1
|
Wester RJ, Baillie LL, McCarthy GC, Keever CC, Jeffery LE, Adams PJ. Dysbiosis not observed in Canadian horse with free fecal liquid (FFL) using 16S rRNA sequencing. Sci Rep 2024; 14:12903. [PMID: 38839848 PMCID: PMC11153561 DOI: 10.1038/s41598-024-63868-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 06/03/2024] [Indexed: 06/07/2024] Open
Abstract
Free Fecal Liquid (FFL), also termed Fecal Water Syndrome (FWS), is an ailment in horses characterized by variable solid and liquid (water) phases at defecation. The liquid phase can be excreted before, during, or after the solid defecation phase. While the underlying causes of FFL are unknown, hindgut dysbiosis is suggested to be associated with FFL. Three European studies investigated dysbiosis in horses with FFL using 16S rRNA sequencing and reported results that conflicted between each other. In the present study, we also used 16S rRNA sequencing to study the fecal microbial composition in 14 Canadian horses with FFL, and 11 healthy stable mate controls. We found no significant difference in fecal microbial composition between FFL and healthy horses, which further supports that dysbiosis is not associated with FFL.
Collapse
Affiliation(s)
- Robert J Wester
- Applied Genomics Centre, Kwantlen Polytechnic University, Surrey, BC, Canada
| | - Lyndsey L Baillie
- Applied Genomics Centre, Kwantlen Polytechnic University, Surrey, BC, Canada
| | - Garrett C McCarthy
- Applied Genomics Centre, Kwantlen Polytechnic University, Surrey, BC, Canada
| | - Carson C Keever
- Faculty of Science, Kwantlen Polytechnic University, Surrey, BC, Canada
| | | | - Paul J Adams
- Applied Genomics Centre, Kwantlen Polytechnic University, Surrey, BC, Canada.
- Faculty of Science, Kwantlen Polytechnic University, Surrey, BC, Canada.
| |
Collapse
|
2
|
Whitfield-Cargile CM, Chung HC, Coleman MC, Cohen ND, Chamoun-Emanuelli AM, Ivanov I, Goldsby JS, Davidson LA, Gaynanova I, Ni Y, Chapkin RS. Integrated analysis of gut metabolome, microbiome, and exfoliome data in an equine model of intestinal injury. MICROBIOME 2024; 12:74. [PMID: 38622632 PMCID: PMC11017594 DOI: 10.1186/s40168-024-01785-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 02/29/2024] [Indexed: 04/17/2024]
Abstract
BACKGROUND The equine gastrointestinal (GI) microbiome has been described in the context of various diseases. The observed changes, however, have not been linked to host function and therefore it remains unclear how specific changes in the microbiome alter cellular and molecular pathways within the GI tract. Further, non-invasive techniques to examine the host gene expression profile of the GI mucosa have been described in horses but not evaluated in response to interventions. Therefore, the objectives of our study were to (1) profile gene expression and metabolomic changes in an equine model of non-steroidal anti-inflammatory drug (NSAID)-induced intestinal inflammation and (2) apply computational data integration methods to examine host-microbiota interactions. METHODS Twenty horses were randomly assigned to 1 of 2 groups (n = 10): control (placebo paste) or NSAID (phenylbutazone 4.4 mg/kg orally once daily for 9 days). Fecal samples were collected on days 0 and 10 and analyzed with respect to microbiota (16S rDNA gene sequencing), metabolomic (untargeted metabolites), and host exfoliated cell transcriptomic (exfoliome) changes. Data were analyzed and integrated using a variety of computational techniques, and underlying regulatory mechanisms were inferred from features that were commonly identified by all computational approaches. RESULTS Phenylbutazone induced alterations in the microbiota, metabolome, and host transcriptome. Data integration identified correlation of specific bacterial genera with expression of several genes and metabolites that were linked to oxidative stress. Concomitant microbiota and metabolite changes resulted in the initiation of endoplasmic reticulum stress and unfolded protein response within the intestinal mucosa. CONCLUSIONS Results of integrative analysis identified an important role for oxidative stress, and subsequent cell signaling responses, in a large animal model of GI inflammation. The computational approaches for combining non-invasive platforms for unbiased assessment of host GI responses (e.g., exfoliomics) with metabolomic and microbiota changes have broad application for the field of gastroenterology. Video Abstract.
