1
|
Liampas I, Kyriakoulopoulou P, Karakoida V, Kavvoura PA, Sgantzos M, Bogdanos DP, Stamati P, Dardiotis E, Siokas V. Blood-Based Biomarkers in Frontotemporal Dementia: A Narrative Review. Int J Mol Sci 2024; 25:11838. [PMID: 39519389 PMCID: PMC11546606 DOI: 10.3390/ijms252111838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/20/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
This narrative review explores the current landscape of blood biomarkers in Frontotemporal dementia (FTD). Neurofilament light chain (NfL) may be useful in the differentiation of behavioral variant FTD from primary psychiatric disorders (PPDs) or dementia with Lewy bodies (DLB). In prodromal FTD and presymptomatic mutation carriers (GRN, MAPT, C9orf72), elevated NfL may herald pheno-conversion to full-blown dementia. Baseline NfL correlates with steeper neuroanatomical changes and cognitive, behavioral and functional decline, making NfL promising in monitoring disease progression. Phosphorylated neurofilament heavy chain (pNfH) levels have a potential limited role in the demarcation of the conversion stage to full-blown FTD. Combined NfL and pNfH measurements may allow a wider stage stratification. Total tau levels lack applicability in the framework of FTD. p-tau, on the other hand, is of potential value in the discrimination of FTD from Alzheimer's dementia. Progranulin concentrations could serve the identification of GRN mutation carriers. Glial fibrillary acidic protein (GFAP) may assist in the differentiation of PPDs from behavioral variant FTD and the detection of GRN mutation carriers (additional research is warranted). Finally, TAR DNA-binding protein-43 (TDP-43) appears to be a promising diagnostic biomarker for FTD. Its potential in distinguishing TDP-43 pathology from other FTD-related pathologies requires further research.
Collapse
Affiliation(s)
- Ioannis Liampas
- Department of Neurology, University Hospital of Larissa, School of Medicine, University of Thessaly, 41100 Larissa, Greece; (P.S.); (E.D.); (V.S.)
| | | | - Vasiliki Karakoida
- School of Medicine, University of Patras, 26504 Rio Patras, Greece; (P.K.); (V.K.); (P.A.K.)
| | | | - Markos Sgantzos
- Department of Anatomy, Medical School, University of Thessaly, 41100 Larissa, Greece;
| | - Dimitrios P. Bogdanos
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41100 Larissa, Greece;
| | - Polyxeni Stamati
- Department of Neurology, University Hospital of Larissa, School of Medicine, University of Thessaly, 41100 Larissa, Greece; (P.S.); (E.D.); (V.S.)
| | - Efthimios Dardiotis
- Department of Neurology, University Hospital of Larissa, School of Medicine, University of Thessaly, 41100 Larissa, Greece; (P.S.); (E.D.); (V.S.)
| | - Vasileios Siokas
- Department of Neurology, University Hospital of Larissa, School of Medicine, University of Thessaly, 41100 Larissa, Greece; (P.S.); (E.D.); (V.S.)
| |
Collapse
|
2
|
Rosas HD, Mercaldo ND, Hasimoglu Y, Petersen M, Lewis LR, Lai F, Powell D, Dhungana A, Demir A, Keater D, Yassa M, Brickman AM, O'Bryant S. Association of plasma neurofilament light chain with microstructural white matter changes in Down syndrome. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2024; 16:e70023. [PMID: 39583646 PMCID: PMC11582681 DOI: 10.1002/dad2.70023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/10/2024] [Accepted: 09/13/2024] [Indexed: 11/26/2024]
Abstract
INTRODUCTION Both micro- and macrostructural white matter (WM) abnormalities, particularly those related to axonal degeneration, are associated with cognitive decline in adults with Down syndrome (DS) prior to a diagnosis of Alzheimer disease. Neurofilament light chain (NfL) is a support protein within myelinated axons released into blood following axonal damage. In this study we investigated cross-sectional relationships between WM microstructural changes as measured by diffusion tensor imaging (DTI) and plasma NfL concentration in adults with DS without dementia. METHODS Thirty cognitively stable (CS) adults with DS underwent diffusion-weighted MRI scanning and plasma NfL measurement. DTI measures of select WM tracts were derived using automatic fiber tracking, and associations with plasma NfL were assessed using Spearman correlation coefficients. RESULTS Higher Plasma NfL was associated with greater altered diffusion measures of select tracts. DISCUSSION Early increases in plasma NfL may reflect early white matter microstructural changes prior to dementia in DS. Highlights The onset of such WM changes in DS has not yet been widely studied.WM microstructural properties correlated with plasma neurofilament light chain (NfL).NfL may reflect early, selective WM changes in adults with DS at high risk of developing AD.
Collapse
Affiliation(s)
- Herminia Diana Rosas
- Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Center for Neuroimaging of Aging and Neurodegenerative DiseasesMassachusetts General HospitalCharlestownMassachusettsUSA
| | - Nathaniel David Mercaldo
- Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Center for Neuroimaging of Aging and Neurodegenerative DiseasesMassachusetts General HospitalCharlestownMassachusettsUSA
| | - Yasemin Hasimoglu
- Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Center for Neuroimaging of Aging and Neurodegenerative DiseasesMassachusetts General HospitalCharlestownMassachusettsUSA
| | - Melissa Petersen
- Department of Family MedicineUniversity of North Texas Health Science CenterFort WorthTexasUSA
- Institute for Translational ResearchUniversity of North Texas Health Science CenterFort WorthTexasUSA
| | - Lydia R. Lewis
- Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Center for Neuroimaging of Aging and Neurodegenerative DiseasesMassachusetts General HospitalCharlestownMassachusettsUSA
| | - Florence Lai
- Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - David Powell
- Magnetic Resonance Imaging and Spectroscopy CenterUniversity of KentuckyLexingtonKentuckyUSA
| | - Asim Dhungana
- Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Center for Neuroimaging of Aging and Neurodegenerative DiseasesMassachusetts General HospitalCharlestownMassachusettsUSA
| | - Ali Demir
- Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Center for Neuroimaging of Aging and Neurodegenerative DiseasesMassachusetts General HospitalCharlestownMassachusettsUSA
| | - David Keater
- Department of Neurobiology and BehaviorUniversity of CaliforniaIrvineCaliforniaUSA
| | - Michael Yassa
- Department of Psychiatry and Human BehaviorUniversity of CaliforniaIrvineCaliforniaUSA
| | - Adam M. Brickman
- Taub Institute for Research on Alzheimer's disease and the Aging Brain Department of NeurologyVagelos College of Physicians and Surgeons, Columbia UniversityNew YorkUSA
| | - Sid O'Bryant
- Department of Family MedicineUniversity of North Texas Health Science CenterFort WorthTexasUSA
- Institute for Translational ResearchUniversity of North Texas Health Science CenterFort WorthTexasUSA
| |
Collapse
|
3
|
Fieldhouse JLP, van Paassen DN, van Engelen MPE, De Boer SCM, Hartog WL, Braak S, Schoonmade LJ, Schouws SNTM, Krudop WA, Oudega ML, Mutsaerts HJMM, Teunissen CE, Vijverberg EGB, Pijnenburg YAL. The pursuit for markers of disease progression in behavioral variant frontotemporal dementia: a scoping review to optimize outcome measures for clinical trials. Front Aging Neurosci 2024; 16:1382593. [PMID: 38784446 PMCID: PMC11112081 DOI: 10.3389/fnagi.2024.1382593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/16/2024] [Indexed: 05/25/2024] Open
Abstract
Behavioral variant frontotemporal dementia (bvFTD) is a neurodegenerative disorder characterized by diverse and prominent changes in behavior and personality. One of the greatest challenges in bvFTD is to capture, measure and predict its disease progression, due to clinical, pathological and genetic heterogeneity. Availability of reliable outcome measures is pivotal for future clinical trials and disease monitoring. Detection of change should be objective, clinically meaningful and easily assessed, preferably associated with a biological process. The purpose of this scoping review is to examine the status of longitudinal studies in bvFTD, evaluate current assessment tools and propose potential progression markers. A systematic literature search (in PubMed and Embase.com) was performed. Literature on disease trajectories and longitudinal validity of frequently-used measures was organized in five domains: global functioning, behavior, (social) cognition, neuroimaging and fluid biomarkers. Evaluating current longitudinal data, we propose an adaptive battery, combining a set of sensitive clinical, neuroimaging and fluid markers, adjusted for genetic and sporadic variants, for adequate detection of disease progression in bvFTD.
