1
|
Page TM, McDougall C, Bar I, Diaz-Pulido G. Transcriptomic stability or lability explains sensitivity to climate stressors in coralline algae. BMC Genomics 2022; 23:729. [PMID: 36303112 PMCID: PMC9615231 DOI: 10.1186/s12864-022-08931-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 10/10/2022] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Crustose coralline algae (CCA) are calcifying red macroalgae that play important ecological roles including stabilisation of reef frameworks and provision of settlement cues for a range of marine invertebrates. Previous research into the responses of CCA to ocean warming (OW) and ocean acidification (OA) have found magnitude of effect to be species-specific. Response to OW and OA could be linked to divergent underlying molecular processes across species. RESULTS Here we show Sporolithon durum, a species that exhibits low sensitivity to climate stressors, had little change in metabolic performance and did not significantly alter the expression of any genes when exposed to temperature and pH perturbations. In contrast, Porolithon onkodes, a major coral reef builder, reduced photosynthetic rates and had a labile transcriptomic response with over 400 significantly differentially expressed genes, with differential regulation of genes relating to physiological processes such as carbon acquisition and metabolism. The differential gene expression detected in P. onkodes implicates possible key metabolic pathways, including the pentose phosphate pathway, in the stress response of this species. CONCLUSIONS We suggest S. durum is more resistant to OW and OA than P. onkodes, which demonstrated a high sensitivity to climate stressors and may have limited ability for acclimatisation. Understanding changes in gene expression in relation to physiological processes of CCA could help us understand and predict how different species will respond to, and persist in, future ocean conditions predicted for 2100.
Collapse
Affiliation(s)
- Tessa M Page
- Griffth University School of Environment and Science Nathan Campus, Griffith University, Nathan, QLD, Australia.
- Australian Rivers Institute Nathan Campus, Griffith University, Nathan, QLD, Australia.
- Coastal and Marine Research Centre Nathan Campus, Griffith University, Gold Coast, QLD, Australia.
- School of Ocean and Earth Science University of Southampton Waterfront Campus, National Oceanography Centre, Southampton, UK.
| | - Carmel McDougall
- Griffth University School of Environment and Science Nathan Campus, Griffith University, Nathan, QLD, Australia
- Australian Rivers Institute Nathan Campus, Griffith University, Nathan, QLD, Australia
- Coastal and Marine Research Centre Nathan Campus, Griffith University, Gold Coast, QLD, Australia
| | - Ido Bar
- Griffth University School of Environment and Science Nathan Campus, Griffith University, Nathan, QLD, Australia
- Centre for Planetary Health and Food Security Nathan Campus, Griffith University, Nathan, QLD, Australia
| | - Guillermo Diaz-Pulido
- Griffth University School of Environment and Science Nathan Campus, Griffith University, Nathan, QLD, Australia.
- Australian Rivers Institute Nathan Campus, Griffith University, Nathan, QLD, Australia.
- Coastal and Marine Research Centre Nathan Campus, Griffith University, Gold Coast, QLD, Australia.
| |
Collapse
|
2
|
Donham EM, Hamilton SL, Aiello I, Price NN, Smith JE. Consequences of Warming and Acidification for the Temperate Articulated Coralline Alga, Calliarthron Tuberculosum (Florideophyceae, Rhodophyta). JOURNAL OF PHYCOLOGY 2022; 58:517-529. [PMID: 35657106 PMCID: PMC9543584 DOI: 10.1111/jpy.13272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Global climate changes, such as warming and ocean acidification (OA), are likely to negatively impact calcifying marine taxa. Abundant and ecologically important coralline algae may be particularly susceptible to OA; however, multi-stressor studies and those on articulated morphotypes are lacking. Here, we use field observations and laboratory experiments to elucidate the impacts of warming and acidification on growth, calcification, mineralogy, and photophysiology of the temperate articulated coralline alga, Calliarthron tuberculosum. We conducted a 4-week fully factorial mesocosm experiment exposing individuals from a southern CA kelp forest to current and future temperature and pH/pCO2 conditions (+2°C, -0.5 pH units). Calcification was reduced under warming (70%) and further reduced by high pCO2 or high pCO2 x warming (~150%). Growth (change in linear extension and surface area) was reduced by warming (40% and 50%, respectively), high pCO2 (20% and 40%, respectively), and high pCO2 x warming (50% and 75%, respectively). The maximum photosynthetic rate (Pmax ) increased by 100% under high pCO2 conditions, but we did not detect an effect of pCO2 or warming on photosynthetic efficiency (α). We also did not detect the effect of warming or pCO2 on mineralogy. However, variation in Mg incorporation in cell walls of different cell types (i.e., higher mol % Mg in cortical vs. medullary) was documented for the first time in this species. These results support findings from a growing body of literature suggesting that coralline algae are often more negatively impacted by warming than OA, with the potential for antagonistic effects when factors are combined.
