2
|
Khalid Z, Singh B. Looking at moss through the bioeconomy lens: biomonitoring, bioaccumulation, and bioenergy potential. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:114722-114738. [PMID: 37897571 DOI: 10.1007/s11356-023-30633-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 10/19/2023] [Indexed: 10/30/2023]
Abstract
The field of bioeconomy has been experiencing a surge in interest in recent years as society increasingly recognizes the potential of utilizing renewable biological resources to create sustainable solutions for economic growth, resource management, and environmental protection. Despite its potential, there is a notable lack of studies exploring the utilization of moss as a viable resource within the bioeconomy framework. Aligned with this objective, this paper conducts a keyword analysis using the VOSviewer application to explore the applicability of mosses as a bioeconomy resource. While biomonitoring using mosses has been studied extensively, this paper shifts its focus to discuss advancements in this area. Moreover, it evaluates the viability of moss utilization for bioenergy production and concisely summarizes their application in microbial fuel cells. The review also highlights challenges pertinent to moss utilization and presents future prospects. The overarching goal of this review paper is to assess the potential and utilization prospects of mosses within the realms of bioaccumulation, air purification, and bioenergy. By offering a comprehensive summary of moss applications, performance, and viability across diverse sectors, this paper endeavors to promote the versatile application of mosses in various contexts. It repositions the discussion on mosses, accentuating their utilization potential prior to exploring conclusions and future prospects.
Collapse
Affiliation(s)
- Zaira Khalid
- Department of Environmental Sciences, Central University of Jharkhand, Ranchi, Jharkhand, 835205, India
| | - Bhaskar Singh
- Department of Environmental Sciences, Central University of Jharkhand, Ranchi, Jharkhand, 835205, India.
| |
Collapse
|
3
|
Dabravolski SA, Isayenkov SV. Metabolites Facilitating Adaptation of Desert Cyanobacteria to Extremely Arid Environments. PLANTS (BASEL, SWITZERLAND) 2022; 11:3225. [PMID: 36501264 PMCID: PMC9736550 DOI: 10.3390/plants11233225] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Desert is one of the harshest environments on the planet, characterized by exposure to daily fluctuations of extreme conditions (such as high temperature, low nitrogen, low water, high salt, etc.). However, some cyanobacteria are able to live and flourish in such conditions, form communities, and facilitate survival of other organisms. Therefore, to ensure survival, desert cyanobacteria must develop sophisticated and comprehensive adaptation strategies to enhance their tolerance to multiple simultaneous stresses. In this review, we discuss the metabolic pathways used by desert cyanobacteria to adapt to extreme arid conditions. In particular, we focus on the extracellular polysaccharides and compatible solutes biosynthesis pathways and their evolution and special features. We also discuss the role of desert cyanobacteria in the improvement of soil properties and their ecological and environmental impact on soil communities. Finally, we summarize recent achievements in the application of desert cyanobacteria to prevent soil erosion and desertification.
Collapse
Affiliation(s)
- Siarhei A. Dabravolski
- Department of Biotechnology Engineering, Braude Academic College of Engineering, Snunit 51, Karmiel 2161002, Israel
| | - Stanislav V. Isayenkov
- Department of Plant Food Products and Biofortification, Institute of Food Biotechnology and Genomics, The National Academy of Sciences of Ukraine, Osipovskogo Str. 2a, 04123 Kyiv, Ukraine
| |
Collapse
|
4
|
Mackelprang R, Vaishampayan P, Fisher K. Adaptation to Environmental Extremes Structures Functional Traits in Biological Soil Crust and Hypolithic Microbial Communities. mSystems 2022; 7:e0141921. [PMID: 35852333 PMCID: PMC9426607 DOI: 10.1128/msystems.01419-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 06/30/2022] [Indexed: 12/24/2022] Open
Abstract
Biological soil crusts (biocrusts) are widespread in drylands and deserts. At the microhabitat scale, they also host hypolithic communities that live under semitranslucent stones. Both environmental niches experience exposure to extreme conditions such as high UV radiation, desiccation, temperature fluctuations, and resource limitation. However, hypolithic communities are somewhat protected from extremes relative to biocrust communities. Conditions are otherwise similar, so comparing them can answer outstanding questions regarding adaptations to environmental extremes. Using metagenomic sequencing, we assessed the functional potential of dryland soil communities and identified the functional underpinnings of ecological niche differentiation in biocrusts versus hypoliths. We also determined the effect of the anchoring photoautotroph (moss or cyanobacteria). Genes and pathways differing in abundance between biocrusts and hypoliths indicate that biocrust communities adapt to the higher levels of UV radiation, desiccation, and temperature extremes through an increased