Collapse
Affiliation(s)
- Jay L. P. Fieldhouse
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, Netherlands
| | - Dirk N. van Paassen
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, Netherlands
| | - Marie-Paule E. van Engelen
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, Netherlands
| | - Sterre C. M. De Boer
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, Netherlands
| | - Willem L. Hartog
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, Netherlands
| | - Simon Braak
- Department of Psychiatry, Amsterdam UMC Location VUmc, Amsterdam, Netherlands
- Amsterdam Neuroscience, Mood, Anxiety, Psychosis, Sleep & Stress Program, Amsterdam, Netherlands
| | | | - Sigfried N. T. M. Schouws
- Department of Psychiatry, Amsterdam UMC Location VUmc, Amsterdam, Netherlands
- GGZ inGeest Mental Health Care, Amsterdam, Netherlands
| | - Welmoed A. Krudop
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, Netherlands
- GGZ inGeest Mental Health Care, Amsterdam, Netherlands
| | - Mardien L. Oudega
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, Netherlands
- Department of Psychiatry, Amsterdam UMC Location VUmc, Amsterdam, Netherlands
- Amsterdam Neuroscience, Mood, Anxiety, Psychosis, Sleep & Stress Program, Amsterdam, Netherlands
- GGZ inGeest Mental Health Care, Amsterdam, Netherlands
| | - Henk J. M. M. Mutsaerts
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Location VUmc, Amsterdam, Netherlands
| | - Charlotte E. Teunissen
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, Netherlands
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam UMC Location VUmc, Amsterdam, Netherlands
| | - Everard G. B. Vijverberg
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, Netherlands
| | - Yolande A. L. Pijnenburg
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, Netherlands
| |
Collapse
|
4
|
Chong JSX, Tan YJ, Koh AJ, Ting SKS, Kandiah N, Ng ASL, Zhou JH. Plasma Neurofilament Light Relates to Divergent Default and Salience Network Connectivity in Alzheimer's Disease and Behavioral Variant Frontotemporal Dementia. J Alzheimers Dis 2024; 99:965-980. [PMID: 38759005 PMCID: PMC11191491 DOI: 10.3233/jad-231251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2024] [Indexed: 05/19/2024]
Abstract
Background Alzheimer's disease (AD) and behavioral variant frontotemporal dementia (bvFTD) show differential vulnerability to large-scale brain functional networks. Plasma neurofilament light (NfL), a promising biomarker of neurodegeneration, has been linked in AD patients to glucose metabolism changes in AD-related regions. However, it is unknown whether plasma NfL would be similarly associated with disease-specific functional connectivity changes in AD and bvFTD. Objective Our study examined the associations between plasma NfL and functional connectivity of the default mode and salience networks in patients with AD and bvFTD. Methods Plasma NfL and neuroimaging data from patients with bvFTD (n = 16) and AD or mild cognitive impairment (n = 38; AD + MCI) were analyzed. Seed-based functional connectivity maps of key regions within the default mode and salience networks were obtained and associated with plasma NfL in these patients. RESULTS We demonstrated divergent associations between NfL and functional connectivity in AD + MCI and bvFTD patients. Specifically, AD + MCI patients showed lower default mode network functional connectivity with higher plasma NfL, while bvFTD patients showed lower salience network functional connectivity with higher plasma NfL. Further, lower NfL-related default mode network connectivity in AD + MCI patients was associated with lower Montreal Cognitive Assessment scores and higher Clinical Dementia Rating sum-of-boxes scores, although NfL-related salience network connectivity in bvFTD patients was not associated with Neuropsychiatric Inventory Questionnaire scores. CONCLUSIONS Our findings indicate that plasma NfL is differentially associated with brain functional connectivity changes in AD and bvFTD.
Collapse
Affiliation(s)
- Joanna Su Xian Chong
- Centre for Sleep and Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Human Potential Translational Research Programme and Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yi Jayne Tan
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore
| | - Amelia Jialing Koh
- Centre for Sleep and Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Human Potential Translational Research Programme and Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Simon Kang Seng Ting
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore
| | - Nagaendran Kandiah
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore
| | - Adeline Su Lyn Ng
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore
| | - Juan Helen Zhou
- Centre for Sleep and Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Human Potential Translational Research Programme and Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Integrative Sciences and Engineering Programme (ISEP), NUS Graduate School, National University of Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
- Neuroscience and Behavioural Disorders Programme, Duke-NUS Medical School, Singapore
| |
Collapse
|
5
|
Hellerhoff I, Bernardoni F, Bahnsen K, King JA, Doose A, Pauligk S, Tam FI, Mannigel M, Gramatke K, Roessner V, Akgün K, Ziemssen T, Ehrlich S. Serum neurofilament light concentrations are associated with cortical thinning in anorexia nervosa. Psychol Med 2023; 53:7053-7061. [PMID: 36967674 PMCID: PMC10719626 DOI: 10.1017/s0033291723000387] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/21/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Anorexia nervosa (AN) is characterized by severe emaciation and drastic reductions of brain mass, but the underlying mechanisms remain unclear. The present study investigated the putative association between the serum-based protein markers of brain damage neurofilament light (NF-L), tau protein, and glial fibrillary acidic protein (GFAP) and cortical thinning in acute AN. METHODS Blood samples and magnetic resonance imaging scans were obtained from 52 predominantly adolescent, female patients with AN before and after partial weight restoration (increase in body mass index >14%). The effect of marker levels before weight gain and change in marker levels on cortical thickness (CT) was modeled at each vertex of the cortical surface using linear mixed-effect models. To test whether the observed effects were specific to AN, follow-up analyses exploring a potential general association of marker levels with CT were conducted in a female healthy control (HC) sample (n = 147). RESULTS In AN, higher baseline levels of NF-L, an established marker of axonal damage, were associated with lower CT in several regions, with the most prominent clusters located in bilateral temporal lobes. Tau protein and GFAP were not associated with CT. In HC, no associations between damage marker levels and CT were detected. CONCLUSIONS A speculative interpretation would be that cortical thinning in acute AN might be at least partially a result of axonal damage processes. Further studies should thus test the potential of serum NF-L to become a reliable, low-cost and minimally invasive marker of structural brain alterations in AN.
Collapse
Affiliation(s)
- Inger Hellerhoff
- Division of Psychological and Social Medicine and Developmental Neurosciences, Translational Developmental Neuroscience Section, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Department of Child and Adolescent Psychiatry, Eating Disorder Research and Treatment Center, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Fabio Bernardoni
- Division of Psychological and Social Medicine and Developmental Neurosciences, Translational Developmental Neuroscience Section, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Klaas Bahnsen
- Division of Psychological and Social Medicine and Developmental Neurosciences, Translational Developmental Neuroscience Section, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Joseph A. King
- Division of Psychological and Social Medicine and Developmental Neurosciences, Translational Developmental Neuroscience Section, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Arne Doose
- Division of Psychological and Social Medicine and Developmental Neurosciences, Translational Developmental Neuroscience Section, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Sophie Pauligk
- Division of Psychological and Social Medicine and Developmental Neurosciences, Translational Developmental Neuroscience Section, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Friederike I. Tam
- Division of Psychological and Social Medicine and Developmental Neurosciences, Translational Developmental Neuroscience Section, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Department of Child and Adolescent Psychiatry, Eating Disorder Research and Treatment Center, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Merle Mannigel
- Division of Psychological and Social Medicine and Developmental Neurosciences, Translational Developmental Neuroscience Section, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Katrin Gramatke
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Veit Roessner
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Katja Akgün
- Center of Clinical Neuroscience, Neurological Clinic, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Tjalf Ziemssen
- Center of Clinical Neuroscience, Neurological Clinic, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Stefan Ehrlich
- Division of Psychological and Social Medicine and Developmental Neurosciences, Translational Developmental Neuroscience Section, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Department of Child and Adolescent Psychiatry, Eating Disorder Research and Treatment Center, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
6
|
Elmers J, Colzato LS, Akgün K, Ziemssen T, Beste C. Neurofilaments - Small proteins of physiological significance and predictive power for future neurodegeneration and cognitive decline across the life span. Ageing Res Rev 2023; 90:102037. [PMID: 37619618 DOI: 10.1016/j.arr.2023.102037] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/15/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
Neurofilaments (NFs) are not only important for axonal integrity and nerve conduction in large myelinated axons but they are also thought to be crucial for receptor and synaptic functioning. Therefore, NFs may play a critical role in cognitive functions, as cognitive processes are known to depend on synaptic integrity and are modulated by dopaminergic signaling. Here, we present a theory-driven interdisciplinary approach that NFs may link inflammation, neurodegeneration, and cognitive functions. We base our hypothesis on a wealth of evidence suggesting a causal link between inflammation and neurodegeneration and between these two and cognitive decline (see Fig. 1), also taking dopaminergic signaling into account. We conclude that NFs may not only serve as biomarkers for inflammatory, neurodegenerative, and cognitive processes but also represent a potential mechanical hinge between them, moreover, they may even have predictive power regarding future cognitive decline. In addition, we advocate the use of both NFs and MRI parameters, as their synthesis offers the opportunity to individualize medical treatment by providing a comprehensive view of underlying disease activity in neurological diseases. Since our society will become significantly older in the upcoming years and decades, maintaining cognitive functions and healthy aging will play an important role. Thanks to technological advances in recent decades, NFs could serve as a rapid, noninvasive, and relatively inexpensive early warning system to identify individuals at increased risk for cognitive decline and could facilitate the management of cognitive dysfunctions across the lifespan.
