1
|
Demirci M, Çubuk C, Dasdemir F, Saribas AS, Balcıoglu EB, Ozbey D, Yorulmaz D, Olmez Hanci T, Basa S, Kocazeybek BS. Comparative microbial metagenomic analysis of drinking water plants and wastewater treatment plants in Istanbul. Front Microbiol 2025; 16:1488268. [PMID: 39901928 PMCID: PMC11788275 DOI: 10.3389/fmicb.2025.1488268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 01/07/2025] [Indexed: 02/05/2025] Open
Abstract
Introduction Wastewater treatment plants (WWTPs) and drinking-water treatment plants (DWTPs) are critical for public health due to the potential risks posed by microorganisms that may persist after treatment. The aim of this study was to detect the microbiome profiles of waters from both DWTPs and WWTPs under the Istanbul Water and Sewerage Administration (ISKI), identify the antimicrobial resistance profiles in all these facilities, and observe the differences in the microbiome between the inlet and outlet of different WWTPs. Methods A total of 52 samples were examined, comprising 18 samples from DWTPs and 34 samples from WWTPs. All water samples underwent pre-isolation filtration. DNA isolation was conducted using filter material, followed by sequencing on a NovaSeq 6000 instrument. Kraken2 tools and R scripts were used for statistical analysis and data visualization. Results The microbial metagenomic analysis identified 71 phyla, 113 classes, 217 orders, 480 families, and 1,282 genera across all samples. There were unclassified microbes (53.14% vs. 58.75%), Eukaryota (3.64% vs. 3.5%), Archaea (0.08% vs. 0.03%), bacteria (42% vs. 36.25%), and viruses (0.02% vs. 0.04%) in the raw water and ozonation unit outlet of DWTPs. The inlet and outlet of WWTPs showed unclassified microbes (52.68% vs. 59.62%), Eukaryota (0.6% vs. 1.72%), Archaea (0.26% vs. 0.15%), bacteria (46.43% vs. 38.43%), and viruses (0.05% vs. 0.04%). No statistically significant results were found in the analysis of raw waters collected from DWTPs and samples taken from the ozonation unit outlet-from the phylum level to the genus level (p > 0.05). The inlet and outlet points of WWTPs showed no statistically significant results from the phylum to species levels (p > 0.05). The most detected genera were Desulfobacter (4.82%) in preliminary WWTPs, Thauera (1.93%) in biological WWTPs, Pseudomonas (1.44%) in advanced biological WWTPs, Acidovorax (1.85%) in biological package WWTPs, and Pseudomonas (11.55%) in plant-based WWTPs. No antimicrobial resistance gene markers were detected in water samples from raw water inlets and ozonation unit outlets from DWTPs, membrane wastewater recovery plants, or ultraviolet (UV) recycling facilities. The ANT(3″), Erm, and Sul resistance gene markers were detected in all raw WWTPs samples. Discussion There were no significant microbial risk differentiation between biological WWTPs and advanced biological WWTPs. The data could serve as preliminary information for future research. More extensive studies are needed, with multiple sample tracking in these facilities and their feeding basins.
