digesta viscosity. The effects of hulless barley (HB) and BGase levels on ileal digesta soluble β-glucan molecular weight, digestive tract characteristics, and performance of broiler chickens were determined. A total of 360 day-old broilers were housed in battery cages (4 birds per cage) and fed graded levels of high β-glucan HB (CDC Fibar; 0, 30, and 60% replacing wheat) and BGase (Econase GT 200 P; 0, 0.01, and 0.1%) in a 3 × 3 factorial arrangement. Beta-glucan peak molecular weight in the ileal digesta was lower with 30 and 60 than 0% HB, whereas the peak decreased with increasing BGase. The weight average molecular weight was lower at 0.1 than 0% BGase in wheat diets, whereas in HB diets, it was lower at 0.01 and 0.1 than 0% BGase. The maximum molecular weight was lower with 0.01 and 0.1 than 0% BGase regardless of the HB level. The maximum molecular weight was lower with HB than wheat at 0 or 0.01% BGase. Overall, empty weights and lengths of digestive tract sections increased with increasing HB, but there was no BGase effect. Hulless barley decreased the duodenum and jejunum contents, whereas increasing the gizzard (diets with BGase), ileum, and colon contents. The jejunum and small intestine contents decreased with increasing BGase. Ileal and colon pH increased with increasing HB, but there was no BGase effect. Treatment effects were minor on short-chain fatty acids levels and performance. In conclusion, exogenous BGase depolymerized the ileal digesta soluble β-glucan in broiler chickens in a dose-dependent manner. Overall, feed efficiency was impaired by increasing HB levels. However, HB and BGase did not affect carbohydrate fermentation in the ileum and ceca, although BGase decreased ileal viscosity and improved feed efficiency at the 0.1% dietary level.
Collapse
Affiliation(s)
- Namalika D Karunaratne
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon SK S7N 5A8, Canada
| | - Henry L Classen
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon SK S7N 5A8, Canada
| | - Nancy P Ames
- Agriculture and Agri-Food Canada, Winnipeg, R3T 2E1 Manitoba, Canada
| | | | - Rex W Newkirk
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon SK S7N 5A8, Canada.
| |
Collapse
|
10
|
Savary RK, Fiss TA, Abbott DA, Nicholds JA, Van Kessel AG, Classen HL. Development of a Coccidiosis Disease Challenge Model Using a Commercially Available Live Oocyst Vaccine. Avian Dis 2020; 65:149-158. [PMID: 34339134 DOI: 10.1637/aviandiseases-d-20-00105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/30/2020] [Indexed: 11/05/2022]
Abstract
With growing cross-disciplinary collaboration among researchers, it is increasingly important to record detailed methodology to prevent the repetition of preliminary experiments. The purpose of this paper is to explain the development of a coccidiosis challenge model for the investigation of dietary interventions to coccidiosis in broiler chickens. The objectives are to select a dose of mixed species coccidial vaccine and evaluate the suitability (ability to produce a consistent, marked change) of selected response variables important to nutritional studies at different times postinfection (PI). Coccivac-B and Coccivac-B52 (Merck Animal Health) were evaluated as the source of coccidia in three trials. Trials 1 and 2 were randomized complete block designs with four doses (0, 10, 20, or 30 times (×) label dose) of Coccivac-B administered to 12 replicate cages of six birds by repeater pipette (Trial 1) or gavaging needle (Trial 2). Trial 3 used a completely randomized design with 0× or 30× label dose of Coccivac-B52 administered by gavaging needle to six replicate cages of six birds. Birds were gavaged at 15 days of age, and response criteria were evaluated 7 days PI in all trials and again at 10 days PI in Trials 1 and 2. All means are reported in order of increasing coccidia dose with significance accepted at P ≤ 0.05. Broiler performance was not affected by coccidia in Trials 1 or 3 but grew poorer with increasing dose from 0 to 7 days PI in Trial 2 (body weight gain, 465, 421, 388, 365 g; feed to gain, 1.37, 1.47, 1.52, 1.58). As coccidia dose increased, nitrogen corrected apparent metabolizable energy decreased (Trial 1, 3387, 3318, 3267, 3170 kcal kg-1; Trial 2, 3358, 2535, 2422, 2309 kcal kg-1; Trial 3, not measured), while relative weight, length, and content for intestinal sections increased (Trials 1through 3). Gross lesion (duodenum, jejunum/ileum, ceca) and oocyst count scores (jejunum/ileum, ceca) increased with dose; however, gross scoring often suggested infection in unchallenged birds, a finding unsupported by oocyst count scores. At 7 days PI there was no correlation between midgut gross lesion score and midgut oocyst count score (r = 0.06, P = 0.705), but cecal scores were weakly correlated (r = 0.55, P < 0.001). Administering coccidia via repeater pipette (Trial 1) resulted in respiratory distress in some birds, while use of the gavaging needle (Trials 2 and 3) successfully induced intestinal damage in chickens without resulting in coccidia related mortality. Thirty times the label dose at 7 days PI resulted in the greatest number of response variables that produced a consistent, marked change. Therefore, consideration should be given to these conditions when designing future coccidiosis challenge models using vaccines as a source of coccidia.
Collapse
Affiliation(s)
- R K Savary
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5A8,
| | - T A Fiss
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5A8
| | - D A Abbott
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5A8
| | - J A Nicholds
- Department of Veterinary Pathology, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B4
| | - A G Van Kessel
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5A8
| | - H L Classen
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5A8
| |
Collapse
|