Collapse
Affiliation(s)
- Julia Elmers
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany; Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, TU Dresden, Germany
| | - Lorenza S Colzato
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany; Cognitive Psychology, Faculty of Psychology, Shandong Normal University, Jinan, China.
| | - Katja Akgün
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, TU Dresden, Germany
| | - Tjalf Ziemssen
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, TU Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany; Cognitive Psychology, Faculty of Psychology, Shandong Normal University, Jinan, China.
| |
Collapse
|
7
|
De Marchi F, Tondo G, Corrado L, Menegon F, Aprile D, Anselmi M, D’Alfonso S, Comi C, Mazzini L. Neuroinflammatory Pathways in the ALS-FTD Continuum: A Focus on Genetic Variants. Genes (Basel) 2023; 14:1658. [PMID: 37628709 PMCID: PMC10454262 DOI: 10.3390/genes14081658] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/18/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal dementia (FDT) are progressive neurodegenerative disorders that, in several cases, overlap in clinical presentation, and genetic and pathological disease mechanisms. About 10-15% of ALS cases and up to 40% of FTD are familial, usually with dominant traits. ALS and FTD, in several cases, share common gene mutations, such as in C9ORF72, TARDBP, SQSTM-1, FUS, VCP, CHCHD10, and TBK-1. Also, several mechanisms are involved in ALS and FTD pathogenesis, such as protein misfolding, oxidative stress, and impaired axonal transport. In addition, neuroinflammation and neuroinflammatory cells, such as astrocytes, oligodendrocytes, microglia, and lymphocytes and, overall, the cellular microenvironment, have been proposed as pivotal players in the pathogenesis the ALS-FTD spectrum disorders. This review overviews the current evidence regarding neuroinflammatory markers in the ALS/FTD continuum, focusing on the neuroinflammatory pathways involved in the genetic cases, moving from post-mortem reports to in vivo biofluid and neuroimaging data. We further discuss the potential link between genetic and autoimmune disorders and potential therapeutic implications.
Collapse
Affiliation(s)
- Fabiola De Marchi
- ALS Center, Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy;
| | - Giacomo Tondo
- Neurology Unit, Department of Translational Medicine, S. Andrea Hospital, University of Piemonte Orientale, 13100 Vercelli, Italy; (G.T.); (D.A.); (C.C.)
| | - Lucia Corrado
- Department of Health Sciences, University of Eastern Piedmont, 28100 Novara, Italy; (L.C.); (S.D.)
| | - Federico Menegon
- Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (F.M.); (M.A.)
| | - Davide Aprile
- Neurology Unit, Department of Translational Medicine, S. Andrea Hospital, University of Piemonte Orientale, 13100 Vercelli, Italy; (G.T.); (D.A.); (C.C.)
| | - Matteo Anselmi
- Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (F.M.); (M.A.)
| | - Sandra D’Alfonso
- Department of Health Sciences, University of Eastern Piedmont, 28100 Novara, Italy; (L.C.); (S.D.)
| | - Cristoforo Comi
- Neurology Unit, Department of Translational Medicine, S. Andrea Hospital, University of Piemonte Orientale, 13100 Vercelli, Italy; (G.T.); (D.A.); (C.C.)
- Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Piemonte Orientale, 28100 Novara, Italy
| | - Letizia Mazzini
- ALS Center, Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy;
| |
Collapse
|
8
|
Walker KA, Duggan MR, Gong Z, Dark HE, Laporte JP, Faulkner ME, An Y, Lewis A, Moghekar AR, Resnick SM, Bouhrara M. MRI and fluid biomarkers reveal determinants of myelin and axonal loss with aging. Ann Clin Transl Neurol 2023; 10:397-407. [PMID: 36762407 PMCID: PMC10014005 DOI: 10.1002/acn3.51730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/15/2022] [Accepted: 12/31/2022] [Indexed: 02/11/2023] Open
Abstract
OBJECTIVE White matter damage is a feature of Alzheimer's disease, yet little is known about how facets of the Alzheimer's disease process relate to key features of white matter structure. We examined the association of Alzheimer's disease (Aß42/40 ratio; pTau181), neuronal injury (NfL), and reactive astrogliosis (GFAP) biomarkers with MRI measures of myelin content and axonal density. METHODS Among cognitively normal participants in the BLSA and GESTALT studies who received MRI measures of myelin content (defined by myelin water fraction [MWF]) and axonal density (defined by neurite density index [NDI]), we quantified plasma levels of Aβ42 , Aβ40 , pTau181, NfL, and GFAP. Linear regression models adjusted for demographic variables were used to relate these plasma biomarker levels to the MRI measures. RESULTS In total, 119 participants received MWF imaging (age: 56 [SD 21]), of which 43 received NDI imaging (age: 50 [SD 18]). We found no relationship between plasma biomarkers and total brain myelin content. However, secondary analysis found higher GFAP was associated with lower MWF in the temporal lobes (ß = -0.13; P = 0.049). Further, higher levels of NfL (ß = -0.22; P = 0.009) and GFAP (ß = -0.29; P = 0.002) were associated with lower total brain axonal density. Secondary analyses found lower Aβ42/40 ratio and higher pTau181 were also associated with lower axonal density, but only in select brain regions. These results remained similar after additionally adjusting for cardiovascular risk factors. INTERPRETATION Plasma biomarkers of neuronal injury and astrogliosis are associated with reduced axonal density and region-specific myelin content. Axonal loss and demyelination may co-occur with neurodegeneration and astrogliosis ahead of clinically meaningful cognitive decline.
Collapse
Affiliation(s)
- Keenan A Walker
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, 21224
| | - Michael R Duggan
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, 21224
| | - Zhaoyuan Gong
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, 21224
| | - Heather E Dark
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, 21224
| | - John P Laporte
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, 21224
| | - Mary E Faulkner
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, 21224
| | - Yang An
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, 21224
| | - Alexandria Lewis
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21224
| | - Abhay R Moghekar
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21224
| | - Susan M Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, 21224
| | - Mustapha Bouhrara
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, 21224
| |
Collapse
|
9
|
McKenna MC, Lope J, Bede P, Tan EL. Thalamic pathology in frontotemporal dementia: Predilection for specific nuclei, phenotype-specific signatures, clinical correlates, and practical relevance. Brain Behav 2023; 13:e2881. [PMID: 36609810 PMCID: PMC9927864 DOI: 10.1002/brb3.2881] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/17/2022] [Accepted: 12/18/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Frontotemporal dementia (FTD) phenotypes are classically associated with distinctive cortical atrophy patterns and regional hypometabolism. However, the spectrum of cognitive and behavioral manifestations in FTD arises from multisynaptic network dysfunction. The thalamus is a key hub of several corticobasal and corticocortical circuits. The main circuits relayed via the thalamic nuclei include the dorsolateral prefrontal circuit, the anterior cingulate circuit, and the orbitofrontal circuit. METHODS In this paper, we have reviewed evidence for thalamic pathology in FTD based on radiological and postmortem studies. Original research papers were systematically reviewed for preferential involvement of specific thalamic regions, for phenotype-associated thalamic disease burden patterns, characteristic longitudinal changes, and genotype-associated thalamic signatures. Moreover, evidence for presymptomatic thalamic pathology was also reviewed. Identified papers were systematically scrutinized for imaging methods, cohort sizes, clinical profiles, clinicoradiological associations, and main anatomical findings. The findings of individual research papers were amalgamated for consensus observations and their study designs further evaluated for stereotyped shortcomings. Based on the limitations of existing studies and conflicting reports in low-incidence FTD variants, we sought to outline future research directions and pressing research priorities. RESULTS FTD is associated with focal thalamic degeneration. Phenotype-specific thalamic traits mirror established cortical vulnerability patterns. Thalamic nuclei mediating behavioral and language functions are preferentially involved. Given the compelling evidence for considerable thalamic disease burden early in the course of most FTD subtypes, we also reflect on the practical relevance, diagnostic role, prognostic significance, and monitoring potential of thalamic metrics in FTD. CONCLUSIONS Cardinal manifestations of FTD phenotypes are likely to stem from thalamocortical circuitry dysfunction and are not exclusively driven by focal cortical changes.
Collapse
Affiliation(s)
- Mary Clare McKenna
- Computational Neuroimaging Group, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Department of Neurology, St James's Hospital, Dublin, Ireland
| | - Jasmin Lope
- Computational Neuroimaging Group, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Peter Bede
- Computational Neuroimaging Group, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Department of Neurology, St James's Hospital, Dublin, Ireland
| | - Ee Ling Tan
- Computational Neuroimaging Group, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
10
|
Beydoun MA, Noren Hooten N, Weiss J, Maldonado AI, Beydoun HA, Katzel LI, Davatzikos C, Gullapalli RP, Seliger SL, Erus G, Evans MK, Zonderman AB, Waldstein SR. Plasma neurofilament light as blood marker for poor brain white matter integrity among middle-aged urban adults. Neurobiol Aging 2023; 121:52-63. [PMID: 36371816 PMCID: PMC9733693 DOI: 10.1016/j.neurobiolaging.2022.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
Abstract
Plasma neurofilament light chain (NfL)'s link to dementia may be mediated through white matter integrity (WMI). In this study, we examined plasma NfL's relationships with diffusion tensor magnetic resonance imaging markers: global and cortical white matter fractional anisotropy (FA) and trace (TR). Plasma NfL measurements at 2 times (v1: 2004-2009 and v2: 2009-2013) and ancillary dMRI (vscan: 2011-2015) were considered (n = 163, mean time v1 to vscan = 5.4 years and v2 to vscan: 1.1 years). Multivariable-adjusted regression models, correcting for multiple-testing revealed that, overall, higher NfLv1 was associated with greater global TR (β ± SE: +0.0000560 ± 0.0000186, b = 0.27, p = 0.003, q = 0.012), left frontal WM TR (β ± SE: + 0.0000706 ± 0.0000201, b ± 0.30, p = 0.001, q = 0.0093) and right frontal WM TR (β ± SE: + 0.0000767 ± 0.000021, b ± 0.31, p < 0.001, q = 0.0093). These associations were mainly among males and White adults. Among African American adults only, NfLv2 was associated with greater left temporal lobe TR. "Tracking high" in NfL was associated with reduced left frontal FA (Model 2, body mass index-adjusted: β ± SE:-0.01084 ± 0.00408, p = 0.009). Plasma NfL is a promising biomarker predicting future brain white matter integrity (WMI) in middle-aged adults.