Collapse
Affiliation(s)
- Mehmet Demirci
- Department of Medical Microbiology, Faculty of Medicine, Kirklareli University, Kırklareli, Türkiye
| | - Cankut Çubuk
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London and Barts NIHR BRC & NHS Trust, Charterhouse Square, London, United Kingdom
| | - Ferhat Dasdemir
- Department of Medical Microbiology, Faculty of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Türkiye
| | - Abdulkerim Suat Saribas
- Department of Medical Microbiology, Faculty of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Türkiye
| | - Esra Billur Balcıoglu
- Division of Marine Sciences and Management, Department of Chemical Oceanography, Istanbul University Institute of Marine Sciences and Management, Istanbul, Türkiye
| | - Dogukan Ozbey
- Department of Medical Microbiology, Faculty of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Türkiye
| | - Dogu Yorulmaz
- Faculty of Medicine, Medical Faculty Student, Istanbul University-Cerrahpaşa, Istanbul, Türkiye
| | | | - Safak Basa
- Istanbul Water and Sewerage Administration, Istanbul, Türkiye
| | - Bekir Sami Kocazeybek
- Department of Medical Microbiology, Faculty of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Türkiye
- Istanbul Water and Sewerage Administration, Istanbul, Türkiye
| |
Collapse
|
2
|
Tsholo K, Molale-Tom LG, Horn S, Bezuidenhout CC. Distribution of antibiotic resistance genes and antibiotic residues in drinking water production facilities: Links to bacterial community. PLoS One 2024; 19:e0299247. [PMID: 38781192 PMCID: PMC11115235 DOI: 10.1371/journal.pone.0299247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 02/06/2024] [Indexed: 05/25/2024] Open
Abstract
There is a rapid spread of antibiotic resistance in the environment. However, the impact of antibiotic resistance in drinking water is relatively underexplored. Thus, this study aimed to quantify antibiotic resistance genes (ARGs) and antibiotic residues in two drinking water production facilities (NW-E and NW-C) in North West Province, South Africa and link these parameters to bacterial communities. Physicochemical and ARG levels were determined using standard procedures. Residues (antibiotics and fluconazole) and ARGs were quantified using ultra-high performance liquid chromatography (UHPLC) chemical analysis and real-time PCR, respectively. Bacterial community compositions were determined by high-throughput 16S rRNA sequencing. Data were analysed using redundancy analysis and pairwise correlation. Although some physicochemical levels were higher in treated than in raw water, drinking water in NW-E and NW-C was safe for human consumption using the South African Water Quality Guideline (SAWQG). ARGs were detected in raw and treated water. In NW-E, the concentrations of ARGs (sul1, intl1, EBC, FOX, ACC and DHA) were higher in treated water than in raw water. Regarding antimicrobial agents, antibiotic and fluconazole concentrations were higher in raw than in treated water. However, in NW-C, trimethoprim concentrations were higher in raw than in treated water. Redundancy analysis showed that bacterial communities were not significantly correlated (Monte Carlo simulations, p-value >0.05) with environmental factors. However, pairwise correlation showed significant differences (p-value <0.05) for Armatimonas, CL500-29 marine group, Clade III, Dickeya and Zymomonas genera with environmental factors. The presence of ARGs and antibiotic residues in the current study indicated that antibiotic resistance is not only a clinical phenomenon but also in environmental settings, particularly in drinking water niches. Consumption of NW-E and NW-C treated water may facilitate the spread of antibiotic resistance among consumers. Thus, regulating and monitoring ARGs and antibiotic residues in drinking water production facilities should be regarded as paramount.
Collapse
Affiliation(s)
- Karabo Tsholo
- Unit for Environmental Sciences and Management – Microbiology, North-West University, Potchefstroom, South Africa
| | - Lesego Gertrude Molale-Tom
- Unit for Environmental Sciences and Management – Microbiology, North-West University, Potchefstroom, South Africa
| | - Suranie Horn
- Unit for Environmental Sciences and Management – Microbiology, North-West University, Potchefstroom, South Africa
- Occupational Hygiene and Health Research Initiative (OHHRI), Faculty of Health Science, North-West University, Private Bag X6001, Potchefstroom, South Africa
| | | |
Collapse
|
3
|
Kalu CM, Mudau KL, Masindi V, Ijoma GN, Tekere M. Occurrences and implications of pathogenic and antibiotic-resistant bacteria in different stages of drinking water treatment plants and distribution systems. Heliyon 2024; 10:e26380. [PMID: 38434035 PMCID: PMC10906316 DOI: 10.1016/j.heliyon.2024.e26380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/05/2023] [Accepted: 02/12/2024] [Indexed: 03/05/2024] Open
Abstract
Different stages of drinking water treatment plants (DWTPs) play specific roles in diverse contaminants' removal present in natural water sources. Although the stages are recorded to promote adequate treatment of water, the occurrence of pathogenic bacteria (PB) and antibiotic-resistant bacteria (ARB) in the treated water and the changes in their diversity and abundance as it passed down to the end users through the drinking water distribution systems (DWDSs), is a great concern, especially to human health. This could imply that the different stages and the distribution system provide a good microenvironment for their growth. Hence, it becomes pertinent to constantly monitor and document the diversity of PB and ARB present at each stage of the treatment and distribution system. This review aimed at documenting the occurrence of PB and ARB at different stages of treatment and distribution systems as well as the implication of their occurrence globally. An exhaustive literature search from Web of Science, Science-Direct database, Google Scholar, Academic Research Databases like the National Center for Biotechnology Information, Scopus, and SpringerLink was done. The obtained information showed that the different treatment stages and distribution systems influence the PB and ARB that proliferate. To minimize the human health risks associated with the occurrence of these PB, the present review, suggests the development of advanced technologies that can promote quick monitoring of PB/ARB at each treatment stage and distribution system as well as reduction of the cost of environomics analysis to promote better microbial analysis.
