1
|
Duarte A, Abade dos Santos FA, Fagulha T, Caetano I, Carvalho P, Carvalho J, Santos AE, de Ayala RP, Duarte MD. Mixed viral infections (Rotavirus, Herpesvirus and others) in European wild rabbits. Vet Anim Sci 2025; 27:100424. [PMID: 39877803 PMCID: PMC11773207 DOI: 10.1016/j.vas.2025.100424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025] Open
Abstract
Infectious viral pathogens significantly impact wild Leporidae populations, particularly Oryctolagus cuniculus algirus, which was listed as 'Endangered' in 2019. Myxomatosis and rabbit haemorrhagic disease are major contributors to severe epizootics with limited long-lasting immunity. This study expanded beyond these well-documented viruses to include a broader spectrum of viruses in 36 wild rabbit carcasses (O. c. algirus) collected from the field in 2018, 2019, 2021 and 2024, and 32 wild rabbits hunted in 2017/2018. Using molecular techniques, we detected myxoma virus (MYXV) (58.3%), rabbit haemorrhagic disease virus 2 (RHDV2/GI.2) (52.8%), herpesviruses (22.2%) and rotaviruses (48.1%) in the rabbits found dead. Co-infection with MYXV and RHDV2 was found in 27.8% of cases, much higher than previously reported. All hunted rabbits tested negative for MYXV and rotavirus, one was positive for RHDV2 (3.13%) and six for herpesvirus (18.75%). No coronaviruses, adenoviruses or paramyxoviruses were detected. Herpesviruses in apparently healthy hunted rabbits suggests a low clinical impact but the potential for severe outcomes in the presence of other pathogens. This study represents the most comprehensive virological survey of O. c. algirus in Iberia and is the first to document triple and quadruple viral co-infections in rabbits.
Collapse
Affiliation(s)
- Ana Duarte
- Nacional Institute of Agrarian and Veterinarian Research, Virology Laboratory, Quinta Do Marquês, Av. da República, 2780-157, Oeiras, Portugal
- Faculdade de Medicina Veterinária, Centre for Interdisciplinary Research in Animal Health (CIISA), Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477, Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Avenida da Universidade de Lisboa, 1300-477, Lisboa, Portugal
| | - Fábio A. Abade dos Santos
- Nacional Institute of Agrarian and Veterinarian Research, Virology Laboratory, Quinta Do Marquês, Av. da República, 2780-157, Oeiras, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Avenida da Universidade de Lisboa, 1300-477, Lisboa, Portugal
- CECAV- Centro de Ciência Animal e Veterinária- Faculdade de Medicina, Veterinária de Lisboa, Centro Universitário de Lisboa, Universidade Lusófona, Campo Grande 376, 1749-024, Lisboa, Portugal
| | - Teresa Fagulha
- Nacional Institute of Agrarian and Veterinarian Research, Virology Laboratory, Quinta Do Marquês, Av. da República, 2780-157, Oeiras, Portugal
| | - Inês Caetano
- Nacional Institute of Agrarian and Veterinarian Research, Virology Laboratory, Quinta Do Marquês, Av. da República, 2780-157, Oeiras, Portugal
| | - Paulo Carvalho
- Nacional Institute of Agrarian and Veterinarian Research, Pathology Laboratory, Quinta Do Marquês, Av. da República, 2780-157, Oeiras, Portugal
| | - João Carvalho
- Associação Nacional de Proprietários Rurais Gestão Cinegética e Biodiversidade (ANPC), Rua Mestre Lima De Freitas, Nr. 1 5° 1549-012, Lisboa, Portugal
| | - António Emidio Santos
- Direção Nacional de Gestão do Programa de Fogos Rurais. Instituto da Conservação da Natureza e das Florestas, Avenida da República, 16 a 16B, 1050-191, Lisboa, Portugal
| | | | - Margarida D. Duarte
- Nacional Institute of Agrarian and Veterinarian Research, Virology Laboratory, Quinta Do Marquês, Av. da República, 2780-157, Oeiras, Portugal
- Faculdade de Medicina Veterinária, Centre for Interdisciplinary Research in Animal Health (CIISA), Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477, Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Avenida da Universidade de Lisboa, 1300-477, Lisboa, Portugal
| |
Collapse
|
2
|
Dos Santos FAA, Barros SC, Fagulha T, Ramos F, Henriques AM, Duarte A, Magalhães A, Luís T, Duarte MD. First detection of Bagaza virus in Common magpies (Pica pica), Portugal 2023. Sci Rep 2024; 14:19452. [PMID: 39169115 PMCID: PMC11339381 DOI: 10.1038/s41598-024-70011-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024] Open
Abstract
Bagaza virus (BAGV) is a mosquito-borne flavivirus of the family Flaviviridae, genus Orthoflavivirus, Ntaya serocomplex. Like other viruses of the Ntaya and Japanese encephalitis serocomplexes, it is maintained in nature in transmission cycles involving viremic wild bird reservoirs and Culex spp. mosquitoes. The susceptibility of red-legged partridge, ring-necked pheasant, Himalayan monal and common wood pigeon is well known. Determining whether other species are susceptible to BAGV infection is fundamental to understanding the dynamics of disease transmission and maintenance. In September 2023, seven Eurasian magpies were found dead in a rural area in the Mértola district (southern Portugal) where a BAGV-positive cachectic red-legged partridge had been found two weeks earlier. BAGV had also been detected in several red-legged partridges in the same area in September 2021. Three of the magpies were tested for Bagaza virus, Usutu virus, West Nile virus, Avian influenza virus and Avian paramyxovirus serotype 1, and were positive for BAGV only. Sequencing data confirmed the specificity of the molecular detection. Our results indicate that BAGV is circulating in southern Portugal and confirm that Eurasian magpie is potential susceptible to BAGV infection. The inclusion of the abundant Eurasian magpie in the list of BAGV hosts raises awareness of the potential role of this species as as an amplifying host.