Collapse
Affiliation(s)
- May A Beydoun
- Laboratory of Epidemiology and Population Sciences, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA.
| | - Nicole Noren Hooten
- Laboratory of Epidemiology and Population Sciences, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Jordan Weiss
- Stanford Center on Longevity, Stanford University, Stanford, CA USA
| | - Ana I Maldonado
- Laboratory of Epidemiology and Population Sciences, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA; Department of Psychology, University of Maryland, Catonsville, MD, USA
| | - Hind A Beydoun
- Department of Research Programs, Fort Belvoir Community Hospital, Fort Belvoir, VA, USA
| | - Leslie I Katzel
- Division of Gerontology, Geriatrics, and Palliative Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA; Division of Gerontology & Geriatric Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Christos Davatzikos
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rao P Gullapalli
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Stephen L Seliger
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Guray Erus
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michele K Evans
- Laboratory of Epidemiology and Population Sciences, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Alan B Zonderman
- Laboratory of Epidemiology and Population Sciences, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Shari R Waldstein
- Department of Psychology, University of Maryland, Catonsville, MD, USA; Division of Gerontology, Geriatrics, and Palliative Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA; Division of Gerontology & Geriatric Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
11
|
Massimo L, Cousins KAQ. Physical Activity and Rising Neurofilament Light Chain in Genetic Frontotemporal Degeneration-Diagnosis Is Not Destiny. JAMA Neurol 2023; 80:14-16. [PMID: 36374511 DOI: 10.1001/jamaneurol.2022.4190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Lauren Massimo
- Frontotemporal Degeneration Center, Perelman School of Medicine, Department of Neurology, University of Pennsylvania, Philadelphia.,School of Nursing, University of Pennsylvania, Philadelphia
| | - Katheryn A Q Cousins
- Frontotemporal Degeneration Center, Perelman School of Medicine, Department of Neurology, University of Pennsylvania, Philadelphia
| |
Collapse
|
12
|
Zetterberg H, Teunissen C, van Swieten J, Kuhle J, Boxer A, Rohrer JD, Mitic L, Nicholson AM, Pearlman R, McCaughey SM, Tatton N. The role of neurofilament light in genetic frontotemporal lobar degeneration. Brain Commun 2023; 5:fcac310. [PMID: 36694576 PMCID: PMC9866262 DOI: 10.1093/braincomms/fcac310] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/26/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022] Open
Abstract
Genetic frontotemporal lobar degeneration caused by autosomal dominant gene mutations provides an opportunity for targeted drug development in a highly complex and clinically heterogeneous dementia. These neurodegenerative disorders can affect adults in their middle years, progress quickly relative to other dementias, are uniformly fatal and have no approved disease-modifying treatments. Frontotemporal dementia, caused by mutations in the GRN gene which encodes the protein progranulin, is an active area of interventional drug trials that are testing multiple strategies to restore progranulin protein deficiency. These and other trials are also examining neurofilament light as a potential biomarker of disease activity and disease progression and as a therapeutic endpoint based on the assumption that cerebrospinal fluid and blood neurofilament light levels are a surrogate for neuroaxonal damage. Reports from genetic frontotemporal dementia longitudinal studies indicate that elevated concentrations of blood neurofilament light reflect disease severity and are associated with faster brain atrophy. To better inform patient stratification and treatment response in current and upcoming clinical trials, a more nuanced interpretation of neurofilament light as a biomarker of neurodegeneration is now required, one that takes into account its relationship to other pathophysiological and topographic biomarkers of disease progression from early presymptomatic to later clinically symptomatic stages.
Collapse
Affiliation(s)
- Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg, Sweden.,Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden.,Dementia Research Institute, University College London, London, UK.,DRI Fluid Biomarker Laboratory, Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Charlotte Teunissen
- Department of Clinical Chemistry, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - John van Swieten
- Department of Neurology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Jens Kuhle
- Department of Clinical Research, Department of Neurology, Department of Biomedicine, Multiple Sclerosis Centre, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Adam Boxer
- Department of Neurology, Memory and Aging Center, University of California San Francisco, San Francisco, CA, USA
| | - Jonathan D Rohrer
- Queen Square UCL Institute of Neurology, Dementia Research Centre, UK Dementia Research Institute, University College London, London, UK
| | - Laura Mitic
- Department of Neurology, Memory and Aging Center, University of California San Francisco, San Francisco, CA, USA.,The Bluefield Project to Cure FTD, San Francisco, CA, USA
| | - Alexandra M Nicholson
- The Bluefield Project to Cure FTD, San Francisco, CA, USA.,Department of Neuroscience, Mayo Clinic Jacksonville, Jacksonville, FL, USA
| | | | | | - Nadine Tatton
- Medical Affairs, Alector, Inc., South San Francisco, CA, USA
| |
Collapse
|
13
|
Eratne D, Loi SM, Li QX, Stehmann C, Malpas CB, Santillo A, Janelidze S, Cadwallader C, Walia N, Ney B, Lewis V, Senesi M, Fowler C, McGlade A, Varghese S, Ravanfar P, Kelso W, Farrand S, Keem M, Kang M, Goh AMY, Dhiman K, Gupta V, Watson R, Yassi N, Kaylor-Hughes C, Kanaan R, Perucca P, Dobson H, Vivash L, Ali R, O'Brien TJ, Hansson O, Zetterberg H, Blennow K, Walterfang M, Masters CL, Berkovic SF, Collins S, Velakoulis D. Cerebrospinal fluid neurofilament light chain differentiates primary psychiatric disorders from rapidly progressive, Alzheimer's disease and frontotemporal disorders in clinical settings. Alzheimers Dement 2022; 18:2218-2233. [PMID: 35102694 DOI: 10.1002/alz.12549] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/26/2021] [Accepted: 11/01/2021] [Indexed: 01/31/2023]
Abstract
INTRODUCTION Many patients with cognitive and neuropsychiatric symptoms face diagnostic delay and misdiagnosis. We investigated whether cerebrospinal fluid (CSF) neurofilament light (NfL) and total-tau (t-tau) could assist in the clinical scenario of differentiating neurodegenerative (ND) from psychiatric disorders (PSY), and rapidly progressive disorders. METHODS Biomarkers were examined in patients from specialist services (ND and PSY) and a national Creutzfeldt-Jakob registry (Creutzfeldt-Jakob disease [CJD] and rapidly progressive dementias/atypically rapid variants of common ND, RapidND). RESULTS A total of 498 participants were included: 197 ND, 67 PSY, 161 CJD, 48 RapidND, and 20 controls. NfL was elevated in ND compared to PSY and controls, with highest levels in CJD and RapidND. NfL distinguished ND from PSY with 95%/78% positive/negative predictive value, 92%/87% sensitivity/specificity, 91% accuracy. NfL outperformed t-tau in most real-life clinical diagnostic dilemma scenarios, except distinguishing CJD from RapidND. DISCUSSION We demonstrated strong generalizable evidence for the diagnostic utility of CSF NfL in differentiating ND from psychiatric disorders, with high accuracy.