Collapse
Affiliation(s)
- Chimdi M. Kalu
- Department of Environmental Science, College of Agriculture and Environmental Sciences, University of South Africa, Florida, 1710, South Africa
| | - Khuthadzo L. Mudau
- Department of Environmental Science, College of Agriculture and Environmental Sciences, University of South Africa, Florida, 1710, South Africa
| | - Vhahangwele Masindi
- Department of Environmental Science, College of Agriculture and Environmental Sciences, University of South Africa, Florida, 1710, South Africa
- Magalies Water, Scientific Services, Research & Development Division, Brits, South Africa
| | - Grace N. Ijoma
- Department of Environmental Science, College of Agriculture and Environmental Sciences, University of South Africa, Florida, 1710, South Africa
| | - Memory Tekere
- Department of Environmental Science, College of Agriculture and Environmental Sciences, University of South Africa, Florida, 1710, South Africa
| |
Collapse
|
4
|
Gao T, Tian H, Xiang L, Wang Z, Fu Y, Shi J, Wen X, Jiang X, He W, Hashsham SA, Wang F. Characteristics of bacterial community and extracellular enzymes in response to atrazine application in black soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123286. [PMID: 38171425 DOI: 10.1016/j.envpol.2023.123286] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/04/2023] [Accepted: 12/31/2023] [Indexed: 01/05/2024]
Abstract
The ecological functioning of black soil largely depends on the activities of various groups of microorganisms. However, little is known about how atrazine, a widely used herbicide with known harmful effects on the environment, influences the microbial ecology of black soil, and the extracellular enzymes related to the carbon, nitrogen and phosphorus cycles. Here, we evaluated the change in extracellular enzymes and bacterial community characteristics in black soil after exposure to various concentrations of atrazine. Low concentrations of applied atrazine (10 - 20 mg kg-1) were almost completely degraded after 120 days. At high concentrations (80 - 100 mg kg-1), about 95% of the applied atrazine was degraded over the same period. Additionally, linear fitting of data indicated that the total enzymatic activity index (TEI) and bacterial α-diversity index were negatively correlated with atrazine applied concentration. The atrazine had a greater effect on bacterial beta diversity after 120 days, which differentiated species clusters treated with low and high atrazine concentrations. Soil bacterial community structure and function were affected by atrazine, especially at high atrazine concentrations (80 - 100 mg kg-1). Key microorganisms such as Sphingomonas and Nocardioides were identified as biomarkers for atrazine dissipation. Functional prediction indicated that most metabolic pathways might be involved in atrazine dissipation. Overall, the findings enhance our understanding of the factors driving atrazine degradation in black soil and supports the use of biomarkers as indicators of atrazine dissipation.
Collapse
Affiliation(s)
- Tiancong Gao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; College of Natural Resources and Environment, Northwest A&F University, Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture, Yangling, 712100, China
| | - Haixia Tian
- College of Natural Resources and Environment, Northwest A&F University, Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture, Yangling, 712100, China
| | - Leilei Xiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ziqi Wang
- College of Natural Resources and Environment, Northwest A&F University, Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture, Yangling, 712100, China
| | - Yuhao Fu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Shi
- College of Natural Resources and Environment, Northwest A&F University, Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture, Yangling, 712100, China
| | - Xin Wen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenxiang He
- College of Natural Resources and Environment, Northwest A&F University, Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture, Yangling, 712100, China
| | - Syed A Hashsham
- Department of Civil and Environmental Engineering, Center for Microbial Ecology, Michigan State University, USA
| | - Fang Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
5
|
