1
|
de Souza AM, da Silva Junior FC, Dantas ÉD, Galvão-Pereira MC, de Medeiros SRB, Luchiari AC. Temperature effects on development and lifelong behavior in zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 973:179172. [PMID: 40112540 DOI: 10.1016/j.scitotenv.2025.179172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 12/05/2024] [Accepted: 03/15/2025] [Indexed: 03/22/2025]
Abstract
In recent decades, global warming has intensified temperature changes, placing substantial pressure on organism survival. Understanding how temperature variations impact development and behavior is crucial for conservation strategies. This study examined how temperature affects zebrafish embryo development and behavior, focusing on mRNA expression changes under thermal challenges. Zebrafish embryos were reared at 27 °C (control), 22 °C, and 30 °C, monitored from 24 to 120 hpf for structural development, and tested for optomotor responses at 7 dpf. Juvenile (30 dpf) and adult (90 dpf) fish reared at 27 °C were subjected to acute temperature shifts (22 °C and 30 °C for 2 h), followed by behavioral assessments and brain sampling for hsp90a and hspb1 mRNA expression analysis. Survival rates were significantly lower at 22 °C, with higher hatching rates at 30 °C but decreased at 22 °C. Developmental abnormalities varied: head malformations were more common at 30 °C, pericardial and yolk sac edema at 22 °C, and tail malformations at both extremes. Optomotor responses were impaired in fish from 22 °C. Social and aggressive behaviors were mostly unaffected, but fish from extreme temperatures showed increased risk-taking and reduced response to alarm substances. hsp90a mRNA expression was elevated in fish raised at 30 °C and those exposed to the 30 °C challenge, while hspb1 mRNA expression remained stable across temperatures. Cooling environments detrimentally affected embryo growth and survival, while warmer conditions induced pronounced growth defects. Elevated temperatures posed greater risks, triggering heightened hsp90a expression crucial for stress adaptation. Understanding thermal variation impacts on embryo development is crucial for mitigating climate change effects on species' viability and reproduction.
Collapse
Affiliation(s)
- Augusto Monteiro de Souza
- Department of Cell Biology and Genetics, Graduate Program in Biotechnology, Biosciences Center, Federal University of Rio Grande do Norte, Av. Sen. Salgado Filho 3000, Natal, RN 59078-970, Brazil
| | | | - Éntony David Dantas
- Department of Chemical Engineering, Federal University of Rio Grande Do Norte, Av. Sen. Salgado Filho 3000, Natal, RN 59064-741, Brazil
| | - Maria Clara Galvão-Pereira
- FishLab, Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Av. Sen. Salgado Filho 3000, Natal, RN 59078-970, Brazil
| | - Silvia Regina Batistuzzo de Medeiros
- Department of Cell Biology and Genetics, Graduate Program in Biotechnology, Biosciences Center, Federal University of Rio Grande do Norte, Av. Sen. Salgado Filho 3000, Natal, RN 59078-970, Brazil
| | - Ana Carolina Luchiari
- FishLab, Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Av. Sen. Salgado Filho 3000, Natal, RN 59078-970, Brazil.
| |
Collapse
|
2
|
Swank AR, Tracy CB, Mendonça MT, Bernal MA. Molecular plasticity to ocean warming and habitat loss in a coral reef fish. J Hered 2025; 116:126-138. [PMID: 38651326 DOI: 10.1093/jhered/esae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/21/2024] [Indexed: 04/25/2024] Open
Abstract
Sea surface temperatures are rising at unprecedented rates, leading to a progressive degradation of complex habitats formed by coral reefs. In parallel, acute thermal stress can lead to physiological challenges for ectotherms that inhabit coral reefs, including fishes. Warming and habitat simplification could push marine fishes beyond their physiological limits in the near future. Specifically, questions remain on how warming and habitat structure influence the brains of marine fishes. Here we evaluated how thermal stress and habitat loss are acting independently and synergistically as stressors in a damselfish of the Western Atlantic, Abudefduf saxatilis. For this experiment, 40 individuals were exposed to different combinations of temperature (27 °C or 31 °C) and habitat complexity (complex vs. simple) for 10 days, and changes in brain gene expression and oxidative stress of liver and muscle were evaluated. The results indicate that warming resulted in increased oxidative damage in the liver (P = 0.007) and changes in gene expression of the brain including genes associated with neurotransmission, immune function, and tissue repair. Individuals from simplified habitats showed higher numbers of differentially expressed genes and changes for genes associated with synaptic plasticity and spatial memory. In addition, a reference transcriptome of A. saxatilis is presented here for the first time, serving as a resource for future molecular studies. This project enhances our understanding of how fishes are responding to the combination of coral reef degradation and thermal stress while elucidating the plastic mechanisms that will enable generalists to persist in a changing world.
Collapse
Affiliation(s)
- Ally R Swank
- Department of Biological Sciences, Auburn University, Auburn, AL, United States
| | - Claire B Tracy
- Department of Biological Sciences, Auburn University, Auburn, AL, United States
| | - Mary T Mendonça
- Department of Biological Sciences, Auburn University, Auburn, AL, United States
| | - Moisés A Bernal
- Department of Biological Sciences, Auburn University, Auburn, AL, United States
- Smithsonian Tropical Research Institute, Balboa, Panama, Republic of Panama
| |
Collapse
|
3
|
Silveira MM, Donelson JM, McCormick MI, Araujo-Silva H, Luchiari AC. Impact of ocean warming on a coral reef fish learning and memory. PeerJ 2023; 11:e15729. [PMID: 37576501 PMCID: PMC10416774 DOI: 10.7717/peerj.15729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 06/18/2023] [Indexed: 08/15/2023] Open
Abstract
Tropical ectotherms are highly sensitive to environmental warming, especially coral reef fishes, which are negatively impacted by an increase of a few degrees in ocean temperature. However, much of our understanding on the thermal sensitivity of reef fish is focused on a few traits (e.g., metabolism, reproduction) and we currently lack knowledge on warming effects on cognition, which may endanger decision-making and survival. Here, we investigated the effects of warming on learning and memory in a damselfish species, Acanthochromis polyacanthus. Fish were held at 28-28.5 °C (control group), 30-30.5 °C (moderate warming group) or 31.5-32 °C (high warming group) for 2 weeks, and then trained to associate a blue tag (cue) to the presence of a conspecific (reward). Following 20 training trials (5 days), fish were tested for associative learning (on the following day) and memory storage (after a 5-days interval). The control group A. polyacanthus showed learning of the task and memory retention after five days, but increasing water temperature impaired learning and memory. A thorough understanding of the effects of heat stress, cognition, and fitness is urgently required because cognition may be a key factor determining animals' performance in the predicted scenario of climate changes. Knowing how different species respond to warming can lead to better predictions of future community dynamics, and because it is species specific, it could pinpoint vulnerable/resilience species.
Collapse
Affiliation(s)
- Mayara M. Silveira
- Department of Physiology and Behavior, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Jennifer M. Donelson
- ARC Centre of Excellence for Coral Reef Studies, James Cook University of North Queensland, Townville, Australia
| | | | - Heloysa Araujo-Silva
- Department of Physiology and Behavior, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Ana C. Luchiari
- Department of Physiology and Behavior, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| |
Collapse
|
4
|
Hamilton TJ, Tresguerres M, Kwan GT, Szaskiewicz J, Franczak B, Cyronak T, Andersson AJ, Kline DI. Effects of ocean acidification on dopamine-mediated behavioral responses of a coral reef damselfish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162860. [PMID: 36931527 DOI: 10.1016/j.scitotenv.2023.162860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 05/06/2023]
Abstract
We investigated whether CO2-induced ocean acidification (OA) affects dopamine receptor-dependent behavior in bicolor damselfish (Stegastes partitus). Damselfish were kept in aquaria receiving flow through control (pH ~ 8.03; pCO2 ~ 384 μatm) or OA (pH ~ 7.64; CO2 ~ 1100 μatm) seawater at a rate of 1 L min-1. Despite this relatively fast flow rate, fish respiration further acidified the seawater in both control (pH ~7.88; pCO2 ~ 595 μatm) and OA (pH ~7.55; pCO2 ~ 1450 μatm) fish-holding aquaria. After five days of exposure, damselfish locomotion, boldness, anxiety, and aggression were assessed using a battery of behavioral tests using automated video analysis. Two days later, these tests were repeated following application of the dopamine D1 receptor agonist SKF 38393. OA-exposure induced ceiling anxiety levels that were significantly higher than in control damselfish, and SKF 38393 increased anxiety in control damselfish to a level not significantly different than that of OA-exposed damselfish. Additionally, SKF 38393 decreased locomotion and increased boldness in control damselfish but had no effect in OA-exposed damselfish, suggesting an alteration in activity of dopaminergic pathways that regulate behavior under OA conditions. These results indicate that changes in dopamine D1 receptor function affects fish behavior during exposure to OA. However, subsequent measurements of seawater sampled using syringes during the daytime (~3-4 pm local time) from crevasses in coral reef colonies, which are used as shelter by damselfish, revealed an average pH of 7.73 ± 0.03 and pCO2 of 925.8 ± 62.2 μatm; levels which are comparable to Representative Concentration Pathway (RCP) 8.5 predicted end-of-century mean OA levels in the open ocean. Further studies considering the immediate environmental conditions experienced by fish as well as individual variability and effect size are required to understand potential implications of the observed OA-induced behavioral effects on damselfish fitness in the wild.