Collapse
Affiliation(s)
- Dhamidhu Eratne
- Neuropsychiatry, Royal Melbourne Hospital, Parkville, Victoria, Australia.,Department of Psychiatry & Melbourne Neuropsychiatry Centre, University of Melbourne, Parkville, Victoria, Australia.,National Dementia Diagnostics Laboratory, The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Samantha M Loi
- Neuropsychiatry, Royal Melbourne Hospital, Parkville, Victoria, Australia.,Department of Psychiatry & Melbourne Neuropsychiatry Centre, University of Melbourne, Parkville, Victoria, Australia.,National Dementia Diagnostics Laboratory, The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Qiao-Xin Li
- National Dementia Diagnostics Laboratory, The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Christiane Stehmann
- National Dementia Diagnostics Laboratory, The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia.,Australian National Creutzfeldt-Jakob Disease Registry, Florey Institute of Neuroscience and Mental Health and Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - Charles B Malpas
- Department of Medicine, Department of Neurology, Clinical Outcomes Research Unit (CORe), Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Alexander Santillo
- Department of Clinical Sciences Malmö, Clinical Memory Research Unit, Lund University, Lund, Sweden.,Memory Clinic, Skåne University Hospital, Malmo, Sweden
| | - Shorena Janelidze
- Department of Clinical Sciences Malmö, Clinical Memory Research Unit, Lund University, Lund, Sweden.,Memory Clinic, Skåne University Hospital, Malmo, Sweden
| | - Claire Cadwallader
- Neuropsychiatry, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Nirbaanjot Walia
- Neuropsychiatry, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Blair Ney
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia.,St. Vincent's Hospital Melbourne, Fitzroy, Victoria, Australia
| | - Victoria Lewis
- Australian National Creutzfeldt-Jakob Disease Registry, Florey Institute of Neuroscience and Mental Health and Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - Matteo Senesi
- Australian National Creutzfeldt-Jakob Disease Registry, Florey Institute of Neuroscience and Mental Health and Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - Christopher Fowler
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Amelia McGlade
- National Dementia Diagnostics Laboratory, The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Shiji Varghese
- National Dementia Diagnostics Laboratory, The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Parsa Ravanfar
- Neuropsychiatry, Royal Melbourne Hospital, Parkville, Victoria, Australia.,Department of Psychiatry & Melbourne Neuropsychiatry Centre, University of Melbourne, Parkville, Victoria, Australia
| | - Wendy Kelso
- Neuropsychiatry, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Sarah Farrand
- Neuropsychiatry, Royal Melbourne Hospital, Parkville, Victoria, Australia.,Department of Psychiatry & Melbourne Neuropsychiatry Centre, University of Melbourne, Parkville, Victoria, Australia
| | - Michael Keem
- Neuropsychiatry, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Matthew Kang
- Neuropsychiatry, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Anita M Y Goh
- Neuropsychiatry, Royal Melbourne Hospital, Parkville, Victoria, Australia.,Department of Psychiatry & Melbourne Neuropsychiatry Centre, University of Melbourne, Parkville, Victoria, Australia
| | - Kunal Dhiman
- School of Medicine, Deakin University, Geelong, Victoria, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Veer Gupta
- School of Medicine, Deakin University, Geelong, Victoria, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Rosie Watson
- Population Health and Immunity Division, the Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Nawaf Yassi
- Population Health and Immunity Division, the Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Departments of Medicine and Neurology, Melbourne Brain Centre at the Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
| | - Cath Kaylor-Hughes
- Department of General Practice, Integrated Mental Health Team, University of Melbourne, Parkville, Victoria, Australia
| | - Richard Kanaan
- Department of Psychiatry, Austin Health, University of Melbourne, Heidelberg, Victoria, Australia
| | - Piero Perucca
- Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, Victoria, Australia.,Comprehensive Epilepsy Program, Austin Health, The University of Melbourne, Heidelberg, Victoria, Australia.,Department of Neuroscience, Central Clinical School, The Alfred Hospital, Monash University, Melbourne, Victoria, Australia
| | - Hannah Dobson
- Neuropsychiatry, Royal Melbourne Hospital, Parkville, Victoria, Australia.,Department of Psychiatry, Alfred Health, Melbourne, Victoria, Australia
| | - Lucy Vivash
- Department of Neuroscience, Central Clinical School, The Alfred Hospital, Monash University, Melbourne, Victoria, Australia
| | - Rashida Ali
- Department of Neuroscience, Central Clinical School, The Alfred Hospital, Monash University, Melbourne, Victoria, Australia
| | - Terence J O'Brien
- Department of Neuroscience, Central Clinical School, The Alfred Hospital, Monash University, Melbourne, Victoria, Australia
| | - Oskar Hansson
- Department of Clinical Sciences Malmö, Clinical Memory Research Unit, Lund University, Lund, Sweden.,Memory Clinic, Skåne University Hospital, Malmo, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK.,UK Dementia Research Institute at UCL, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Mark Walterfang
- Neuropsychiatry, Royal Melbourne Hospital, Parkville, Victoria, Australia.,Department of Psychiatry & Melbourne Neuropsychiatry Centre, University of Melbourne, Parkville, Victoria, Australia.,The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Colin L Masters
- National Dementia Diagnostics Laboratory, The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Samuel F Berkovic
- Department of Medicine, Austin Health, Epilepsy Research Centre, The University of Melbourne, Heidelberg, Victoria, Australia
| | - Steven Collins
- Australian National Creutzfeldt-Jakob Disease Registry, Florey Institute of Neuroscience and Mental Health and Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - Dennis Velakoulis
- Neuropsychiatry, Royal Melbourne Hospital, Parkville, Victoria, Australia.,Department of Psychiatry & Melbourne Neuropsychiatry Centre, University of Melbourne, Parkville, Victoria, Australia
| | | |
Collapse
|
14
|
Eratne D, Janelidze S, Malpas CB, Loi S, Walterfang M, Merritt A, Diouf I, Blennow K, Zetterberg H, Cilia B, Wannan C, Bousman C, Everall I, Zalesky A, Jayaram M, Thomas N, Berkovic SF, Hansson O, Velakoulis D, Pantelis C, Santillo A, Stehmann C, Cadwallader C, Fowler C, Ravanfar P, Farrand S, Keem M, Kang M, Watson R, Yassi N, Kaylor-Hughes C, Kanaan R, Perucca P, Vivash L, Ali R, O’Brien TJ, Masters CL, Collins S, Kelso W, Evans A, King A, Kwan P, Gunn J, Goranitis I, Pan T, Lewis C, Kalincik T. Plasma neurofilament light chain protein is not increased in treatment-resistant schizophrenia and first-degree relatives. Aust N Z J Psychiatry 2022; 56:1295-1305. [PMID: 35179048 DOI: 10.1177/00048674211058684] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
OBJECTIVE Schizophrenia, a complex psychiatric disorder, is often associated with cognitive, neurological and neuroimaging abnormalities. The processes underlying these abnormalities, and whether a subset of people with schizophrenia have a neuroprogressive or neurodegenerative component to schizophrenia, remain largely unknown. Examining fluid biomarkers of diverse types of neuronal damage could increase our understanding of these processes, as well as potentially provide clinically useful biomarkers, for example with assisting with differentiation from progressive neurodegenerative disorders such as Alzheimer and frontotemporal dementias. METHODS This study measured plasma neurofilament light chain protein (NfL) using ultrasensitive Simoa technology, to investigate the degree of neuronal injury in a well-characterised cohort of people with treatment-resistant schizophrenia on clozapine (n = 82), compared to first-degree relatives (an at-risk group, n = 37), people with schizophrenia not treated with clozapine (n = 13), and age- and sex-matched controls (n = 59). RESULTS We found no differences in NfL levels between treatment-resistant schizophrenia (mean NfL, M = 6.3 pg/mL, 95% confidence interval: [5.5, 7.2]), first-degree relatives (siblings, M = 6.7 pg/mL, 95% confidence interval: [5.2, 8.2]; parents, M after adjusting for age = 6.7 pg/mL, 95% confidence interval: [4.7, 8.8]), controls (M = 5.8 pg/mL, 95% confidence interval: [5.3, 6.3]) and not treated with clozapine (M = 4.9 pg/mL, 95% confidence interval: [4.0, 5.8]). Exploratory, hypothesis-generating analyses found weak correlations in treatment-resistant schizophrenia, between NfL and clozapine levels (Spearman's r = 0.258, 95% confidence interval: [0.034, 0.457]), dyslipidaemia (r = 0.280, 95% confidence interval: [0.064, 0.470]) and a negative correlation with weight (r = -0.305, 95% confidence interval: [-0.504, -0.076]). CONCLUSION Treatment-resistant schizophrenia does not appear to be associated with neuronal, particularly axonal degeneration. Further studies are warranted to investigate the utility of NfL to differentiate treatment-resistant schizophrenia from neurodegenerative disorders such as behavioural variant frontotemporal dementia, and to explore NfL in other stages of schizophrenia such as the prodome and first episode.
Collapse
Affiliation(s)
- Dhamidhu Eratne
- Neuropsychiatry, The Royal Melbourne Hospital, Parkville, VIC, Australia.,Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Melbourne, VIC, Australia
| | - Shorena Janelidze
- Clinical Memory Research Unit, Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
| | - Charles B Malpas
- Clinical Outcomes Research Unit (CORe), Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, Australia.,Department of Neurology, The Royal Melbourne Hospital, Melbourne, VIC, Australia.,Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Samantha Loi
- Neuropsychiatry, The Royal Melbourne Hospital, Parkville, VIC, Australia.,Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Melbourne, VIC, Australia
| | - Mark Walterfang
- Neuropsychiatry, The Royal Melbourne Hospital, Parkville, VIC, Australia.,Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Melbourne, VIC, Australia
| | - Antonia Merritt
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Melbourne, VIC, Australia
| | - Ibrahima Diouf
- Clinical Outcomes Research Unit (CORe), Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, Australia.,Department of Neurology, The Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, Sahlgrenska University Hospital, University of Gothenburg, Mölndal, Sweden
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, Sahlgrenska University Hospital, University of Gothenburg, Mölndal, Sweden.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK.,UK Dementia Research Institute, University College London (UCL), London, UK.,Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Brandon Cilia
- The University of Melbourne, Parkville, VIC, Australia
| | - Cassandra Wannan
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Melbourne, VIC, Australia
| | - Chad Bousman
- Departments of Medical Genetics, Psychiatry, and Physiology & Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Ian Everall
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Melbourne, VIC, Australia
| | - Mahesh Jayaram
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Melbourne, VIC, Australia.,Mid West Area Mental Health Service, Melbourne Health, Sunshine, VIC, Australia
| | - Naveen Thomas
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Melbourne, VIC, Australia.,Mid West Area Mental Health Service, Melbourne Health, Sunshine, VIC, Australia
| | - Samuel F Berkovic
- Epilepsy Research Centre, Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, VIC, Australia
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
| | - Dennis Velakoulis
- Neuropsychiatry, The Royal Melbourne Hospital, Parkville, VIC, Australia.,Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Melbourne, VIC, Australia
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Melbourne, VIC, Australia.,Mid West Area Mental Health Service, Melbourne Health, Sunshine, VIC, Australia
| | - Alexander Santillo
- Clinical Memory Research Unit, Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Manzine PR, Vatanabe IP, Grigoli MM, Pedroso RV, de Almeida MPOMEP, de Oliveira DDSMS, Crispim Nascimento CM, Peron R, de Souza Orlandi F, Cominetti MR. Potential Protein Blood-Based Biomarkers in Different Types of Dementia: A Therapeutic Overview. Curr Pharm Des 2022; 28:1170-1186. [DOI: 10.2174/1381612828666220408124809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/24/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Biomarkers capable of identifying and distinguishing types of dementia such as Alzheimer's disease (AD), Parkinson's disease dementia (PDD), Lewy body dementia (LBD), and frontotemporal dementia (FTD) have been become increasingly relentless. Studies of possible biomarker proteins in the blood that can help formulate new diagnostic proposals and therapeutic visions of different types of dementia are needed. However, due to several limitations of these biomarkers, especially in discerning dementia, their clinical applications are still undetermined. Thus, the updating of biomarker blood proteins that can help in the diagnosis and discrimination of these main dementia conditions is essential to enable new pharmacological and clinical management strategies, with specificities for each type of dementia. To review the literature concerning protein blood-based AD and non-AD biomarkers as new pharmacological targets and/or therapeutic strategies. Recent findings for protein-based AD, PDD, LBD, and FTD biomarkers are focused on in this review. Protein biomarkers were classified according to the pathophysiology of the dementia types. The diagnosis and distinction of dementia through protein biomarkers is still a challenge. The lack of exclusive biomarkers for each type of dementia highlights the need for further studies in this field. Only after this, blood biomarkers may have a valid use in clinical practice as they are promising to help in diagnosis and in the differentiation of diseases.
Collapse
Affiliation(s)
- Patricia Regina Manzine
- Department of Gerontology, Federal University of Sao Carlos, Brazil. Highway Washington Luis, Km 235. Monjolinho
| | - Izabela Pereira Vatanabe
- Department of Gerontology, Federal University of Sao Carlos, Brazil. Highway Washington Luis, Km 235. Monjolinho
| | - Marina Mantellatto Grigoli
- Department of Gerontology, Federal University of Sao Carlos, Brazil. Highway Washington Luis, Km 235. Monjolinho
| | - Renata Valle Pedroso
- Department of Gerontology, Federal University of Sao Carlos, Brazil. Highway Washington Luis, Km 235. Monjolinho
| | | | | | | | - Rafaela Peron
- Department of Gerontology, Federal University of Sao Carlos, Brazil. Highway Washington Luis, Km 235. Monjolinho
| | - Fabiana de Souza Orlandi
- Department of Gerontology, Federal University of Sao Carlos, Brazil. Highway Washington Luis, Km 235. Monjolinho
| | - Márcia Regina Cominetti
- Department of Gerontology, Federal University of Sao Carlos, Brazil. Highway Washington Luis, Km 235. Monjolinho
| |
Collapse
|
16
|
Plasma neurofilament light levels correlate with white matter damage prior to Alzheimer's disease: results from ADNI. Aging Clin Exp Res 2022; 34:2363-2372. [PMID: 35226303 DOI: 10.1007/s40520-022-02095-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 02/10/2022] [Indexed: 11/01/2022]
Abstract
BACKGROUND The blood biomarker neurofilament light (NFL) is one of the most widely used for monitoring Alzheimer's disease (AD). According to recent research, a higher NFL plasma level has a substantial predictive value for cognitive deterioration in AD patients. Diffusion tensor imaging (DTI) is an MRI-based approach for detecting neurodegeneration, white matter (WM) disruption, and synaptic damage. There have been few studies on the relationship between plasma NFL and WM microstructure integrity. AIMS The goal of the current study is to assess the associations between plasma levels of NFL, CSF total tau, phosphorylated tau181 (P-tau181), and amyloid-β (Aβ) with WM microstructural alterations. METHODS We herein have investigated the cross-sectional association between plasma levels of NFL and WM microstructural alterations as evaluated by DTI in 92 patients with mild cognitive impairment (MCI) provided by Alzheimer's Disease Neuroimaging Initiative (ADNI) participants. We analyzed the potential association between plasma NFL levels and radial diffusivity (RD), axial diffusivity (AxD), mean diffusivity (MD), and fractional anisotropy (FA) in each region of the Montreal Neurological Institute and Hospital (MNI) atlas, using simple linear regression models stratified by age, sex, and APOE ε4 genotype. RESULTS Our findings demonstrated a significant association between plasma NFL levels and disrupted WM microstructure across the brain. In distinct areas, plasma NFL has a negative association with FA in the fornix, fronto-occipital fasciculus, corpus callosum, uncinate fasciculus, internal capsule, and corona radiata and a positive association with RD, AxD, and MD values in sagittal stratum, corpus callosum, fronto-occipital fasciculus, corona radiata, internal capsule, thalamic radiation, hippocampal cingulum, fornix, and cingulum. Lower FA and higher RD, AxD, and MD values are related to demyelination and degeneration in WM. CONCLUSION Our findings revealed that the level of NFL in the blood is linked to WM alterations in MCI patients. Plasma NFL has the potential to be a biomarker for microstructural alterations. However, further longitudinal studies are necessary to validate the predictive role of plasma NFL in cognitive decline.
Collapse
|
17
|
Sihag S, Naze S, Taghdiri F, Gumus M, Tator C, Green R, Colella B, Blennow K, Zetterberg H, Dominguez LG, Wennberg R, Mikulis DJ, Tartaglia MC, Kozloski JR. Functional brain activity constrained by structural connectivity reveals cohort-specific features for serum neurofilament light chain. COMMUNICATIONS MEDICINE 2022; 2:8. [PMID: 35603281 PMCID: PMC9053240 DOI: 10.1038/s43856-021-00065-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 12/07/2021] [Indexed: 11/30/2022] Open
Abstract
Background Neuro-axonal brain damage releases neurofilament light chain (NfL) proteins, which enter the blood. Serum NfL has recently emerged as a promising biomarker for grading axonal damage, monitoring treatment responses, and prognosis in neurological diseases. Importantly, serum NfL levels also increase with aging, and the interpretation of serum NfL levels in neurological diseases is incomplete due to lack of a reliable model for age-related variation in serum NfL levels in healthy subjects. Methods Graph signal processing (GSP) provides analytical tools, such as graph Fourier transform (GFT), to produce measures from functional dynamics of brain activity constrained by white matter anatomy. Here, we leveraged a set of features using GFT that quantified the coupling between blood oxygen level dependent signals and structural connectome to investigate their associations with serum NfL levels collected from healthy subjects and former athletes with history of concussions. Results Here we show that GSP feature from isthmus cingulate in the right hemisphere (r-iCg) is strongly linked with serum NfL in healthy controls. In contrast, GSP features from temporal lobe and lingual areas in the left hemisphere and posterior cingulate in the right hemisphere are the most associated with serum NfL in former athletes. Additional analysis reveals that the GSP feature from r-iCg is associated with behavioral and structural measures that predict aggressive behavior in healthy controls and former athletes. Conclusions Our results suggest that GSP-derived brain features may be included in models of baseline variance when evaluating NfL as a biomarker of neurological diseases and studying their impact on personality traits. Neurofilament light chain (NfL) is a marker released into the blood as a result of central nervous system damage or neurodegeneration. However, we know little about how NfL levels relate to brain structure and activity. Here, we use imaging data and advanced statistical methods to look at the relationship between brain activity and structure in healthy people and former athletes with a history of multiple concussions, and determine whether these can predict NfL levels in the blood. We find the relationship between brain activity and structure and NfL levels is different between the two groups. Our findings help us to understand how brain injury might impact NfL levels and their relationship with brain activity, and could guide how NfL and imaging data are used as tools in research and in the clinic. Sihag et al. analyse brain imaging data, circulating neurofilament light chain levels and personality scores in a cohort of former athletes with a history of concussions. The authors use graph signal processing to identify brain structural and connectivity features associated with neurofilament levels and with aggressive behaviour.
Collapse
|
18
|
Welton T, Tan YJ, Saffari SE, Ng SYE, Chia NSY, Yong ACW, Choi X, Heng DL, Shih YC, Hartono S, Lee W, Xu Z, Tay KY, Au WL, Tan EK, Chan LL, Ng ASL, Tan LCS. Plasma Neurofilament Light Concentration Is Associated with Diffusion-Tensor MRI-Based Measures of Neurodegeneration in Early Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2022; 12:2135-2146. [PMID: 36057833 DOI: 10.3233/jpd-223414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
BACKGROUND Neurofilament light is a marker of axonal degeneration, whose measurement from peripheral blood was recently made possible by new assays. OBJECTIVE We aimed to determine whether plasma neurofilament light chain (NfL) concentration reflects brain white matter integrity in patients with early Parkinson's disease (PD). METHODS 137 early PD patients and 51 healthy controls were included. Plasma NfL levels were measured using ultrasensitive single molecule array. 3T MRI including diffusion tensor imaging was acquired for voxelwise analysis of association between NfL and both fractional anisotropy (FA) and mean diffusivity (MD) in white matter tracts and subcortical nuclei. RESULTS A pattern of brain microstructural changes consistent with neurodegeneration was associated with increased plasma NfL in most of the frontal lobe and right internal capsule, with decreased FA and increased MD. The same clusters were also associated with poorer global cognition. A significant cluster in the left putamen was associated with increased NfL, with a significantly greater effect in PD than controls. CONCLUSION Plasma NfL may be associated with brain microstructure, as measured using diffusion tensor imaging, in patients with early PD. Higher plasma NfL was associated with a frontal pattern of neurodegeneration that also correlates with cognitive performance in our cohort. This may support a future role for plasma NfL as an accessible biomarker for neurodegeneration and cognitive dysfunction in PD.