Picinini J, Oliveira RF, Garcia ALH, da Silva GN, Sebben VC, de Souza GMS, Dias JF, Corrêa DS, da Silva J. In vitro genotoxic and mutagenic effects of water samples from Sapucaia and Esteio streams (Brazil) under the influence of different anthropogenic activities. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 878:503484. [PMID: 35649678 DOI: 10.1016/j.mrgentox.2022.503484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 03/07/2022] [Accepted: 03/28/2022] [Indexed: 06/15/2023]
Abstract
Pollution of aquatic ecosystems is associated with the discharge of mainly industrial and urban effluents, which may cause damage to public health. This study aims to evaluate the cytotoxic, genotoxic, and mutagenic potential of surface water samples under the influence of different anthropogenic effluents in a human-derived liver cell line (HepG2). Samples were collected in Esteio and Sapucaia streams (Rio Grande do Sul; Brazil), which flow into the Sinos River, a source of water supply for more than one million people. Physicochemical and microbiological analyses were performed as well as an analysis of inorganic elements using the PIXE technique (Particle-Induced X-Ray Emission). The presence of pharmaceutical compounds and caffeine was evaluated by gas chromatography coupled to mass spectrometry. The cytotoxicity, genotoxicity, and mutagenicity of the samples were evaluated in HepG2 cells by cell viability assays, alkaline Comet Assay and Cytokinesis-block micronucleus (CBMN) assay. We verified alterations in the physicochemical and microbiological parameters and detected caffeine, diethyltoluamide, and different inorganic elements that corresponded to elements from domestic and industrial effluents and agricultural runoff. Although the samples in the concentration used were not cytotoxic, water samples from all sites induced DNA damage. However, it is difficult to attribute these damages to a specific substance since the factors are a complex mixture of different compounds. Despite this, it is observed that both urban and industrial contributions had a similar effect in the cells evaluated. Such results demonstrate the need to perform biomonitoring of surface waters under anthropogenic influence, especially those that flow into rivers that are a source of public supply water. We also highlight the need for research into emerging pollutants in these aquatic environments.
Collapse
Affiliation(s)
- Juliana Picinini
- Laboratory of Genetic Toxicology, PPGBioSaúde (Postgraduate Program in Cellular and Molecular Biology Applied to Health), Lutheran University of Brazil (ULBRA), Av. Farroupilha, 8001, Building 22 (4th floor), 92425-900, Canoas, RS, Brazil.
| | - Renata Farias Oliveira
- Product and Development Research Center, Lutheran University of Brazil (ULBRA), Av. Farroupilha, 8001, 92425-900, Canoas, RS, Brazil
| | - Ana Letícia Hilário Garcia
- Laboratory of Genetic Toxicology, PPGBioSaúde (Postgraduate Program in Cellular and Molecular Biology Applied to Health), Lutheran University of Brazil (ULBRA), Av. Farroupilha, 8001, Building 22 (4th floor), 92425-900, Canoas, RS, Brazil; Laboratory of Genetic Toxicology, PPGSDH, La Salle University (UniLaSalle), Av. Victor Barreto, 2288, 92010-000, Canoas, RS, Brazil
| | - Gabrielle Nunes da Silva
- Laboratory of Genetic Toxicology, PPGBioSaúde (Postgraduate Program in Cellular and Molecular Biology Applied to Health), Lutheran University of Brazil (ULBRA), Av. Farroupilha, 8001, Building 22 (4th floor), 92425-900, Canoas, RS, Brazil
| | - Viviane Cristina Sebben
- Rio Grande do Sul Toxicological Information Center (CIT/RS), Av. Ipiranga, 5400, Jardim Botânico, 90610-000, Porto Alegre, RS, Brazil
| | - Guilherme Maurício Soares de Souza
- Ionic Implantation Laboratory, Institute of Physics, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, 91501-970, Porto Alegre, RS, Brazil
| | - Johnny Ferraz Dias
- Ionic Implantation Laboratory, Institute of Physics, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, 91501-970, Porto Alegre, RS, Brazil
| | - Dione Silva Corrêa
- Product and Development Research Center, Lutheran University of Brazil (ULBRA), Av. Farroupilha, 8001, 92425-900, Canoas, RS, Brazil
| | - Juliana da Silva
- Laboratory of Genetic Toxicology, PPGBioSaúde (Postgraduate Program in Cellular and Molecular Biology Applied to Health), Lutheran University of Brazil (ULBRA), Av. Farroupilha, 8001, Building 22 (4th floor), 92425-900, Canoas, RS, Brazil; Laboratory of Genetic Toxicology, PPGSDH, La Salle University (UniLaSalle), Av. Victor Barreto, 2288, 92010-000, Canoas, RS, Brazil.