Collapse
Affiliation(s)
- Fábio A Abade Dos Santos
- Instituto Nacional de Investigação Agrária e Veterinária (INIAV, I.P.), Quinta Do Marquês, Av. da República, 2780-157, Oeiras, Portugal
- CECAV- Centro de Ciência Animal e Veterinária- Faculdade de Medicina, Veterinária de Lisboa - Universidade Lusófona, Centro Universitário de Lisboa, Lisboa, Portugal
| | - Sílvia C Barros
- Instituto Nacional de Investigação Agrária e Veterinária (INIAV, I.P.), Quinta Do Marquês, Av. da República, 2780-157, Oeiras, Portugal
| | - Teresa Fagulha
- Instituto Nacional de Investigação Agrária e Veterinária (INIAV, I.P.), Quinta Do Marquês, Av. da República, 2780-157, Oeiras, Portugal
| | - Fernanda Ramos
- Instituto Nacional de Investigação Agrária e Veterinária (INIAV, I.P.), Quinta Do Marquês, Av. da República, 2780-157, Oeiras, Portugal
| | - Ana M Henriques
- Instituto Nacional de Investigação Agrária e Veterinária (INIAV, I.P.), Quinta Do Marquês, Av. da República, 2780-157, Oeiras, Portugal
| | - Ana Duarte
- Instituto Nacional de Investigação Agrária e Veterinária (INIAV, I.P.), Quinta Do Marquês, Av. da República, 2780-157, Oeiras, Portugal
- Faculdade de Medicina Veterinária, Centre for Interdisciplinary Research in Animal Health (CIISA), Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477, Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Avenida da Universidade de Lisboa, 1300-477, Lisboa, Portugal
| | - André Magalhães
- Instituto Nacional de Investigação Agrária e Veterinária (INIAV, I.P.), Quinta Do Marquês, Av. da República, 2780-157, Oeiras, Portugal
| | - Tiago Luís
- Instituto Nacional de Investigação Agrária e Veterinária (INIAV, I.P.), Quinta Do Marquês, Av. da República, 2780-157, Oeiras, Portugal
| | - Margarida D Duarte
- Instituto Nacional de Investigação Agrária e Veterinária (INIAV, I.P.), Quinta Do Marquês, Av. da República, 2780-157, Oeiras, Portugal.
- Faculdade de Medicina Veterinária, Centre for Interdisciplinary Research in Animal Health (CIISA), Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477, Lisboa, Portugal.
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Avenida da Universidade de Lisboa, 1300-477, Lisboa, Portugal.
| |
Collapse
|
3
|
Segura-Göthlin S, Fernández A, Arbelo M, Andrada Borzollino MA, Felipe-Jiménez I, Colom-Rivero A, Fiorito C, Sierra E. Viral skin diseases in odontocete cetaceans: gross, histopathological, and molecular characterization of selected pathogens. Front Vet Sci 2023; 10:1188105. [PMID: 37745220 PMCID: PMC10514499 DOI: 10.3389/fvets.2023.1188105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023] Open
Abstract
Fifty-five skin lesions from 31 stranded cetaceans along the Canary coasts (2011-2021) were submitted to macroscopic, histological, and molecular analyses to confirm infection by cetacean poxvirus, herpesvirus and cetacean morbillivirus. They were macroscopically categorized into eight categories with respective subcategories according to their color, shape, size, and consistency. Cetacean poxvirus was detected in 54.54% of the skin lesions through real-time and conventional PCRs based on the DNA polymerase gene. Additionally, herpesvirus and morbillivirus were currently detected from 43.63 and 1.82% of the cutaneous lesions, respectively. Coinfection of poxvirus and herpesvirus was detected in nine of them (16.36%), which makes the present study the first to report coinfection by both pathogens in skin lesions in cetaceans. A plausible approach to histopathological characterization of poxvirus-and herpesvirus-positive skin lesions was established. Hyperkeratosis, acanthosis, ballooning degeneration, and intracytoplasmic inclusion bodies in vacuolized keratinocytes through the stratum spinosum were common findings in poxvirus skin lesions. Alphaherpesvirus was associated with a prominent acanthotic epidermis, moderate necrosis, multifocal dyskeratosis, and irregular keratinocytes with both cellular and nuclei pleomorphism. The common histopathological findings of both pathogens were observed in coinfection lesions. However, those associated with herpesvirus were considerably more remarkable. Relationships between molecular and microscopic findings were observed for the lesions that showed tattoo-like and tortuous patterns. Further multidisciplinary diagnostic studies of infected skin lesions are needed to understand the epidemiology of these emerging infectious diseases.