Collapse
Affiliation(s)
- Trevor J Hamilton
- Department of Psychology, MacEwan University, Edmonton, AB T5J 4S2, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | - Martin Tresguerres
- Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | - Garfield T Kwan
- Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Fisheries Resources Division, Southwest Fisheries Sciences Center, National Oceanic and Atmospheric Administration, La Jolla, CA 92037, USA
| | - Joshua Szaskiewicz
- Department of Psychology, MacEwan University, Edmonton, AB T5J 4S2, Canada
| | - Brian Franczak
- Department of Mathematics and Statistics, MacEwan University, Edmonton, AB T5J 4S2, Canada
| | - Tyler Cyronak
- Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Institute for Coastal Plain Science, Georgia Southern University, Statesboro, GA 30460
| | - Andreas J Andersson
- Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - David I Kline
- Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Smithsonian Tropical Research Institute, Apartado Postal, 0843-03092, Panamá, Panama
| |
Collapse
|
5
|
Moreira ALP, Luchiari AC. Effects of oxybenzone on zebrafish behavior and cognition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152101. [PMID: 34863770 DOI: 10.1016/j.scitotenv.2021.152101] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/23/2021] [Accepted: 11/27/2021] [Indexed: 06/13/2023]
Abstract
The increased ultraviolet (UV) radiation on the Earth's surface increased the need for UV filters products. One of the most used is oxybenzone, which is indiscriminately released in the environment. Oxybenzone's ecotoxicological effects on physiology have been investigated because of the bioaccumulation and action as an endocrine disruptor. However, little is known about its effects on behavior or cognition. In this study, we approach the effects of short-term oxybenzone exposure on locomotion, anxiety-like, social behavior, and short-term memory in zebrafish (Danio rerio). Adult zebrafish were exposed to oxybenzone 10, 100 and 1000 μg L-1 for 15 days and then tested (novel tank, shoal preference, mirror test, and T-maze with novelty). Fish exposed to oxybenzone showed reduced locomotion, decreased anxiety-like behavior, less time near/interacting with the shoal, fewer interactions with the mirror image, and decreased exploration of the novel arm in the T-maze test. These results suggest that oxybenzone affects perception, increases risk-taking, impairs proper aggressive response, and jeopardizes the animals' ability to retain information. These results reinforce the risk posed by products discarded into the aquatic ecosystems, especially those with underestimated toxic potential.
Collapse
Affiliation(s)
- Ana Luisa Pires Moreira
- Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Brazil
| | - Ana Carolina Luchiari
- Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Brazil.
| |
Collapse
|
6
|
Silveira MM, de Souza JF, Araujo-Silva H, Luchiari AC. Agonistic Behavior Is Affected by Memory in the Dusky Damselfish Stegastes fuscus. Front Behav Neurosci 2021; 15:663423. [PMID: 34489653 PMCID: PMC8418090 DOI: 10.3389/fnbeh.2021.663423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 07/26/2021] [Indexed: 11/30/2022] Open
Abstract
The ability to discriminate familiar from unfamiliar conspecifics has been demonstrated in several species of fish. Agonistic interactions are among the most frequent behaviors exhibited by territorial species and could offer useful information for the individual recognition process. In agonistic situations, memory may modulate the behavioral response and affect social dynamics, but few studies have explored the memory retention acquired during aggressive encounters. The present study investigated the memory retention of an agonistic encounter in the dusky damselfish Stegastes fuscus. The experimental procedure was divided into three parts: (1) Familiarization; (2) Recognition test; and (3) Memory test. During the familiarization phase, the fish were visually exposed to the same conspecific for 5 days (10 min per day) and the behavior was recorded. On the following day (conspecific recognition test), half of the animals were paired with the same conspecific and the other half with a different conspecific for 10 min, and the behavior was recorded. The fish were retested 5, 10, and 15 days after the test to evaluate memory retention. In the memory test, they were exposed to the same conspecific as before or to a different conspecific. We found that the damselfish reduced their agonistic displays when the stimulus fish was familiar, but when it was unfamiliar, the animals were more aggressive and only reduced their mnemonic response after 10 days. These results suggest that the recognition ability of damselfish can be affected by time and that it modulates agonistic response.
Collapse
Affiliation(s)
- M M Silveira
- Departamento de Fisiologia e Comportamento, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - J F de Souza
- Departamento de Fisiologia e Comportamento, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - H Araujo-Silva
- Departamento de Fisiologia e Comportamento, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - A C Luchiari
- Departamento de Fisiologia e Comportamento, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| |
Collapse
|