| |
Collapse
|
6
|
Mahajna A, Dinkla IJT, Euverink GJW, Keesman KJ, Jayawardhana B. Clean and Safe Drinking Water Systems via Metagenomics Data and Artificial Intelligence: State-of-the-Art and Future Perspective. Front Microbiol 2022; 13:832452. [PMID: 35602066 PMCID: PMC9121918 DOI: 10.3389/fmicb.2022.832452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 04/04/2022] [Indexed: 12/01/2022] Open
Abstract
The use of next-generation sequencing technologies in drinking water distribution systems (DWDS) has shed insight into the microbial communities' composition, and interaction in the drinking water microbiome. For the past two decades, various studies have been conducted in which metagenomics data have been collected over extended periods and analyzed spatially and temporally to understand the dynamics of microbial communities in DWDS. In this literature review, we outline the findings which were reported in the literature on what kind of occupancy-abundance patterns are exhibited in the drinking water microbiome, how the drinking water microbiome dynamically evolves spatially and temporally in the distribution networks, how different microbial communities co-exist, and what kind of clusters exist in the drinking water ecosystem. While data analysis in the current literature concerns mainly with confirmatory and exploratory questions pertaining to the use of metagenomics data for the analysis of DWDS microbiome, we present also future perspectives and the potential role of artificial intelligence (AI) and mechanistic models to address the predictive and mechanistic questions. The integration of meta-omics, AI, and mechanistic models transcends metagenomics into functional metagenomics, enabling deterministic understanding and control of DWDS for clean and safe drinking water systems of the future.
Collapse
Affiliation(s)
- Asala Mahajna
- Wetsus – European Centre of Excellence for Sustainable Water Technology, Leeuwarden, Netherlands
- Engineering and Technology Institute Groningen, University of Groningen, Groningen, Netherlands
| | - Inez J. T. Dinkla
- Wetsus – European Centre of Excellence for Sustainable Water Technology, Leeuwarden, Netherlands
| | - Gert Jan W. Euverink
- Engineering and Technology Institute Groningen, University of Groningen, Groningen, Netherlands
| | - Karel J. Keesman
- Mathematical and Statistical Methods – Biometris, Wageningen University, Wageningen, Netherlands
| | - Bayu Jayawardhana
- Engineering and Technology Institute Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
7
|
Alotaibi MO, Mohammed AE, Eltom KH. Metagenomic analysis of bacterial communities of Wadi Namar Lake, Riyadh, Saudi Arabia. Saudi J Biol Sci 2022; 29:3749-3758. [PMID: 35844383 PMCID: PMC9280250 DOI: 10.1016/j.sjbs.2022.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/08/2022] [Accepted: 03/02/2022] [Indexed: 11/23/2022] Open
Abstract
Wadi Namar lake is a new touristic attraction area in the south of Riyadh. Human activities around the lake may lead to changes in water quality with subsequent changes in microenvironment components including microbial diversity. The current study was designed to assess possible changes in bacterial communities of the water at Wadi Namar Lake. Therefore, water samples were collected from three different locations along the lake: L1 (no human activities, no plants), L2 (no human activity, some plants) and L3 (human activities, municipal wastes and some plants). The total DNA of the samples was extracted and subjected to 16S rDNA sequencing and metagenomic analysis; water pH, electrical conductivity (EC), total dissolved solids (TDS) as well as the concentration of Na+1, K+1, Cl-1 and total N were analysed. Metagenomic analysis showed variations in relative abundance of 17 phyla, 31 families, 43 genera and 19 species of bacteria between the locations. Proteobacteria was the most abundant phylum in all locations; however, its highest abundance was in L1. Planctomycete phylum was highly abundant in L1 and L3, while its abundance in L2 was low. The phyla Acidobacteria, Candidatus Saccharibacteria, Nitrospirae and Chloroflexi were associated with high TDS, EC, K+1 and Cl-1 concentrations in L3; various human activities around this location had possibly affected microbial diversity. Current study results help in recognising the structure of bacterial communities at Wadi Namar Lake in relation to their surroundings for planning to environment protection and future restoration of affected ecosystems.