Collapse
Affiliation(s)
- Thomas Welton
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore
- Neuroscience Academic Clinical Program, Duke-NUS Medical School, Singapore
- Parkinson Disease and Movement Disorders Centre, Parkinson Foundation Center of Excellence, National Neuroscience Institute, Singapore, Tan Tock Seng Hospital, Singapore
| | - Yi Jayne Tan
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore
- Parkinson Disease and Movement Disorders Centre, Parkinson Foundation Center of Excellence, National Neuroscience Institute, Singapore, Tan Tock Seng Hospital, Singapore
| | - Seyed Ehsan Saffari
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore
- Parkinson Disease and Movement Disorders Centre, Parkinson Foundation Center of Excellence, National Neuroscience Institute, Singapore, Tan Tock Seng Hospital, Singapore
- Centre for Quantitative Medicine, Duke-NUS Medical School, Singapore
| | - Samuel Y E Ng
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore
- Parkinson Disease and Movement Disorders Centre, Parkinson Foundation Center of Excellence, National Neuroscience Institute, Singapore, Tan Tock Seng Hospital, Singapore
| | - Nicole S Y Chia
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore
- Parkinson Disease and Movement Disorders Centre, Parkinson Foundation Center of Excellence, National Neuroscience Institute, Singapore, Tan Tock Seng Hospital, Singapore
| | - Alisa C W Yong
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore
- Parkinson Disease and Movement Disorders Centre, Parkinson Foundation Center of Excellence, National Neuroscience Institute, Singapore, Tan Tock Seng Hospital, Singapore
| | - Xinyi Choi
- Parkinson Disease and Movement Disorders Centre, Parkinson Foundation Center of Excellence, National Neuroscience Institute, Singapore, Tan Tock Seng Hospital, Singapore
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore
| | - Dede Liana Heng
- Parkinson Disease and Movement Disorders Centre, Parkinson Foundation Center of Excellence, National Neuroscience Institute, Singapore, Tan Tock Seng Hospital, Singapore
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore
| | - Yao-Chia Shih
- Radiological Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore
- Graduate Institute of Medicine, Yuan Ze University, Taoyuan City, Taiwan
| | - Septian Hartono
- Neuroscience Academic Clinical Program, Duke-NUS Medical School, Singapore
- Parkinson Disease and Movement Disorders Centre, Parkinson Foundation Center of Excellence, National Neuroscience Institute, Singapore, Tan Tock Seng Hospital, Singapore
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore
| | - Weiling Lee
- Department of Diagnostic Radiology, Singapore General Hospital, Singapore
| | - Zheyu Xu
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore
- Parkinson Disease and Movement Disorders Centre, Parkinson Foundation Center of Excellence, National Neuroscience Institute, Singapore, Tan Tock Seng Hospital, Singapore
| | - Kay Yaw Tay
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore
- Parkinson Disease and Movement Disorders Centre, Parkinson Foundation Center of Excellence, National Neuroscience Institute, Singapore, Tan Tock Seng Hospital, Singapore
| | - Wing Lok Au
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore
- Parkinson Disease and Movement Disorders Centre, Parkinson Foundation Center of Excellence, National Neuroscience Institute, Singapore, Tan Tock Seng Hospital, Singapore
| | - Eng-King Tan
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore
- Parkinson Disease and Movement Disorders Centre, Parkinson Foundation Center of Excellence, National Neuroscience Institute, Singapore, Tan Tock Seng Hospital, Singapore
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore
| | - Ling Ling Chan
- Parkinson Disease and Movement Disorders Centre, Parkinson Foundation Center of Excellence, National Neuroscience Institute, Singapore, Tan Tock Seng Hospital, Singapore
- Radiological Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore
- Department of Diagnostic Radiology, Singapore General Hospital, Singapore
- Neuroscience and Behavioural Disorders Program, Duke-NUS Medical School, Singapore
| | - Adeline S L Ng
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore
- Parkinson Disease and Movement Disorders Centre, Parkinson Foundation Center of Excellence, National Neuroscience Institute, Singapore, Tan Tock Seng Hospital, Singapore
- Neuroscience and Behavioural Disorders Program, Duke-NUS Medical School, Singapore
| | - Louis C S Tan
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore
- Parkinson Disease and Movement Disorders Centre, Parkinson Foundation Center of Excellence, National Neuroscience Institute, Singapore, Tan Tock Seng Hospital, Singapore
| |
Collapse
|
19
|
Subramanian S, Krishna G, Sivakumar PT, Dahale AB, Kumar J S, Sinha P, Varghese M. Plasma neurofilament L to amyloid β42 ratio in differentiating Alzheimer's type from non-Alzheimer's dementia: A cross-sectional pilot study from India. Asian J Psychiatr 2021; 66:102914. [PMID: 34741884 DOI: 10.1016/j.ajp.2021.102914] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/15/2021] [Accepted: 10/24/2021] [Indexed: 02/08/2023]
Abstract
Based on the reduction of amyloid β plaques, US FDA has recently approved Aducanumab as a disease modifying treatment for Alzheimer's disease (AD). With high pricing and the potential risks likely with this treatment, certainty of AD diagnosis becomes crucial. The current pilot study evaluated plasma levels of neurofilament L, an axonal injury marker and amyloid β42, a major component of amyloid plaques for discriminating AD from non-AD dementia (NAD). Results with Simoa assays indicate that a combination of neurofilament L and amyloid β42 can be considered as a screening tool in identifying eligible subjects for AD treatment/ clinical trials.
Collapse
Affiliation(s)
- Sarada Subramanian
- Department of Neurochemistry, National Institute of Mental Health & Neurosciences, Bengaluru 560029, India.
| | - Geethu Krishna
- Department of Neurochemistry, National Institute of Mental Health & Neurosciences, Bengaluru 560029, India
| | - Palanimuthu T Sivakumar
- Department of Psychiatry, National Institute of Mental Health & Neurosciences, Bengaluru 560029, India
| | - Ajit B Dahale
- Department of Psychiatry, National Institute of Mental Health & Neurosciences, Bengaluru 560029, India
| | - Susheel Kumar J
- Department of Neurochemistry, National Institute of Mental Health & Neurosciences, Bengaluru 560029, India
| | - Preeti Sinha
- Department of Psychiatry, National Institute of Mental Health & Neurosciences, Bengaluru 560029, India
| | - Mathew Varghese
- Department of Psychiatry, National Institute of Mental Health & Neurosciences, Bengaluru 560029, India
| |
Collapse
|
20
|
Benussi A, Ashton NJ, Karikari TK, Alberici A, Saraceno C, Ghidoni R, Benussi L, Zetterberg H, Blennow K, Borroni B. Prodromal frontotemporal dementia: clinical features and predictors of progression. Alzheimers Res Ther 2021; 13:188. [PMID: 34782010 PMCID: PMC8594126 DOI: 10.1186/s13195-021-00932-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 11/04/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND The prodromal phase of frontotemporal dementia (FTD) is still not well characterized, and conversion rates to dementia and predictors of progression at 1-year follow-up are currently unknown. METHODS In this retrospective study, disease severity was assessed using the global CDR plus NACC FTLD. Prodromal FTD was defined to reflect mild cognitive or behavioural impairment with relatively preserved functional independence (global CDR plus NACC = 0.5) as well as mild, moderate and severe dementia (classified as global CDR plus NACC = 1, 2, 3, respectively). Disease progression at 1-year follow-up and serum NfL measurements were acquired in a subgroup of patients. RESULTS Of 563 participants, 138 were classified as prodromal FTD, 130 as mild, 175 as moderate and 120 as severe FTD. In the prodromal and mild phases, we observed an early increase in serum NfL levels followed by behavioural disturbances and deficits in executive functions. Negative symptoms, such as apathy, inflexibility and loss of insight, predominated in the prodromal phase. Serum NfL levels were significantly increased in the prodromal phase compared with healthy controls (average difference 14.5, 95% CI 2.9 to 26.1 pg/mL), but lower than in patients with mild FTD (average difference -15.5, 95% CI -28.4 to -2.7 pg/mL). At 1-year follow-up, 51.2% of patients in the prodromal phase had converted to dementia. Serum NfL measurements at baseline were the strongest predictors of disease progression at 1-year follow-up (OR 1.07, 95% CI 1.03 to 1.11, p < 0.001). CONCLUSIONS Prodromal FTD is a mutable stage with high rate of progression to fully symptomatic disease at 1-year follow-up. High serum NfL levels may support prodromal FTD diagnosis and represent a helpful marker to assess disease progression.