Collapse
Affiliation(s)
- Simone Segura-Göthlin
- Veterinary Histology and Pathology, Atlantic Center for Cetacean Research, University Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria (ULPGC), Las Palmas, Spain
| | - Antonio Fernández
- Veterinary Histology and Pathology, Atlantic Center for Cetacean Research, University Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria (ULPGC), Las Palmas, Spain
| | - Manuel Arbelo
- Veterinary Histology and Pathology, Atlantic Center for Cetacean Research, University Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria (ULPGC), Las Palmas, Spain
| | - Marisa Ana Andrada Borzollino
- Veterinary Histology and Pathology, Atlantic Center for Cetacean Research, University Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria (ULPGC), Las Palmas, Spain
| | - Idaira Felipe-Jiménez
- Veterinary Histology and Pathology, Atlantic Center for Cetacean Research, University Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria (ULPGC), Las Palmas, Spain
| | - Ana Colom-Rivero
- Veterinary Histology and Pathology, Atlantic Center for Cetacean Research, University Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria (ULPGC), Las Palmas, Spain
| | - Carla Fiorito
- Centro para el Estudio de Sistemas Marinos, Consejo Nacional de Investigaciones Científicas y Técnicas (CESIMAR-CONICET), Puerto Madryn, Chubut, Argentina
| | - Eva Sierra
- Veterinary Histology and Pathology, Atlantic Center for Cetacean Research, University Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria (ULPGC), Las Palmas, Spain
| |
Collapse
|
4
|
Kwak HJ, Medina-Jiménez BI, Park SC, Kim JH, Jeong GH, Jeon MJ, Kim S, Kim JW, Weisblat DA, Cho SJ. Slit-Robo expression in the leech nervous system: insights into eyespot evolution. Cell Biosci 2023; 13:70. [PMID: 37013648 PMCID: PMC10071614 DOI: 10.1186/s13578-023-01019-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/26/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND Slit and Robo are evolutionarily conserved ligand and receptor proteins, respectively, but the number of slit and robo gene paralogs varies across recent bilaterian genomes. Previous studies indicate that this ligand-receptor complex is involved in axon guidance. Given the lack of data regarding Slit/Robo in the Lophotrochozoa compared to Ecdysozoa and Deuterostomia, the present study aims to identify and characterize the expression of Slit/Robo orthologs in leech development. RESULTS We identified one slit (Hau-slit), and two robo genes (Hau-robo1 and Hau-robo2), and characterized their expression spatiotemporally during the development of the glossiphoniid leech Helobdella austinensis. Throughout segmentation and organogenesis, Hau-slit and Hau-robo1 are broadly expressed in complex and roughly complementary patterns in the ventral and dorsal midline, nerve ganglia, foregut, visceral mesoderm and/or endoderm of the crop, rectum and reproductive organs. Before yolk exhaustion, Hau-robo1 is also expressed where the pigmented eye spots will later develop, and Hau-slit is expressed in the area between these future eye spots. In contrast, Hau-robo2 expression is extremely limited, appearing first in the developing pigmented eye spots, and later in the three additional pairs of cryptic eye spots in head region that never develop pigment. Comparing the expression of robo orthologs between H. austinensis and another glossiphoniid leech, Alboglossiphonia lata allows to that robo1 and robo2 operate combinatorially to differentially specify pigmented and cryptic eyespots within the glossiphoniid leeches. CONCLUSIONS Our results support a conserved role in neurogenesis, midline formation and eye spot development for Slit/Robo in the Lophotrochozoa, and provide relevant data for evo-devo studies related to nervous system evolution.
Collapse
Affiliation(s)
- Hee-Jin Kwak
- Department of Biological Sciences and Biotechnology, College of Natural Sciences, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
- Department of Ecology, Evolution and Behavior, Faculty of Science, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, 9190401, Jerusalem, Israel
| | - Brenda I Medina-Jiménez
- Department of Biological Sciences and Biotechnology, College of Natural Sciences, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
- Department of Earth Sciences, Paleobiology, Geocentrum, Uppsala University, Villavägen 16, 75236, Uppsala, Sweden
| | - Soon Cheol Park
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Jung-Hyeuk Kim
- Department of Biological Sciences and Biotechnology, College of Natural Sciences, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
- Wildlife Disease Response Team, National Institute of Wildlife Disease Control and Prevention, Incheon, 22689, Republic of Korea
| | - Geon-Hwi Jeong
- Department of Biological Sciences and Biotechnology, College of Natural Sciences, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Mi-Jeong Jeon
- National Institute of Biological Resources, Environmental Research Complex, Incheon, 22689, Republic of Korea
| | - Sangil Kim
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Jung-Woong Kim
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - David A Weisblat
- Department of Molecular and Cell Biology, University of California, 385 Weill Hall, Berkeley, CA, 94720-3200, USA.
| | - Sung-Jin Cho
- Department of Biological Sciences and Biotechnology, College of Natural Sciences, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea.
| |
Collapse
|
5
|
Abade Dos Santos FA, Santos N, Carvalho CL, Martinez-Haro M, Gortázar C, García-Bocanegra I, Capucci L, Duarte M, Alves PC. Retrospective serological and molecular survey of myxoma or antigenically related virus in the Iberian hare, Lepus granatensis. Transbound Emerg Dis 2022; 69:3637-3650. [PMID: 36219552 PMCID: PMC10092749 DOI: 10.1111/tbed.14734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 08/10/2022] [Accepted: 10/05/2022] [Indexed: 02/07/2023]
Abstract
The 2018 outbreak of myxomatosis in the Iberian hare (Lepus granatensis) has been hypothesized to originate from a species jump of the rabbit-associated myxoma virus (MYXV), after natural recombination with an unknown poxvirus. Iberian hares were long considered resistant to myxomatosis as no prior outbreaks were reported. To provide insights into the emergence of this recombinant virus (ha-MYXV), we investigated serum samples from 451 Iberian hares collected over two time periods almost two decades apart, 1994-1999 and 2017-2019 for the presence of antibodies and MYXV-DNA. First, we screened all serum samples using a rabbit commercial indirect ELISA (iELISA) and then tested a subset of these samples in parallel using indirect immunofluorescence test (IFT), competitive ELISA (cELISA) and qPCR targeting M000.5L/R gene conserved in MYXV and ha-MYXV. The cut-off of iELISA relative index 10 = 6.1 was selected from a semiparametric finite mixture analysis aiming to minimize the probability of false positive results. Overall, MYXV related-antibodies were detected in 57 hares (12.6%) including 38 apparently healthy hares (n = 10, sampled in 1994-1999, none MYXV-DNA positive, and n = 28 sampled in 2017-2019 of which four were also ha-MYXV-DNA positive) and 19 found-dead and ha-MYXV-DNA-positive sampled in 2018-2019. Interestingly, four seronegative hares sampled in 1997 were MYXV-DNA positive by qPCR, the result being confirmed by sequencing of three of them. For the Iberian hares hunted or live trapped (both apparently health), seroprevalence was significantly higher in 2017-2019 (13.0%, CI95% 9.2-18.2%) than in 1994-1999 (5.4%, CI95% 3.0-9.6%) (p = .009). Within the second period, seroprevalence was significantly higher in 2019 compared to 2017 (24.7 vs 1.7% considering all the sample, p = .007), and lower during the winter than the autumn (p < .001). While our molecular and serological results show that Iberian hares have been in contact with MYXV or an antigenically similar virus at least since 1996, they also show an increase in seroprevalence in 2018-2019. The remote contact with MYXV may have occurred with strains that circulated in rabbits, or with unnoticed strains already circulating in Iberian hare populations. This work strongly suggests the infection of Iberian hares with MYXV or an antigenically related virus, at least 20 years before the severe virus outbreaks were registered in 2018.
Collapse
Affiliation(s)
- Fábio A Abade Dos Santos
- Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV, I.P.), Oeiras, Portugal.,Centro de Investigação Interdisciplinar em Sanidade Animal (CIISA), Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, Lisboa, Portugal.,Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Portugal
| | - Nuno Santos
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal.,BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
| | - Carina L Carvalho
- Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV, I.P.), Oeiras, Portugal
| | - Monica Martinez-Haro
- Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal de Castilla-La Mancha (IRIAF). Centro de Investigación Agroambiental El Chaparrillo, Ciudad Real, Spain
| | - Christian Gortázar
- SaBio Instituto de Investigación en Recursos Cinegéticos IREC (UCLM & CSIC), Ciudad Real, Spain
| | | | - Lorenzo Capucci
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna and OIE Reference Laboratory for Rabbit Haemorrhagic Disease, Brescia, Italy
| | - Margarida Duarte
- Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV, I.P.), Oeiras, Portugal.,Centro de Investigação Interdisciplinar em Sanidade Animal (CIISA), Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, Lisboa, Portugal.,Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Portugal
| | - Paulo Célio Alves
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal.,BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal.,Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal.,EBM, Estação. Biológica de Mértola, Mértola, Portugal
| |
Collapse
|
6
|
Dos Santos FAA, Duarte MD, Carvalho CL, Monteiro M, Carvalho P, Mendonça P, Valente PCLG, Sheikhnejad H, Waap H, Gomes J. Genetic and morphological identification of filarial worm from Iberian hare in Portugal. Sci Rep 2022; 12:9310. [PMID: 35661130 PMCID: PMC9166702 DOI: 10.1038/s41598-022-13354-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 05/24/2022] [Indexed: 11/29/2022] Open
Abstract
The Iberian hare (Lepus granatensis) is an endemic species of the Iberian Peninsula and the only hare species found in Portugal, although also being present in some areas of Spain. The reduction of wild hare populations due to several ecological and sanitary factors, has been raising growing concerns in the recent years. Despite different helminth species were already described in Iberian hares in Portugal, to this date, no filarial worms have been identified in this species. Furthermore, only a few studies on lagomorphs' onchocercid worms are available, referring to other hosts species of hares and/or rabbits. In this study, we describe the presence of filarial worms in the blood vessels of two adult Iberian hares collected in 2019 in continental Portugal. Morphology and sequencing data from the 12S rRNA, coxI, 18S rRNA, myoHC, hsp70 and rbp1 genes, showed that the filaroid species were genetically related with Micipsella numidica. However, the extension of the genetic differences found with M. numidica suggests that the filaroids specimens under study belong to a new species, that we provisionally named Micipsella iberica n. sp.. The body location of this putative new parasite species and its physiological implications indicate that it may constitute a potential menace to the already fragile Iberian hare justifying, therefore, further investigation regarding the morphological characterization, prevalence and real clinical impact of this new parasite in hares.
Collapse
Affiliation(s)
- F A Abade Dos Santos
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477, Lisboa, Portugal.
- Instituto Nacional de Investigação Agrária E Veterinária (INIAV, I.P.), Quinta Do Marquês, Av. da República, 2780-157, Oeiras, Portugal.
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Vila Real, Portugal.
| | - M D Duarte
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477, Lisboa, Portugal
- Instituto Nacional de Investigação Agrária E Veterinária (INIAV, I.P.), Quinta Do Marquês, Av. da República, 2780-157, Oeiras, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Vila Real, Portugal
| | - C L Carvalho
- Instituto Nacional de Investigação Agrária E Veterinária (INIAV, I.P.), Quinta Do Marquês, Av. da República, 2780-157, Oeiras, Portugal
| | - M Monteiro
- Instituto Nacional de Investigação Agrária E Veterinária (INIAV, I.P.), Quinta Do Marquês, Av. da República, 2780-157, Oeiras, Portugal
| | - P Carvalho
- Instituto Nacional de Investigação Agrária E Veterinária (INIAV, I.P.), Quinta Do Marquês, Av. da República, 2780-157, Oeiras, Portugal
| | - P Mendonça
- Instituto Nacional de Investigação Agrária E Veterinária (INIAV, I.P.), Quinta Do Marquês, Av. da República, 2780-157, Oeiras, Portugal
| | - P C L G Valente
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477, Lisboa, Portugal
| | - H Sheikhnejad
- InnovPlantProtect Collaborative Laboratory, Department of Protection of Specific Crops, 7350-478, Elvas, Portugal
| | - H Waap
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477, Lisboa, Portugal
- Instituto Nacional de Investigação Agrária E Veterinária (INIAV, I.P.), Quinta Do Marquês, Av. da República, 2780-157, Oeiras, Portugal
| | - J Gomes
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477, Lisboa, Portugal
- Instituto Nacional de Investigação Agrária E Veterinária (INIAV, I.P.), Quinta Do Marquês, Av. da República, 2780-157, Oeiras, Portugal
| |
Collapse
|
7
|
Abade Dos Santos FA, Dalton KP, Carvalho CL, Casero M, Álvarez ÁL, Parra F, Duarte MD. Co-infection by classic MYXV and ha-MYXV in Iberian hare (Lepus granatensis) and European wild rabbit (Oryctolagus cuniculus algirus). Transbound Emerg Dis 2022; 69:1684-1690. [PMID: 35366052 DOI: 10.1111/tbed.14540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/10/2022] [Accepted: 03/28/2022] [Indexed: 11/30/2022]
Abstract
Myxomatosis is an emergent disease in the Iberian hare (Lepus granatensis). In this species, the disease is caused by a natural recombinant virus (ha-MYXV) identified for the first time in 2018 and has since been responsible for a large number of outbreaks in Spain and Portugal. The ha-MYXV, which harbours a 2.8 Kb insert disrupting gene M009L, can also infect and cause disease in wild and domestic rabbits, despite being less frequently identified in rabbits. During the laboratory investigations of wild leporids found dead in Portugal carried out within the scope of a Nacional Surveillance Plan (Dispatch 4757/17, MAFDR), co-infection events by classic (MYXV) and naturally recombinant (ha-MYXV) strains were detected in both, one Iberian hare and one European wild rabbit (Oryctolagus cuniculus algirus). These two cases were initially detected by a multiplex qPCR detection of MYXV and ha-MYXV, and subsequently confirmed by conventional PCR and sequencing of the M009L gene which contains a ha-MYXV specific insertion. To our knowledge, this is the first documented report of co-infection by classic MYXV and ha-MYXV strains either in Iberian hare as in European wild rabbit. It is also the first report of infection of an Iberian hare by a classic MYXV strain. These findings highlight the continuous evolution of the myxoma virus and the frequent host range changes that justify the nonstop monitoring of the wild Leporidae populations sanitary condition in the Iberian Peninsula. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Fábio A Abade Dos Santos
- Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV, IP), Av. da República, Oeiras, 2780-143, Portugal.,CIISA, Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, Lisboa, 1300-477, Portugal.,Instituto Universitario de Biotecnología de Asturias (IUBA), Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, Oviedo, Spain.,Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Portugal
| | - Kevin P Dalton
- Instituto Universitario de Biotecnología de Asturias (IUBA), Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, Oviedo, Spain
| | - Carina L Carvalho
- Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV, IP), Av. da República, Oeiras, 2780-143, Portugal
| | - María Casero
- Wildlife Rehabilitation and Research Centre of Ria Formosa (RIAS), Ria Formosa Natural Park, Olhão, 8700-194, Portugal
| | - Ángel L Álvarez
- Instituto Universitario de Biotecnología de Asturias (IUBA), Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, Oviedo, Spain
| | - F Parra
- Instituto Universitario de Biotecnología de Asturias (IUBA), Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, Oviedo, Spain
| | - Margarida D Duarte
- Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV, IP), Av. da República, Oeiras, 2780-143, Portugal.,CIISA, Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, Lisboa, 1300-477, Portugal.,Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Portugal
| |
Collapse
|
8
|
Abade dos Santos FA, Carvalho CL, Valente PCLG, Armés H, Reemers SS, Peleteiro MC, Calonge Sanz I, Dalton KP, Parra F, Duarte MD. Evaluation of Commercial Myxomatosis Vaccines against Recombinant Myxoma Virus (ha-MYXV) in Iberian Hare and Wild Rabbit. Vaccines (Basel) 2022; 10:vaccines10030356. [PMID: 35334987 PMCID: PMC8954362 DOI: 10.3390/vaccines10030356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 01/06/2023] Open
Abstract
The recent emergence of a new myxoma virus capable of causing disease in the Iberian hare (Lepus granatensis) has resulted in numerous outbreaks with high mortality leading to the reduction, or even the disappearance, of many local populations of this wild species in the Iberian Peninsula. Currently, the available vaccines that prevent myxomatosis in domestic rabbits caused by classic strains of myxoma virus have not been assessed for use in Iberian hares. The main objective of this study was to evaluate the efficacy of commercial rabbit vaccines in Iberian hares and wild rabbits against the natural recombinant myxoma virus (ha-MYXV), bearing in mind its application in specific scenarios where capture is possible, such as genetic reserves. The study used a limited number of animals (pilot study), 15 Iberian hares and 10 wild rabbits. Hares were vaccinated with Mixohipra-FSA vaccine (Hipra) and Mixohipra-H vaccine (Hipra) using two different doses, and rabbits were vaccinated with the Mixohipra-H vaccine or the Nobivac Myxo-RHD PLUS (MSD Animal Health) using the recommended doses for domestic rabbits. After the vaccination trials, the animals were challenged with a wild type strain of ha-MYXV. The results showed that no protection to ha-MYXV challenge was afforded when a commercial dose of Mixohipra-FSA or Mixohipra-H vaccine was used in hares. However, the application of a higher dose of Mixohipra-FSA vaccine may induce protection and could possibly be used to counteract the accelerated decrease of wild hare populations due to ha-MYXV emergence. The two commercial vaccines (Mixohipra-H and Nobivac Myxo-RHD PLUS) tested in wild rabbits were fully protective against ha-MYXV infection. This knowledge gives more insights into ha-MYXV management in hares and rabbits and emphasises the importance of developing a vaccine capable of protecting wild populations of Iberian hare and wild rabbit towards MYXV and ha-MYXV strains.
Collapse
Affiliation(s)
- Fábio A. Abade dos Santos
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal; (P.C.L.G.V.); (M.C.P.); (M.D.D.)
- Instituto Nacional de Investigação Agrária e Veterinária (INIAV, I.P.), Av. da República, Quinta do Marquês, 2780-157 Oeiras, Portugal;
- Instituto Universitario de Biotecnología de Asturias (IUBA), Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, 33006 Oviedo, Spain; (I.C.S.); (K.P.D.); (F.P.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
- Correspondence:
| | - Carina L. Carvalho
- Instituto Nacional de Investigação Agrária e Veterinária (INIAV, I.P.), Av. da República, Quinta do Marquês, 2780-157 Oeiras, Portugal;
| | - Pâmela C. L. G. Valente
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal; (P.C.L.G.V.); (M.C.P.); (M.D.D.)
| | - Henrique Armés
- Hospital Veterinário de São Bento, R. de São Bento 358a, 1200-822 Lisbon, Portugal;
| | - Sylvia S. Reemers
- MSD Animal Health, Wim de Körverstraat 35, 5831 AN Boxmeer, The Netherlands;
| | - Maria C. Peleteiro
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal; (P.C.L.G.V.); (M.C.P.); (M.D.D.)
| | - Inés Calonge Sanz
- Instituto Universitario de Biotecnología de Asturias (IUBA), Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, 33006 Oviedo, Spain; (I.C.S.); (K.P.D.); (F.P.)
| | - Kevin P. Dalton
- Instituto Universitario de Biotecnología de Asturias (IUBA), Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, 33006 Oviedo, Spain; (I.C.S.); (K.P.D.); (F.P.)
| | - Francisco Parra
- Instituto Universitario de Biotecnología de Asturias (IUBA), Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, 33006 Oviedo, Spain; (I.C.S.); (K.P.D.); (F.P.)
| | - Margarida D. Duarte
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal; (P.C.L.G.V.); (M.C.P.); (M.D.D.)
- Instituto Nacional de Investigação Agrária e Veterinária (INIAV, I.P.), Av. da República, Quinta do Marquês, 2780-157 Oeiras, Portugal;
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| |
Collapse
|
9
|
Abade dos Santos FA, Carvalho CL, Parra F, Dalton KP, Peleteiro MC, Duarte MD. A Quadruplex qPCR for Detection and Differentiation of Classic and Natural Recombinant Myxoma Virus Strains of Leporids. Int J Mol Sci 2021; 22:ijms222112052. [PMID: 34769480 PMCID: PMC8584577 DOI: 10.3390/ijms222112052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 01/19/2023] Open
Abstract
A natural recombinant myxoma virus (referred to as ha-MYXV or MYXV-Tol08/18) emerged in the Iberian hare (Lepus granatensis) and the European rabbit (Oryctolagus cuniculus) in late 2018 and mid-2020, respectively. This new virus is genetically distinct from classic myxoma virus (MYXV) strains that caused myxomatosis in rabbits until then, by acquiring an additional 2.8 Kbp insert within the m009L gene that disrupted it into ORFs m009L-a and m009L-b. To distinguish ha-MYXV from classic MYXV strains, we developed a robust qPCR multiplex technique that combines the amplification of the m000.5L/R duplicated gene, conserved in all myxoma virus strains including ha-MYXV, with the amplification of two other genes targeted by the real-time PCR systems designed during this study, specific either for classic MYXV or ha-MYXV strains. The first system targets the boundaries between ORFs m009L-a and m009L-b, only contiguous in classic strains, while the second amplifies a fragment within gene m060L, only present in recombinant MYXV strains. All amplification reactions were validated and normalized by a fourth PCR system directed to a housekeeping gene (18S rRNA) conserved in eukaryotic organisms, including hares and rabbits. The multiplex PCR (mPCR) technique described here was optimized for Taqman® and Evagreen® systems allowing the detection of as few as nine copies of viral DNA in the sample with an efficiency > 93%. This real-time multiplex is the first fast method available for the differential diagnosis between classic and recombinant MYXV strains, also allowing the detection of co-infections. The system proves to be an essential and effective tool for monitoring the geographical spread of ha-MYXV in the hare and wild rabbit populations, supporting the management of both species in the field.
Collapse
Affiliation(s)
- Fábio A. Abade dos Santos
- Centro de Investigação Interdisciplinar em Sanidade Animal (CIISA), Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal; (M.C.P.); (M.D.D.)
- Instituto Nacional de Investigação Agrária e Veterinária (INIAV, I.P.), Av. da República, Quinta do Marquês, 2780-157 Oeiras, Portugal;
- Instituto Universitario de Biotecnología de Asturias (IUBA), Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, 33003 Oviedo, Spain; (F.P.); (K.P.D.)
- Correspondence: ; Tel.: +351-21-440-3500
| | - Carina L. Carvalho
- Instituto Nacional de Investigação Agrária e Veterinária (INIAV, I.P.), Av. da República, Quinta do Marquês, 2780-157 Oeiras, Portugal;
| | - Francisco Parra
- Instituto Universitario de Biotecnología de Asturias (IUBA), Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, 33003 Oviedo, Spain; (F.P.); (K.P.D.)
| | - Kevin P. Dalton
- Instituto Universitario de Biotecnología de Asturias (IUBA), Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, 33003 Oviedo, Spain; (F.P.); (K.P.D.)
| | - Maria C. Peleteiro
- Centro de Investigação Interdisciplinar em Sanidade Animal (CIISA), Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal; (M.C.P.); (M.D.D.)
| | - Margarida D. Duarte
- Centro de Investigação Interdisciplinar em Sanidade Animal (CIISA), Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal; (M.C.P.); (M.D.D.)
- Instituto Nacional de Investigação Agrária e Veterinária (INIAV, I.P.), Av. da República, Quinta do Marquês, 2780-157 Oeiras, Portugal;
| |
Collapse
|
10
|
Tsai MS, François S, Newman C, Macdonald DW, Buesching CD. Patterns of Genital Tract Mustelid Gammaherpesvirus 1 (Musghv-1) Reactivation Are Linked to Stressors in European Badgers ( Meles Meles). Biomolecules 2021; 11:biom11050716. [PMID: 34064759 PMCID: PMC8151406 DOI: 10.3390/biom11050716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/03/2021] [Accepted: 05/06/2021] [Indexed: 12/17/2022] Open
Abstract
Gammaherpesvirus reactivation can promote diseases or impair reproduction. Understanding reactivation patterns and associated risks of different stressors is therefore important. Nevertheless, outside the laboratory or captive environment, studies on the effects of stress on gammaherpesvirus reactivation in wild mammals are lacking. Here we used Mustelid gammaherpesvirus 1 (MusGHV-1) infection in European badgers (Meles meles) as a host-pathogen wildlife model to study the effects of a variety of demographic, physiological and environmental stressors on virus shedding in the genital tract. We collected 251 genital swabs from 150 free-ranging individuals across three seasons and screened them for the presence of MusGHV-1 DNA using PCR targeting the DNA polymerase gene. We explored possible links between MusGHV-1 DNA presence and seven variables reflecting stressors, using logistic regression analysis. The results reveal different sets of risk factors between juveniles and adults, likely reflecting primary infection and reactivation. In adults, virus shedding was more likely in badgers in poorer body condition and younger than 5 years or older than 7; while in juveniles, virus shedding is more likely in females and individuals in better body condition. However, living in social groups with more cubs was a risk factor for all badgers. We discuss possible explanations for these risk factors and their links to stress in badgers.
Collapse
Affiliation(s)
- Ming-shan Tsai
- Recanati-Kaplan Centre, Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, Abingdon Road, Tubney House, Tubney, Oxfordshire OX13 5QL, UK; (C.N.); (D.W.M.)
- Correspondence:
| | - Sarah François
- Evolve.Zoo, Peter Medawar Building for Pathogen Research, Department of Zoology, University of Oxford, South Park Road, Oxford OX1 3SY, UK;
| | - Chris Newman
- Recanati-Kaplan Centre, Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, Abingdon Road, Tubney House, Tubney, Oxfordshire OX13 5QL, UK; (C.N.); (D.W.M.)
- Cook’s Lake Farming Forestry and Wildlife Inc. (Ecological Consultancy), Queens County, NS B0J 2H0, Canada;
| | - David W. Macdonald
- Recanati-Kaplan Centre, Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, Abingdon Road, Tubney House, Tubney, Oxfordshire OX13 5QL, UK; (C.N.); (D.W.M.)
| | - Christina D. Buesching
- Cook’s Lake Farming Forestry and Wildlife Inc. (Ecological Consultancy), Queens County, NS B0J 2H0, Canada;
- Department of Biology, Irving K. Barber Faculty of Science, University of British Columbia, Kelowna, BC V1V 1V7, Canada
| |
Collapse
|
11
|
A Versatile qPCR for Diagnosis of Leporid Gammaherpesvirus 5 Using Evagreen ® or Taqman ® Technologies. Viruses 2021; 13:v13040715. [PMID: 33924254 PMCID: PMC8074763 DOI: 10.3390/v13040715] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/13/2021] [Accepted: 04/18/2021] [Indexed: 11/25/2022] Open
Abstract
In late 2019, the first herpesvirus in the genus Lepus, named leporid gammaherpesvirus 5 (LeHV-5) was described. At the time, herpetic typical lesions were observed in hares infected by the myxoma virus, which is known to induce immunosuppression. Though the real impact of LeHV-5 is still poorly understood, since it affects reproduction, it poses an additional threat to the already fragile populations of Iberian hare, demanding prevalence investigations. In this article, we describe the first quantitative molecular method for LeHV-5 detection, using either Taqman or the EvaGreen systems. This method has excellent sensitivity and specificity, it is able to detect 2.1 copies of LeHV-5 DNA and was validated with an internal control targeting the 18S rRNA gene, allowing monitoring extraction and PCR amplification efficiencies.
Collapse
|
12
|
Detection of recombinant Hare Myxoma Virus in wild rabbits ( Oryctolagus cuniculus algirus). Viruses 2020; 12:v12101127. [PMID: 33028004 PMCID: PMC7600370 DOI: 10.3390/v12101127] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/26/2020] [Accepted: 10/02/2020] [Indexed: 11/29/2022] Open
Abstract
In late 2018, an epidemic myxomatosis outbreak emerged on the Iberian Peninsula leading to high mortality in Iberian hare populations. A recombinant Myxoma virus (strains MYXV-Tol and ha-MYXV) was rapidly identified, harbouring a 2.8 kbp insertion containing evolved duplicates of M060L, M061L, M064L, and M065L genes from myxoma virus (MYXV) or other Poxviruses. Since 2017, 1616 rabbits and 125 hares were tested by a qPCR directed to M000.5L/R gene, conserved in MYXV and MYXV-Tol/ha-MYXV strains. A subset of the positive samples (20%) from both species was tested for the insert with MYXV being detected in rabbits and the recombinant MYXV in hares. Recently, three wild rabbits were found dead South of mainland Portugal, showing skin oedema and pulmonary lesions that tested positive for the 2.8 kbp insert. Sequencing analysis showed 100% similarity with the insert sequences described in Iberian hares from Spain. Viral particles were observed in the lungs and eyelids of rabbits by electron microscopy, and isolation in RK13 cells attested virus infectivity. Despite that the analysis of complete genomes may predict the recombinant MYXV strains’ ability to infect rabbit, routine analyses showed species segregation for the circulation of MYXV and recombinant MYXV in wild rabbit and in Iberian hares, respectively. This study demonstrates, however, that recombinant MYXV can effectively infect and cause myxomatosis in wild rabbits and domestic rabbits, raising serious concerns for the future of the Iberian wild leporids while emphasises the need for the continuous monitoring of MYXV and recombinant MYXV in both species.
Collapse
|
13
|
Tsai MS, Fogarty U, Byrne AW, O’Keeffe J, Newman C, Macdonald DW, Buesching CD. Effects of Mustelid gammaherpesvirus 1 (MusGHV-1) Reactivation in European Badger ( Meles meles) Genital Tracts on Reproductive Fitness. Pathogens 2020; 9:E769. [PMID: 32962280 PMCID: PMC7559395 DOI: 10.3390/pathogens9090769] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/01/2020] [Accepted: 09/18/2020] [Indexed: 12/31/2022] Open
Abstract
Reactivation of latent Gammaherpesvirus in the genital tract can lead to reproductive failure in domestic animals. Nevertheless, this pathophysiology has not received formal study in wild mammals. High prevalence of Mustelid gammaherpesvirus 1 (MusGHV-1) DNA detected in the genital tracts of European badgers (Meles meles) implies that this common pathogen may be a sexual transmitted infection. Here we used PCR to test MusGHV-1 DNA prevalence in genital swabs collected from 144 wild badgers in Ireland (71 males, 73 females) to investigate impacts on male fertility indicators (sperm abundance and testes weight) and female fecundity (current reproductive output). MusGHV-1 reactivation had a negative effect on female reproduction, but not on male fertility; however males had a higher risk of MusGHV-1 reactivation than females, especially during the late-winter mating season, and genital MusGHV-1 reactivation differed between age classes, where 3-5 year old adults had significantly lower reactivation rates than younger or older ones. Negative results in foetal tissues from MusGHV-1 positive mothers indicated that cross-placental transmission was unlikely. This study has broader implications for how wide-spread gammaherpesvirus infections could affect reproductive performance in wild Carnivora species.
Collapse
Affiliation(s)
- Ming-shan Tsai
- Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, Recanati-Kaplan Centre, Abingdon Road, Tubney House, Tubney, Oxfordshire OX13 5QL, UK; (C.N.); (D.W.M.); (C.D.B.)
| | - Ursula Fogarty
- Irish Equine Centre, Johnstown, Naas, Co. Kildare W91 RH93, Ireland;
| | - Andrew W. Byrne
- One-Health Scientific Support Unit, Department of Agriculture, Agriculture House, Dublin 2 DO2 WK12, Ireland;
| | - James O’Keeffe
- Department of Agriculture, Agriculture House, Dublin 2 DO2 WK1, Ireland;
- Centre for Veterinary Epidemiology and Risk Analysis, University College Dublin, Belfield, Dublin 4 D04 W6F6, Ireland
| | - Chris Newman
- Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, Recanati-Kaplan Centre, Abingdon Road, Tubney House, Tubney, Oxfordshire OX13 5QL, UK; (C.N.); (D.W.M.); (C.D.B.)
- Cook’s Lake Farming Forestry and Wildlife Inc (Ecological Consultancy), Queens County, NS B0J 2H0, Canada
| | - David W. Macdonald
- Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, Recanati-Kaplan Centre, Abingdon Road, Tubney House, Tubney, Oxfordshire OX13 5QL, UK; (C.N.); (D.W.M.); (C.D.B.)
| | - Christina D. Buesching
- Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, Recanati-Kaplan Centre, Abingdon Road, Tubney House, Tubney, Oxfordshire OX13 5QL, UK; (C.N.); (D.W.M.); (C.D.B.)
- Cook’s Lake Farming Forestry and Wildlife Inc (Ecological Consultancy), Queens County, NS B0J 2H0, Canada
| |
Collapse
|
14
|
Correction: First description of a herpesvirus infection in genus Lepus. PLoS One 2020; 15:e0233799. [PMID: 32437436 PMCID: PMC7241717 DOI: 10.1371/journal.pone.0233799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|