Collapse
Affiliation(s)
- Modhi O. Alotaibi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Afrah E. Mohammed
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Kamal H. Eltom
- Unit of Animal Health and Safety of Animal Products, Institute for Studies and Promotion of Animal Exports, University of Khartoum, Shambat Postal Code 13314, Khartoum North, Sudan
| |
Collapse
|
8
|
Djemiel C, Maron PA, Terrat S, Dequiedt S, Cottin A, Ranjard L. Inferring microbiota functions from taxonomic genes: a review. Gigascience 2022; 11:giab090. [PMID: 35022702 PMCID: PMC8756179 DOI: 10.1093/gigascience/giab090] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/02/2021] [Accepted: 12/02/2021] [Indexed: 12/13/2022] Open
Abstract
Deciphering microbiota functions is crucial to predict ecosystem sustainability in response to global change. High-throughput sequencing at the individual or community level has revolutionized our understanding of microbial ecology, leading to the big data era and improving our ability to link microbial diversity with microbial functions. Recent advances in bioinformatics have been key for developing functional prediction tools based on DNA metabarcoding data and using taxonomic gene information. This cheaper approach in every aspect serves as an alternative to shotgun sequencing. Although these tools are increasingly used by ecologists, an objective evaluation of their modularity, portability, and robustness is lacking. Here, we reviewed 100 scientific papers on functional inference and ecological trait assignment to rank the advantages, specificities, and drawbacks of these tools, using a scientific benchmarking. To date, inference tools have been mainly devoted to bacterial functions, and ecological trait assignment tools, to fungal functions. A major limitation is the lack of reference genomes-compared with the human microbiota-especially for complex ecosystems such as soils. Finally, we explore applied research prospects. These tools are promising and already provide relevant information on ecosystem functioning, but standardized indicators and corresponding repositories are still lacking that would enable them to be used for operational diagnosis.
Collapse
Affiliation(s)
- Christophe Djemiel
- Agroécologie, AgroSup Dijon, INRAE, Université de Bourgogne, Université de Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Pierre-Alain Maron
- Agroécologie, AgroSup Dijon, INRAE, Université de Bourgogne, Université de Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Sébastien Terrat
- Agroécologie, AgroSup Dijon, INRAE, Université de Bourgogne, Université de Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Samuel Dequiedt
- Agroécologie, AgroSup Dijon, INRAE, Université de Bourgogne, Université de Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Aurélien Cottin
- Agroécologie, AgroSup Dijon, INRAE, Université de Bourgogne, Université de Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Lionel Ranjard
- Agroécologie, AgroSup Dijon, INRAE, Université de Bourgogne, Université de Bourgogne Franche-Comté, F-21000 Dijon, France
| |
Collapse
|
9
|
Chen S, Li Y, Fan Z, Liu F, Liu H, Wang L, Wu H. Soil bacterial community dynamics following bioaugmentation with Paenarthrobacter sp. W11 in atrazine-contaminated soil. CHEMOSPHERE 2021; 282:130976. [PMID: 34089999 DOI: 10.1016/j.chemosphere.2021.130976] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 04/13/2021] [Accepted: 05/22/2021] [Indexed: 06/12/2023]
Abstract
Atrazine is one of the most widely used herbicides, however it and its metabolites cause widespread contamination in soil and ground water. Bioaugmentation is an effective method for remediation of environmental organic pollutants. High-throughput sequencing provides an important tool for understanding the changes of microbial community and function in response to pollutants degradation based on bioaugmentation. In this study, the effect of biodegradation with Paenarthrobacter sp. W11 and the change of microbial community during atrazine degradation were investigated. The results showed that bioaugmentation significantly accelerated the degradation rate of atrazine in soil and reduced the toxic effect of atrazine residues on wheat growth. The extra available NH4+ through atrazine mineralization could serve as a nitrogen source to increase microbial numbers. High-throughput sequencing further revealed that the microbial community restored a new balance. The function of microbial community predicted by PICRUSt2 suggested that the biodegradation process of atrazine affected not only the atrazine degradation pathway, but also the nitrogen metabolism pathway. Methylobacillus and Pseudomonas were considered as the most important indigenous atrazine-degrading microorganisms, because their relative abundances were positively correlated with the relative abundance of Paenarthrobacter and atrazine degradation pathway. This study provides insight into the cooperation between indigenous microorganisms and external inoculums on atrazine degradation process.
Collapse
Affiliation(s)
- Shuaimin Chen
- Institute of Agricultural Resources and Environment, Jilin Academy of Agricultural Sciences, 1363 Shengtai Street, Changchun, 130033, China
| | - Yangyang Li
- Institute of Agricultural Resources and Environment, