1
|
Menary J, Fuller SS. New genomic techniques, old divides: Stakeholder attitudes towards new biotechnology regulation in the EU and UK. PLoS One 2024; 19:e0287276. [PMID: 38446826 PMCID: PMC10917245 DOI: 10.1371/journal.pone.0287276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 11/21/2023] [Indexed: 03/08/2024] Open
Abstract
The European Union and United Kingdom are in the process of establishing new regulation regarding the use of new genomic techniques in crop and animal breeding. As part of this process, consultations have been launched to understand the views of stakeholders towards the use of new genomic techniques in plant and animal breeding. The responsible research and innovation framework emphasises the importance of dialogue between technology developers and stakeholders, including the public, but what are the opinions of stakeholders towards the regulation of NGTs in Europe and do they view these consultations as opportunities to engage with technology governance? We conducted semi-structured interviews with experts from a range of agri-food stakeholder groups in the European Union and United Kingdom to understand current attitudes towards new biotechnology regulation, how they viewed the process of consultation in both places and what influence they felt they had in shaping regulations. We found that the discussion is similar in both EU and UK, with predictable and fixed opinions determined by attitudes towards the perceived risks associated with direct mutagenesis. Both UK and EU consultations were considered to have the same weaknesses and stakeholders discussed a desire for more dialogic forms of engagement. We highlight several options for new forms of involvement in biotechnology regulation by exploring relevant responsible research and innovation literature.
Collapse
Affiliation(s)
- Jonathan Menary
- Health Systems Collaborative, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - Sebastian S. Fuller
- Health Systems Collaborative, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
2
|
Buyel JF. Product safety aspects of plant molecular farming. Front Bioeng Biotechnol 2023; 11:1238917. [PMID: 37614627 PMCID: PMC10442644 DOI: 10.3389/fbioe.2023.1238917] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/31/2023] [Indexed: 08/25/2023] Open
Abstract
Plant molecular farming (PMF) has been promoted since the 1990s as a rapid, cost-effective and (most of all) safe alternative to the cultivation of bacteria or animal cells for the production of biopharmaceutical proteins. Numerous plant species have been investigated for the production of a broad range of protein-based drug candidates. The inherent safety of these products is frequently highlighted as an advantage of PMF because plant viruses do not replicate in humans and vice versa. However, a more nuanced analysis of this principle is required when considering other pathogens because toxic compounds pose a risk even in the absence of replication. Similarly, it is necessary to assess the risks associated with the host system (e.g., the presence of toxic secondary metabolites) and the production approach (e.g., transient expression based on bacterial infiltration substantially increases the endotoxin load). This review considers the most relevant host systems in terms of their toxicity profile, including the presence of secondary metabolites, and the risks arising from the persistence of these substances after downstream processing and product purification. Similarly, we discuss a range of plant pathogens and disease vectors that can influence product safety, for example, due to the release of toxins. The ability of downstream unit operations to remove contaminants and process-related toxic impurities such as endotoxins is also addressed. This overview of plant-based production, focusing on product safety aspects, provides recommendations that will allow stakeholders to choose the most appropriate strategies for process development.
Collapse
Affiliation(s)
- J. F. Buyel
- Department of Biotechnology (DBT), Institute of Bioprocess Science and Engineering (IBSE), University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| |
Collapse
|
3
|
Klocko AL. Genetic Containment for Molecular Farming. PLANTS (BASEL, SWITZERLAND) 2022; 11:2436. [PMID: 36145835 PMCID: PMC9501302 DOI: 10.3390/plants11182436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/08/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022]
Abstract
Plant molecular farming can provide humans with a wide variety of plant-based products including vaccines, therapeutics, polymers, industrial enzymes, and more. Some of these products, such as Taxol, are produced by endogenous plant genes, while many others require addition of genes by artificial gene transfer. Thus, some molecular farming plants are transgenic (or cisgenic), while others are not. Both the transgenic nature of many molecular farming plants and the fact that the products generated are of high-value and specific in purpose mean it is essential to prevent accidental cross-over of molecular farming plants and products into food or feed. Such mingling could occur either by gene flow during plant growth and harvest or by human errors in material handling. One simple approach to mitigate possible transfer would be to use only non-food non-feed species for molecular farming purposes. However, given the extent of molecular farming products in development, testing, or approval that do utilize food or feed crops, a ban on use of these species would be challenging to implement. Therefore, other approaches will need to be considered for mitigation of cross-flow between molecular farming and non-molecular-farming plants. This review summarized some of the production systems available for molecular farming purposes and options to implement or improve plant containment.
Collapse
Affiliation(s)
- Amy L Klocko
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO 80918, USA
| |
Collapse
|
4
|
McNulty MJ, Kelada K, Paul D, Nandi S, McDonald KA. Introducing uncertainty quantification to techno-economic models of manufacturing field-grown plant-made products. FOOD AND BIOPRODUCTS PROCESSING 2021. [DOI: 10.1016/j.fbp.2021.04.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
5
|
Specialized Metabolites and Valuable Molecules in Crop and Medicinal Plants: The Evolution of Their Use and Strategies for Their Production. Genes (Basel) 2021; 12:genes12060936. [PMID: 34207427 PMCID: PMC8235196 DOI: 10.3390/genes12060936] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/28/2021] [Accepted: 06/14/2021] [Indexed: 01/18/2023] Open
Abstract
Plants naturally produce a terrific diversity of molecules, which we exploit for promoting our overall well-being. Plants are also green factories. Indeed, they may be exploited to biosynthesize bioactive molecules, proteins, carbohydrates and biopolymers for sustainable and large-scale production. These molecules are easily converted into commodities such as pharmaceuticals, antioxidants, food, feed and biofuels for multiple industrial processes. Novel plant biotechnological, genetics and metabolic insights ensure and increase the applicability of plant-derived compounds in several industrial sectors. In particular, synergy between disciplines, including apparently distant ones such as plant physiology, pharmacology, ‘omics sciences, bioinformatics and nanotechnology paves the path to novel applications of the so-called molecular farming. We present an overview of the novel studies recently published regarding these issues in the hope to have brought out all the interesting aspects of these published studies.
Collapse
|
6
|
Pang J, Zhou J, Yang D. Knock-in at GluA1 locus improves recombinant human serum albumin expression in rice grain. J Biotechnol 2020; 321:87-95. [PMID: 32619642 DOI: 10.1016/j.jbiotec.2020.06.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/04/2020] [Accepted: 06/22/2020] [Indexed: 01/28/2023]
Abstract
Improving recombinant protein expression is a perpetual goal for molecular pharming. However, over-transcription of recombinant protein induces ER stress, and causes protein degradation. Here, we describe a knock-in approach to integrate a human serum albumin expression cassette into the locus of the rice storage protein GluA1 by site-specific integration via the nonhomologous end joining (NHEJ) pathway. The expression level of OsrHSA in the knock-in (KI) lines was much higher than that of the random integration (RI) lines. ER stress in KI line endosperm cells was not significantly altered even after massive OsrHSA accumulation in rice endosperm cell. Instead, ER stress induced by high OsrHSA expression was alleviated in the KI line via the inositol-requiring enzyme 1 (IRE1)-mediated/OsbZIP50 pathway. Furthermore, improvement of OsrHSA expression in KI lines is likely due to reduction of contents of glutelin and globulin in rice endosperm cell. These results provide insight into an approach to improving recombinant protein accumulation by alleviating ER stress and protein trafficking.
Collapse
Affiliation(s)
- Jianlei Pang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China; Engineering Research Center for Plant Biotechnology and Germplasm Utilization, Ministry of Education, Wuhan University, Wuhan, China
| | - Jiaqi Zhou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Daichang Yang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China; Engineering Research Center for Plant Biotechnology and Germplasm Utilization, Ministry of Education, Wuhan University, Wuhan, China.
| |
Collapse
|
7
|
Shanmugaraj B, I. Bulaon CJ, Phoolcharoen W. Plant Molecular Farming: A Viable Platform for Recombinant Biopharmaceutical Production. PLANTS 2020; 9:plants9070842. [PMID: 32635427 PMCID: PMC7411908 DOI: 10.3390/plants9070842] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/20/2020] [Accepted: 06/30/2020] [Indexed: 12/20/2022]
Abstract
The demand for recombinant proteins in terms of quality, quantity, and diversity is increasing steadily, which is attracting global attention for the development of new recombinant protein production technologies and the engineering of conventional established expression systems based on bacteria or mammalian cell cultures. Since the advancements of plant genetic engineering in the 1980s, plants have been used for the production of economically valuable, biologically active non-native proteins or biopharmaceuticals, the concept termed as plant molecular farming (PMF). PMF is considered as a cost-effective technology that has grown and advanced tremendously over the past two decades. The development and improvement of the transient expression system has significantly reduced the protein production timeline and greatly improved the protein yield in plants. The major factors that drive the plant-based platform towards potential competitors for the conventional expression system are cost-effectiveness, scalability, flexibility, versatility, and robustness of the system. Many biopharmaceuticals including recombinant vaccine antigens, monoclonal antibodies, and other commercially viable proteins are produced in plants, some of which are in the pre-clinical and clinical pipeline. In this review, we consider the importance of a plant- based production system for recombinant protein production, and its potential to produce biopharmaceuticals is discussed.