Collapse
Affiliation(s)
- Alberto Benussi
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, P.le Spedali Civili 1, 25123, Brescia, Italy
| | - Nicholas J Ashton
- Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Mölndal, Sweden
- King's College London, Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London, UK
- NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London & Maudsley NHS Foundation, London, UK
| | - Thomas K Karikari
- Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden
| | - Antonella Alberici
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, P.le Spedali Civili 1, 25123, Brescia, Italy
| | - Claudia Saraceno
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Roberta Ghidoni
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Luisa Benussi
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- UK Dementia Research Institute at UCL, London, UK
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Barbara Borroni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, P.le Spedali Civili 1, 25123, Brescia, Italy.
| |
Collapse
|
21
|
Yuan A, Nixon RA. Neurofilament Proteins as Biomarkers to Monitor Neurological Diseases and the Efficacy of Therapies. Front Neurosci 2021; 15:689938. [PMID: 34646114 PMCID: PMC8503617 DOI: 10.3389/fnins.2021.689938] [Citation(s) in RCA: 162] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 09/02/2021] [Indexed: 01/01/2023] Open
Abstract
Biomarkers of neurodegeneration and neuronal injury have the potential to improve diagnostic accuracy, disease monitoring, prognosis, and measure treatment efficacy. Neurofilament proteins (NfPs) are well suited as biomarkers in these contexts because they are major neuron-specific components that maintain structural integrity and are sensitive to neurodegeneration and neuronal injury across a wide range of neurologic diseases. Low levels of NfPs are constantly released from neurons into the extracellular space and ultimately reach the cerebrospinal fluid (CSF) and blood under physiological conditions throughout normal brain development, maturation, and aging. NfP levels in CSF and blood rise above normal in response to neuronal injury and neurodegeneration independently of cause. NfPs in CSF measured by lumbar puncture are about 40-fold more concentrated than in blood in healthy individuals. New ultra-sensitive methods now allow minimally invasive measurement of these low levels of NfPs in serum or plasma to track disease onset and progression in neurological disorders or nervous system injury and assess responses to therapeutic interventions. Any of the five Nf subunits - neurofilament light chain (NfL), neurofilament medium chain (NfM), neurofilament heavy chain (NfH), alpha-internexin (INA) and peripherin (PRPH) may be altered in a given neuropathological condition. In familial and sporadic Alzheimer's disease (AD), plasma NfL levels may rise as early as 22 years before clinical onset in familial AD and 10 years before sporadic AD. The major determinants of elevated levels of NfPs and degradation fragments in CSF and blood are the magnitude of damaged or degenerating axons of fiber tracks, the affected axon caliber sizes and the rate of release of NfP and fragments at different stages of a given neurological disease or condition directly or indirectly affecting central nervous system (CNS) and/or peripheral nervous system (PNS). NfPs are rapidly emerging as transformative blood biomarkers in neurology providing novel insights into a wide range of neurological diseases and advancing clinical trials. Here we summarize the current understanding of intracellular NfP physiology, pathophysiology and extracellular kinetics of NfPs in biofluids and review the value and limitations of NfPs and degradation fragments as biomarkers of neurodegeneration and neuronal injury.
Collapse
Affiliation(s)
- Aidong Yuan
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, United States
- Department of Psychiatry, NYU Neuroscience Institute, New York, NY, United States
| | - Ralph A. Nixon
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, United States
- Department of Psychiatry, NYU Neuroscience Institute, New York, NY, United States
- Department of Cell Biology, New York University Grossman School of Medicine, (NYU), Neuroscience Institute, New York, NY, United States
| |
Collapse
|
22
|
Hou YC, Huang CL, Lu CL, Zheng CM, Lin YF, Lu KC, Chung YL, Chen RM. The Role of Plasma Neurofilament Light Protein for Assessing Cognitive Impairment in Patients With End-Stage Renal Disease. Front Aging Neurosci 2021; 13:657794. [PMID: 34122041 PMCID: PMC8192845 DOI: 10.3389/fnagi.2021.657794] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 05/03/2021] [Indexed: 12/26/2022] Open
Abstract
Introduction: End-stage renal disease (ESRD) is defined as the irreversible loss of renal function, necessitating renal replacement therapy. Patients with ESRD tend to have more risk factors for cognitive impairment than the general population, including hypertension, accumulative uremic toxin, anemia, and old age. The association between these risk factors and the pathologic protein was lacking. Blood-based assays for detecting pathologic protein, such as amyloid beta (Aβ), total tau protein, and neurofilament light chain (NfL), have the advantages of being less invasive and more cost-effective for diagnosing patients with cognitive impairment. The aim of the study is to validate if the common neurologic biomarkers were different in ESRD patients and to differentiate if the specific biomarkers could correlate with specific correctable risk factors. Methods: In total, 67 participants aged >45 years were enrolled. The definition of ESRD was receiving maintenance hemodialysis for >3 months. Cognitive impairment was defined as a Mini-Mental State Examination score of <24. The participants were divided into groups for ESRD with and without cognitive impairment. The blood-based biomarkers (tau protein, Aβ1/40, Aβ1/42, and NfL) were analyzed through immunomagnetic reduction assay. Other biochemical and hematologic data were obtained simultaneously. Summary of results: The study enrolled 43 patients with ESRD who did not have cognitive impairment and 24 patients with ESRD who had cognitive impairment [Mini-Mental State Examination (MMSE): 27.60 ± 1.80 vs. 16.84 ± 6.40, p < 0.05]. Among the blood-based biomarkers, NfL was marginally higher in the ESRD with cognitive impairment group than in the ESRD without cognitive impairment group (10.41 ± 3.26 vs. 8.74 ± 2.81 pg/mL, p = 0.037). The concentrations of tau protein, amyloid β 1/42, and amyloid β 1/40 (p = 0.504, 0.393, and 0.952, respectively) were similar between the two groups. The area under the curve of NfL to distinguish cognitively impaired and unimpaired ESRD patients was 0.687 (95% confidence interval: 0.548-0.825, p = 0.034). There was no correlation between the concentration of NfL and MMSE among total population (r = -0.153, p = 0.277), patients with (r = 0.137, p = 0.583) or without cognitive impairment (r = 0.155, p = 0.333). Conclusion: Patients with ESRD who had cognitive impairment had marginally higher plasma NfL concentrations. NfL concentration was not correlated with the biochemical parameters, total MMSE among total population or individual groups with or without cognitive impairment. The concentrations of Aβ1/40, Aβ1/42, and tau were similar between the groups.
Collapse
Affiliation(s)
- Yi-Chou Hou
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Internal Medicine, Cardinal Tien Hospital, New Taipei City, Taiwan.,School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Chuen-Lin Huang
- Department of Medical Research, Cardinal Tien Hospital, New Taipei City, Taiwan.,Department of Physiology and Biophysics, National Defense Medical Center, Graduate Institute of Physiology, Taipei, Taiwan
| | - Chien-Lin Lu
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan.,Department of Nephrology, Fu Jen Catholic University Hospital, New Taipei City, Taiwan
| | - Cai-Mei Zheng
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University Shuang Ho Hospital, New Taipei City, Taiwan.,Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Taipei Medical University-Research Center of Urology and Kidney, Taipei Medical University, Taipei, Taiwan
| | - Yuh-Feng Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Nephrology, Department of Internal Medicine, Taipei Medical University Shuang Ho Hospital, New Taipei City, Taiwan.,Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Taipei Medical University-Research Center of Urology and Kidney, Taipei Medical University, Taipei, Taiwan.,National Defense Medical Center, Graduate Institute of Medical Sciences, Taipei, Taiwan
| | - Kuo-Cheng Lu
- Department of Nephrology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Ya-Lin Chung
- Department of Medical Laboratory, Cardinal-Tien Hospital, New Taipei City, Taiwan
| | - Ruei-Ming Chen
- TMU Research Center of Cancer Translational Medicine, Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Anesthesiology and Health Policy Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| |
Collapse
|
23
|
Ntymenou S, Tsantzali I, Kalamatianos T, Voumvourakis KI, Kapaki E, Tsivgoulis G, Stranjalis G, Paraskevas GP. Blood Biomarkers in Frontotemporal Dementia: Review and Meta-Analysis. Brain Sci 2021; 11:brainsci11020244. [PMID: 33672008 PMCID: PMC7919273 DOI: 10.3390/brainsci11020244] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 12/12/2022] Open
Abstract
Biomarkers in cerebrospinal fluid (CSF) are useful in the differential diagnosis between frontotemporal dementia (FTD) and Alzheimer’s dementia (AD), but require lumbar puncture, which is a moderately invasive procedure that can cause anxiety to patients. Gradually, the measurement of blood biomarkers has been attracting great interest. Testing blood instead of CSF, in order to measure biomarkers, offers numerous advantages because it negates the need for lumbar puncture, it is widely available, and can be repeated, allowing the prediction of disease course. In this study, a systematic review of the existing literature was conducted, as well as meta-analysis with greater emphasis on the most studied biomarkers, p-tau and progranulin. The goal was to give prominence to evidence regarding the use of plasma biomarkers in clinical practice.
Collapse
Affiliation(s)
- Sofia Ntymenou
- Department of Neurology, Evangelismos Hospital, 10676 Athens, Greece
| | - Ioanna Tsantzali
- 2nd Department of Neurology, School of Medicine, "Attikon" University General Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Theodosis Kalamatianos
- Department of Neurosurgery, School of Medicine, Evangelismos Hospital, National and Kapodistrian University of Athens, 10676 Athens, Greece
| | - Konstantinos I Voumvourakis
- 2nd Department of Neurology, School of Medicine, "Attikon" University General Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Elisabeth Kapaki
- Ward of Cognitive and Movement Disorders, 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece
- Unit of Neurochemistry and Biological Markers, Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Georgios Tsivgoulis
- 2nd Department of Neurology, School of Medicine, "Attikon" University General Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - George Stranjalis
- Department of Neurosurgery, School of Medicine, Evangelismos Hospital, National and Kapodistrian University of Athens, 10676 Athens, Greece
| | - George P Paraskevas
- 2nd Department of Neurology, School of Medicine, "Attikon" University General Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece
- Unit of Neurochemistry and Biological Markers, Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece
| |
Collapse
|