ability to repair damaged DNA, sense and respond to environmental stimuli, and interact with other community members and the environment. Intracellular competition appears to be crucial to both communities, with biocrust communities using the Type VI Secretion System (T6SS) and hypoliths favoring a diversity of antibiotics. The dominant primary producer had a reduced effect on community functional potential compared with niche, but an abundance of genes related to monosaccharide, amino acid, and osmoprotectant uptake in moss-dominated communities indicates reliance on resources provided to heterotrophs by mosses. Our findings indicate that functional traits in dryland communities are driven by adaptations to extremes and we identify strategies that likely enable survival in dryland ecosystems. IMPORTANCE Biocrusts serve as a keystone element of desert and dryland ecosystems, stabilizing soils, retaining moisture, and serving as a carbon and nitrogen source in oligotrophic environments. Biocrusts cover approximately 12% of the Earth's terrestrial surface but are threatened by climate change and anthropogenic disturbance. Given their keystone role in ecosystem functioning, loss will have wide-spread consequences. Biocrust microbial constituents must withstand polyextreme environmental conditions including high UV exposure, desiccation, oligotrophic conditions, and temperature fluctuations over short time scales. By comparing biocrust communities with co-occurring hypolithic communities (which inhabit the ventral sides of semitranslucent stones and are buffered from environmental extremes), we identified traits that are likely key adaptations to extreme conditions. These include DNA damage repair, environmental sensing and response, and intracellular competition. Comparison of the two niches, which differ primarily in exposure levels to extreme conditions, makes this system ideal for understanding how functional traits are structured by the environment.
Collapse
Affiliation(s)
- Rachel Mackelprang
- Department of Biology, California State University Northridge, Northridge, California, USA
| | - Parag Vaishampayan
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, California, USA
| | - Kirsten Fisher
- Department of Biological Sciences, California State University, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
7
|
Weber B, Belnap J, Büdel B, Antoninka AJ, Barger NN, Chaudhary VB, Darrouzet-Nardi A, Eldridge DJ, Faist AM, Ferrenberg S, Havrilla CA, Huber-Sannwald E, Malam Issa O, Maestre FT, Reed SC, Rodriguez-Caballero E, Tucker C, Young KE, Zhang Y, Zhao Y, Zhou X, Bowker MA. What is a biocrust? A refined, contemporary definition for a broadening research community. Biol Rev Camb Philos Soc 2022; 97:1768-1785. [PMID: 35584903 PMCID: PMC9545944 DOI: 10.1111/brv.12862] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/10/2022] [Accepted: 04/12/2022] [Indexed: 12/22/2022]
Abstract
Studies of biological soil crusts (biocrusts) have proliferated over the last few decades. The biocrust literature has broadened, with more studies assessing and describing the function of a variety of biocrust communities in a broad range of biomes and habitats and across a large spectrum of disciplines, and also by the incorporation of biocrusts into global perspectives and biogeochemical models. As the number of biocrust researchers increases, along with the scope of soil communities defined as ‘biocrust’, it is worth asking whether we all share a clear, universal, and fully articulated definition of what constitutes a biocrust. In this review, we synthesize the literature with the views of new and experienced biocrust researchers, to provide a refined and fully elaborated definition of biocrusts. In doing so, we illustrate the ecological relevance and ecosystem services provided by them. We demonstrate that biocrusts are defined by four distinct elements: physical structure, functional characteristics, habitat, and taxonomic composition. We describe outgroups, which have some, but not all, of the characteristics necessary to be fully consistent with our definition and thus would not be considered biocrusts. We also summarize the wide variety of different types of communities that fall under our definition of biocrusts, in the process of highlighting their global distribution. Finally, we suggest the universal use of the Belnap, Büdel & Lange definition, with minor modifications: Biological soil crusts (biocrusts) result from an intimate association between soil particles and differing proportions of photoautotrophic (e.g. cyanobacteria, algae, lichens, bryophytes) and heterotrophic (e.g. bacteria, fungi, archaea) organisms, which live within, or immediately on top of, the uppermost millimetres of soil. Soil particles are aggregated through the presence and activity of these often extremotolerant biota that desiccate regularly, and the resultant living crust covers the surface of the ground as a coherent layer. With this detailed definition of biocrusts, illustrating their ecological functions and widespread distribution, we hope to stimulate interest in biocrust research and inform various stakeholders (e.g. land managers, land users) on their overall importance to ecosystem and Earth system functioning.