Collapse
Affiliation(s)
- Emily M. Donham
- University of California Santa CruzEcology and Evolutionary Biology130 McAllister Way, Santa CruzCalifornia95060USA
| | - Scott L. Hamilton
- Moss Landing Marine LaboratoriesSan Jose State University8272 Moss Landing RdMoss LandingCalifornia95039USA
| | - Ivano Aiello
- Moss Landing Marine LaboratoriesSan Jose State University8272 Moss Landing RdMoss LandingCalifornia95039USA
| | - Nichole N. Price
- Bigelow Laboratory for Ocean Sciences60 Dr, East BoothbayBigelowMaine04544USA
| | - Jennifer E. Smith
- Scripps Institution of Oceanography9500 Gilman Dr, La JollaCalifornia92093USA
| |
Collapse
|
3
|
Impacts of ocean warming and acidification on calcifying coral reef taxa: mechanisms responsible and adaptive capacity. Emerg Top Life Sci 2022; 6:1-9. [PMID: 35157039 DOI: 10.1042/etls20210226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 11/17/2022]
Abstract
Ocean warming (OW) and acidification (OA) are two of the greatest global threats to the persistence of coral reefs. Calcifying reef taxa such as corals and coralline algae provide the essential substrate and habitat in tropical reefs but are at particular risk due to their susceptibility to both OW and OA. OW poses the greater threat to future reef growth and function, via its capacity to destabilise the productivity of both taxa, and to cause mass bleaching events and mortality of corals. Marine heatwaves are projected to increase in frequency, intensity, and duration over the coming decades, raising the question of whether coral reefs will be able to persist as functioning ecosystems and in what form. OA should not be overlooked, as its negative impacts on the calcification of reef-building corals and coralline algae will have consequences for global reef accretion. Given that OA can have negative impacts on the reproduction and early life stages of both coralline algae and corals, the interdependence of these taxa may result in negative feedbacks for reef replenishment. However, there is little evidence that OA causes coral bleaching or exacerbates the effects of OW on coral bleaching. Instead, there is some evidence that OA alters the photo-physiology of both taxa. Tropical coralline algal possess shorter generation times than corals, which could enable more rapid evolutionary responses. Future reefs will be dominated by taxa with shorter generation times and high plasticity, or those individuals inherently resistant and resilient to both marine heatwaves and OA.
Collapse
|
4
|
Cornwall CE, Harvey BP, Comeau S, Cornwall DL, Hall-Spencer JM, Peña V, Wada S, Porzio L. Understanding coralline algal responses to ocean acidification: Meta-analysis and synthesis. GLOBAL CHANGE BIOLOGY 2022; 28:362-374. [PMID: 34689395 DOI: 10.1111/gcb.15899] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
Ocean acidification (OA) is a major threat to the persistence of biogenic reefs throughout the world's ocean. Coralline algae are comprised of high magnesium calcite and have long been considered one of the most susceptible taxa to the negative impacts of OA. We summarize these impacts and explore the causes of variability in coralline algal responses using a review/qualitative assessment of all relevant literature, meta-analysis, quantitative assessment of critical responses, and a discussion of physiological mechanisms and directions for future research. We find that most coralline algae experienced reduced abundance, calcification rates, recruitment rates, and declines in pH within the site of calcification in laboratory experiments simulating OA or at naturally elevated CO2 sites. There were no other consistent physiological responses of coralline algae to simulated OA (e.g., photo-physiology, mineralogy, and survival). Calcification/growth was the most frequently measured parameters in coralline algal OA research, and our meta-analyses revealed greater declines in seawater pH were associated with significant decreases in calcification in adults and similar but nonsignificant trends for juveniles. Adults from the family Mesophyllumaceae also tended to be more robust to OA, though there was insufficient data to test similar trends for juveniles. OA was the dominant driver in the majority of laboratory experiments where other local or global drivers were assessed. The interaction between OA and any other single driver was often additive, though factors that changed pH at the surface of coralline algae (light, water motion, epiphytes) acted antagonistically or synergistically with OA more than any other drivers. With advances in experimental design and methodological techniques, we now understand that the physiology of coralline algal calcification largely dictates their responses to OA. However, significant challenges still remain, including improving the geographic and life-history spread of research effort and a need for holistic assessments of physiology.
Collapse
Affiliation(s)
- Christopher E Cornwall
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Ben P Harvey
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka, Japan
| | - Steeve Comeau
- Laboratoire d'Océanographie de Villefranche, Sorbonne Université, CNRS-INSU, Villefranche-sur-mer, France
| | - Daniel L Cornwall
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Jason M Hall-Spencer
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka, Japan
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| | - Viviana Peña
- BioCost Research Group, Facultad de Ciencias, Universidade da Coruña, Coruña, Spain
| | - Shigeki Wada
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka, Japan
| | - Lucia Porzio
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka, Japan
| |
Collapse
|
5
|
Peña V, Harvey BP, Agostini S, Porzio L, Milazzo M, Horta P, Le Gall L, Hall-Spencer JM. Major loss of coralline algal diversity in response to ocean acidification. GLOBAL CHANGE BIOLOGY 2021; 27:4785-4798. [PMID: 34268846 DOI: 10.1111/gcb.15757] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 06/17/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
Calcified coralline algae are ecologically important in rocky habitats in the marine photic zone worldwide and there is growing concern that ocean acidification will severely impact them. Laboratory studies of these algae in simulated ocean acidification conditions have revealed wide variability in growth, photosynthesis and calcification responses, making it difficult to assess their future biodiversity, abundance and contribution to ecosystem function. Here, we apply molecular systematic tools to assess the impact of natural gradients in seawater carbonate chemistry on the biodiversity of coralline algae in the Mediterranean and the NW Pacific, link this to their evolutionary history and evaluate their potential future biodiversity and abundance. We found a decrease in the taxonomic diversity of coralline algae with increasing acidification with more than half of the species lost in high pCO2 conditions. Sporolithales is the oldest order (Lower Cretaceous) and diversified when ocean chemistry favoured low Mg calcite deposition; it is less diverse today and was the most sensitive to ocean acidification. Corallinales were also reduced in cover and diversity but several species survived at high pCO2 ; it is the most recent order of coralline algae and originated when ocean chemistry favoured aragonite and high Mg calcite deposition. The sharp decline in cover and thickness of coralline algal carbonate deposits at high pCO2 highlighted their lower fitness in response to ocean acidification. Reductions in CO2 emissions are needed to limit the risk of losing coralline algal diversity.
Collapse
Affiliation(s)
- Viviana Peña
- BioCost Research Group, Facultad de Ciencias, Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña, A Coruña, Spain
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| | - Ben P Harvey
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka, Japan
| | - Sylvain Agostini
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka, Japan
| | - Lucia Porzio
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka, Japan
| | - Marco Milazzo
- Department of Earth and Marine Sciences (DiSTeM), University of Palermo, Palermo, Italy
| | - Paulo Horta
- Laboratory of Phycology, Department of Botany, Center for Biological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Line Le Gall
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| | - Jason M Hall-Spencer
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka, Japan
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| |
Collapse
|