Collapse
Affiliation(s)
- C M Whitfield-Cargile
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA.
| | - H C Chung
- Department of Statistics, College of Arts & Sciences, Texas A&M University, College Station, TX, USA
- Mathematics & Statistics Department, College of Science, University of North Carolina Charlotte, Charlotte, NC, USA
| | - M C Coleman
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - N D Cohen
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - A M Chamoun-Emanuelli
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - I Ivanov
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - J S Goldsby
- Program in Integrative Nutrition & Complex Diseases, College of Agriculture & Life Sciences, Texas A&M University, College Station, TX, USA
| | - L A Davidson
- Program in Integrative Nutrition & Complex Diseases, College of Agriculture & Life Sciences, Texas A&M University, College Station, TX, USA
| | - I Gaynanova
- Department of Statistics, College of Arts & Sciences, Texas A&M University, College Station, TX, USA
| | - Y Ni
- Department of Statistics, College of Arts & Sciences, Texas A&M University, College Station, TX, USA
| | - R S Chapkin
- Program in Integrative Nutrition & Complex Diseases, College of Agriculture & Life Sciences, Texas A&M University, College Station, TX, USA
| |
Collapse
|
3
|
Yoon G, Davidson LA, Goldsby JS, Mullens DA, Ivanov I, Donovan SM, Chapkin RS. Exfoliated epithelial cell transcriptome reflects both small and large intestinal cell signatures in piglets. Am J Physiol Gastrointest Liver Physiol 2021; 321:G41-G51. [PMID: 33949197 PMCID: PMC8321797 DOI: 10.1152/ajpgi.00017.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Assessing intestinal development and host-microbe interactions in healthy human infants requires noninvasive approaches. We have shown that the transcriptome of exfoliated epithelial cells in feces can differentiate breast-fed and formula-fed infants and term and preterm infants. However, it is not fully understood which regions of the intestine that the exfoliated cells represent. Herein, the transcriptional profiles of exfoliated cells with that of the ileal and colonic mucosa were compared. We hypothesized that exfoliated cells in the distal colon would reflect mucosal signatures of more proximal regions of the gut. Two-day-old piglets (n = 8) were fed formulas for 20 days. Luminal contents and mucosa were collected from ileum (IL), ascending colon (AC), and descending (DC) colon, and mRNA was extracted and sequenced. On average, ∼13,000 genes were mapped in mucosal tissues and ∼10,000 in luminal contents. The intersection of detected genes between three mucosa regions and DC exfoliome indicated an approximately 99% overlap. On average, 49% of the genes in IL, AC, and DC mucosa were present in the AC and DC exfoliome. Genes expressed predominantly in specific anatomic sites (stomach, pancreas, small intestine, colon) were detectable in exfoliated cells. In addition, gene markers for all intestinal epithelial cell types were expressed in the exfoliome representing a diverse array of cell types arising from both the small and large intestine. Genes were mapped to nutrient absorption and transport and immune function. Thus, the exfoliome represents a robust reservoir of information in which to assess intestinal development and responses to dietary interventions.NEW & NOTEWORTHY The transcriptome of exfoliated epithelial cells in stool contain gene signatures from both small and large intestinal mucosa affording a noninvasive approach to assess gut health and function.
Collapse
Affiliation(s)
- Grace Yoon
- 1Department of Statistics, Texas A&M University, College Station, Texas
| | - Laurie A. Davidson
- 2Department of Nutrition, Texas A&M University, College Station Texas,3Program in Integrative Nutrition & Complex Diseases, Texas A&M University, College Station, Texas
| | - Jennifer S. Goldsby
- 2Department of Nutrition, Texas A&M University, College Station Texas,3Program in Integrative Nutrition & Complex Diseases, Texas A&M University, College Station, Texas
| | - Destiny A. Mullens
- 3Program in Integrative Nutrition & Complex Diseases, Texas A&M University, College Station, Texas,4Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas
| | - Ivan Ivanov
- 4Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas
| | - Sharon M. Donovan
- 5Department of Food Science and Human Nutrition, University of Illinois, Urbana-Champaign, Illinois
| | - Robert S. Chapkin
- 2Department of Nutrition, Texas A&M University, College Station Texas,3Program in Integrative Nutrition & Complex Diseases, Texas A&M University, College Station, Texas
| |
Collapse
|
4
|
Rosa F, Busato S, Avaroma FC, Mohan R, Carpinelli N, Bionaz M, Osorio JS. Short communication: Molecular markers for epithelial cells across gastrointestinal tissues and fecal RNA in preweaning dairy calves. J Dairy Sci 2020; 104:1175-1182. [PMID: 33162086 DOI: 10.3168/jds.2020-18955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/14/2020] [Indexed: 11/19/2022]
Abstract
The objective of this study was to compare the transcription of gene markers for gastrointestinal (GI) epithelial cells, including fatty acid binding protein 2 (FABP2) and cytokeratin 8 (KRT8), and tight junction complex genes (TJP1, CLDN1, CLDN4) in fecal RNA against several GI tract tissue sections in dairy calves. Eight healthy Jersey calves were euthanized at 5 wk of age, and postmortem samples were collected from rumen, duodenum, jejunum, ileum, large intestine, cecum, and feces for total RNA isolation. Tissues and fecal samples were immediately frozen in liquid nitrogen until RNA isolation. A real-time quantitative PCR analysis was performed using a single standard curve composited of equal amounts of all samples, including cDNA from fecal and GI tract tissues. The mRNA expression of the tight junctions TJP1, CLDN1, and CLDN4 was greater in fecal RNA compared with lower GI tract tissues (i.e., duodenum, jejunum, ileum, large intestine, and cecum). Similar to fecal RNA, rumen tissue had greater expression of tight junctions CLDN1 and CLDN4 than lower GI tract tissues. Similarly, rumen tissue had greater expression of TPJ1 than all lower GI tract tissues except duodenum. The expression of TJP1 and CLDN4 was greater in fecal RNA than in rumen tissue; in contrast, CLDN1 mRNA expression was greater in rumen tissue than in the fecal RNA. The expression of FABP2 was greater in duodenum in comparison to all tissue except ileum. The mRNA expression of FABP2 in fecal samples was similar to jejunum and ileum. The expression of KRT8 in fecal samples was similar to duodenum, large intestine, and cecum. The fecal RNA had a greater expression of KRT8 in comparison to jejunum and ileum. The rumen tissue had the lowest mRNA expression of KRT8. The expression levels of FABP2, KRT8, and tight junction genes observed in fecal transcripts suggest that a considerable amount of RNA derived from GI tract epithelial cells can be detected in fecal RNA, which is in agreement with previous data in neonatal dairy calves and other biological models including humans, rodents, and primates. The greater expression of tight junctions in fecal RNA in comparison to sections of the low GI remains to be understood, and due to the importance of tight junctions in GI physiology, further clarification of this effect is warranted. The similarities in mRNA expression of FABP2 and KRT8 between fecal RNA and intestinal sections add up to the accumulating evidence that fecal RNA can be used to investigate molecular alterations in the GI tract of neonatal dairy calves. Further research in this area should include high-throughput transcriptomic analysis via RNA-seq to uncover novel molecular markers for specific sections of the GI tract of neonates.
Collapse
Affiliation(s)
- F Rosa
- Dairy and Food Science Department, South Dakota State University, Brookings, 57007
| | - S Busato
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, 97331
| | - F C Avaroma
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, 97331
| | - R Mohan
- Dairy and Food Science Department, South Dakota State University, Brookings, 57007
| | - N Carpinelli
- Dairy and Food Science Department, South Dakota State University, Brookings, 57007
| | - M Bionaz
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, 97331
| | - J S Osorio
- Dairy and Food Science Department, South Dakota State University, Brookings, 57007.
| |
Collapse
|