Collapse
Affiliation(s)
- Bettina Weber
- Division of Plant Sciences, Institute for Biology, University of Graz, Holteigasse 6, 8010, Graz, Austria.,Multiphase Chemistry Department, Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, 55128, Mainz, Germany
| | - Jayne Belnap
- Southwest Biological Science Center, U.S. Geological Survey, 2290 S. Resource Blvd, Moab, UT, 84532, USA
| | - Burkhard Büdel
- Biology Institute, University of Kaiserslautern, PO Box 3049, 67653, Kaiserslautern, Germany
| | - Anita J Antoninka
- School of Forestry, Northern Arizona University, 200 E. Pine Knoll Drive, Box 15018, Flagstaff, AZ, 86011, USA
| | - Nichole N Barger
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Campus Box 334, Boulder, CO, 80309, USA
| | - V Bala Chaudhary
- Department of Environmental Studies, Dartmouth College, 6182 Steele Hall, 39 College Street, Hanover, NH, 03755, USA
| | - Anthony Darrouzet-Nardi
- Department of Biological Sciences, University of Texas at El Paso, 500 W. University Ave, El Paso, TX, 79968, USA
| | - David J Eldridge
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Akasha M Faist
- Department of Animal and Range Sciences, New Mexico State University, PO Box 30003, MSC 3-I, Las Cruces, NM, 88003, USA
| | - Scott Ferrenberg
- Department of Biology, New Mexico State University, PO Box 30001, MSC 3AF, Las Cruces, NM, 88003, USA
| | - Caroline A Havrilla
- Department of Forest and Rangeland Stewardship, Colorado State University, 1472 Campus Delivery, Colorado State University, Fort Collins, CO, 80521, USA
| | - Elisabeth Huber-Sannwald
- Division of Environmental Sciences, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José 2055, Col. 4ta Sección, CP 78216, San Luis Potosi, SLP, Mexico
| | - Oumarou Malam Issa
- Institute of Ecology and Environmental Sciences of Paris (IEES-Paris), SU/IRD/CNRS/INRAE/UPEC, 32, Avenue Henry Varagnat, F-93143, Bondy Cedex, France
| | - Fernando T Maestre
- Instituto Multidisciplinar para el Estudio del Medio "Ramón Margalef", Universidad de Alicante, Carretera de San Vicente del Raspeig s/n, 03690, San Vicente del Raspeig, Spain.,Departamento de Ecología, Universidad de Alicante, Carretera de San Vicente del Raspeig s/n, 03690, San Vicente del Raspeig, Spain
| | - Sasha C Reed
- Southwest Biological Science Center, U.S. Geological Survey, 2290 S. Resource Blvd, Moab, UT, 84532, USA
| | - Emilio Rodriguez-Caballero
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, 55128, Mainz, Germany.,Department of Agronomy and Centro de Investigación de Colecciones Científicas (CECOUAL), Universidad de Almería, carretera Sacramento s/n, 04120, La cañada de San Urbano, Almeria, Spain
| | - Colin Tucker
- USDA Forest Service, Northern Research Station, 410 MacInnes Drive, Houghton, MI, 49931-1134, USA
| | - Kristina E Young
- Extension Agriculture and Natural Resources, Utah State University, 1850 S. Aggie Blvd, Moab, UT, 84532, USA
| | - Yuanming Zhang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 818 South Bejing Road, Urumqi City, 830011, Xinjiang, China
| | - Yunge Zhao
- Institute of Soil and Water Conservation, Northwest A & F University, 26 Xinong Road, Yangling, Shaanxi, 712100, China
| | - Xiaobing Zhou
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 818 South Bejing Road, Urumqi City, 830011, Xinjiang, China
| | - Matthew A Bowker
- School of Forestry, Northern Arizona University, 200 E. Pine Knoll Drive, Box 15018, Flagstaff, AZ, 86011, USA
| |
Collapse
|
8
|
de Los Ríos A, Garrido-Benavent I, Limón A, Cason ED, Maggs-Kölling G, Cowan D, Valverde A. Novel lichen-dominated hypolithic communities in the Namib Desert. MICROBIAL ECOLOGY 2022; 83:1036-1048. [PMID: 34312709 PMCID: PMC9015988 DOI: 10.1007/s00248-021-01812-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
The ventral surfaces of translucent rocks from hot desert pavements often harbor hypolithic microbial communities, which are mostly dominated by cyanobacteria. The Namib Desert fog belt supports extensive hypolithic colonization of quartz rocks, which are also colonized by lichens on their dorsal surfaces. Here, we aim to evaluate whether lichens colonize the ventral surface of the rocks (i.e., show hypolithic lifestyle) and compare the bacterial composition of these coastal hypolithic communities with those found inland. Fungal DNA barcoding and fungal and bacterial Illumina metabarcoding were combined with electron microscopy to characterize the composition and spatial structure of hypolithic communities from two (coastal and inland) areas in the Namib Desert. We report, for the first time, the structure and composition of lichen-dominated hypolithic communities found in the coastal zone of the Namib Desert with extensive epilithic lichen cover. Lichen modified areoles with inverted morphology of the genus Stellarangia (three lineages) and Buellia (two lineages) were the main components of these hypolithic communities. Some of these lineages were also found in epilithic habitats. These lichen-dominated hypolithic communities differed in structural organization and bacterial community composition from those found in inland areas. The hypolithic lichen colonization characterized here seems not to be an extension of epilithic or biological soil crust lichen growths but the result of specific sublithic microenvironmental conditions. Moisture derived from fog and dew could be the main driver of this unique colonization.