Collapse
Affiliation(s)
- Balamurugan Shanmugaraj
- Research Unit for Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok 10330, Thailand;
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences Chulalongkorn University, Bangkok 10330, Thailand;
| | - Christine Joy I. Bulaon
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences Chulalongkorn University, Bangkok 10330, Thailand;
| | - Waranyoo Phoolcharoen
- Research Unit for Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok 10330, Thailand;
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences Chulalongkorn University, Bangkok 10330, Thailand;
- Correspondence: ; Tel.: +66-2-218-8359; Fax: +66-2-218-8357
| |
Collapse
|
8
|
Menary J, Amato M, Sanchez AC, Hobbs M, Pacho A, Fuller SS. New Hope for a "Cursed" Crop? Understanding Stakeholder Attitudes to Plant Molecular Farming With Modified Tobacco in Europe. FRONTIERS IN PLANT SCIENCE 2020; 11:791. [PMID: 32595677 PMCID: PMC7304234 DOI: 10.3389/fpls.2020.00791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
Plant molecular farming (PMF) with tobacco could provide a sustainable and cheap platform for the production of high-value proteins for medical use. It could also offer European tobacco farmers an alternative, healthful end use for their crop. New plant breeding techniques (NPBTs) offer a means of quickly and precisely optimizing molecular farming platforms for this purpose. However, there has been little empirical research focussing on the barriers and facilitators of these technologies in the agricultural sphere. Here, we explore key stakeholder perceptions toward this combination of technologies, exploring their understanding of risk and opportunity. We interviewed N = 24 key stakeholders - tobacco farmers, agronomists, policymakers, and researchers - in three tobacco-growing areas of Spain and Italy. Our findings demonstrate these stakeholders have a favorable attitude toward PMF with tobacco due to its beneficial medical purpose and the opportunity it provides farmers to continue growing tobacco in a declining European market. Tobacco producers also reported favorable views toward NPBTs, though for some this was contingent on their use for non-food crops like tobacco. Most stakeholders' concerns are economic in nature, such as potential profitability and demands for new agronomic practices or infrastructure. Tobacco producer associations were thought to be important facilitators for future PMF scale-up. The attitude toward these technologies by smoking tobacco companies is, however, unknown and constitutes a potential risk to the development of PMF.
Collapse
Affiliation(s)
- Jonathan Menary
- Institute for Infection and Immunity, St George’s, University of London, London, United Kingdom
| | - Mario Amato
- Department of Political Science, University of Naples Federico II, Naples, Italy
| | - Andrés Cid Sanchez
- Department of Microbiology, Centro Technológico Agroalimentario Extremadura (CTAEX), Badajoz, Spain
| | - Matthew Hobbs
- Institute for Infection and Immunity, St George’s, University of London, London, United Kingdom
| | - Agata Pacho
- Institute for Infection and Immunity, St George’s, University of London, London, United Kingdom
| | - Sebastian S. Fuller
- Institute for Infection and Immunity, St George’s, University of London, London, United Kingdom
| |
Collapse
|
9
|
Tusé D, Nandi S, McDonald KA, Buyel JF. The Emergency Response Capacity of Plant-Based Biopharmaceutical Manufacturing-What It Is and What It Could Be. FRONTIERS IN PLANT SCIENCE 2020; 11:594019. [PMID: 33193552 PMCID: PMC7606873 DOI: 10.3389/fpls.2020.594019] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 09/24/2020] [Indexed: 05/12/2023]
Abstract
Several epidemic and pandemic diseases have emerged over the last 20 years with increasing reach and severity. The current COVID-19 pandemic has affected most of the world's population, causing millions of infections, hundreds of thousands of deaths, and economic disruption on a vast scale. The increasing number of casualties underlines an urgent need for the rapid delivery of therapeutics, prophylactics such as vaccines, and diagnostic reagents. Here, we review the potential of molecular farming in plants from a manufacturing perspective, focusing on the speed, capacity, safety, and potential costs of transient expression systems. We highlight current limitations in terms of the regulatory framework, as well as future opportunities to establish plant molecular farming as a global, de-centralized emergency response platform for the rapid production of biopharmaceuticals. The implications of public health emergencies on process design and costs, regulatory approval, and production speed and scale compared to conventional manufacturing platforms based on mammalian cell culture are discussed as a forward-looking strategy for future pandemic responses.
Collapse
Affiliation(s)
- Daniel Tusé
- DT/Consulting Group and GROW Biomedicine, LLC, Sacramento, CA, United States
| | - Somen Nandi
- Department of Chemical Engineering, University of California, Davis, Davis, CA, United States
- Global HealthShare Initiative, University of California, Davis, Davis, CA, United States
| | - Karen A. McDonald
- Department of Chemical Engineering, University of California, Davis, Davis, CA, United States
- Global HealthShare Initiative, University of California, Davis, Davis, CA, United States
| | - Johannes Felix Buyel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
- Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
- *Correspondence: Johannes Felix Buyel, ; orcid.org/0000-0003-2361-143X
| |
Collapse
|