Collapse
Affiliation(s)
- Asunción de Los Ríos
- Biogeochemistry and Microbial Ecology Department, Museo Nacional de Ciencias Naturales, CSIC, Serrano 115 dpdo, 28006, Madrid, Spain.
| | - Isaac Garrido-Benavent
- Biogeochemistry and Microbial Ecology Department, Museo Nacional de Ciencias Naturales, CSIC, Serrano 115 dpdo, 28006, Madrid, Spain
- Departament de Botànica i Geologia, Facultat de Ciències Biològiques, Universitat de València (UV), C. Doctor Moliner 50, 46100, Burjassot, València, Spain
| | - Alicia Limón
- Biogeochemistry and Microbial Ecology Department, Museo Nacional de Ciencias Naturales, CSIC, Serrano 115 dpdo, 28006, Madrid, Spain
| | - Errol D Cason
- Department of Animal Science, University of the Free State, Bloemfontein, South Africa
| | | | - Don Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, 0002, South Africa
| | - Angel Valverde
- Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA-CSIC), C/ Cordel de Merinas 40-52, 37008, Salamanca, Spain
| |
Collapse
|
9
|
Ekwealor JTB, Clark TA, Dautermann O, Russell A, Ebrahimi S, Stark LR, Niyogi KK, Mishler BD. Natural ultraviolet radiation exposure alters photosynthetic biology and improves recovery from desiccation in a desert moss. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4161-4179. [PMID: 33595636 DOI: 10.1093/jxb/erab051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
Plants in dryland ecosystems experience extreme daily and seasonal fluctuations in light, temperature, and water availability. We used an in situ field experiment to uncover the effects of natural and reduced levels of ultraviolet radiation (UV) on maximum PSII quantum efficiency (Fv/Fm), relative abundance of photosynthetic pigments and antioxidants, and the transcriptome in the desiccation-tolerant desert moss Syntrichia caninervis. We tested the hypotheses that: (i) S. caninervis plants undergo sustained thermal quenching of light [non-photochemical quenching (NPQ)] while desiccated and after rehydration; (ii) a reduction of UV will result in improved recovery of Fv/Fm; but (iii) 1 year of UV removal will de-harden plants and increase vulnerability to UV damage, indicated by a reduction in Fv/Fm. All field-collected plants had extremely low Fv/Fm after initial rehydration but recovered over 8 d in lab-simulated winter conditions. UV-filtered plants had lower Fv/Fm during recovery, higher concentrations of photoprotective pigments and antioxidants such as zeaxanthin and tocopherols, and lower concentrations of neoxanthin and Chl b than plants exposed to near natural UV levels. Field-grown S. caninervis underwent sustained NPQ that took days to relax and for efficient photosynthesis to resume. Reduction of solar UV radiation adversely affected recovery of Fv/Fm following rehydration.
Collapse
Affiliation(s)
- Jenna T B Ekwealor
- Department of Integrative Biology, and University and Jepson Herbaria, University of California, Berkeley, CA, USA
| | - Theresa A Clark
- School of Life Sciences, University of Nevada, Las Vegas, NV, USA
| | - Oliver Dautermann
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | | | - Sotodeh Ebrahimi
- School of Life Sciences, University of Nevada, Las Vegas, NV, USA
| | - Lloyd R Stark
- School of Life Sciences, University of Nevada, Las Vegas, NV, USA
| | - Krishna K Niyogi
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Brent D Mishler
- Department of Integrative Biology, and University and Jepson Herbaria, University of California, Berkeley, CA, USA
| |
Collapse
|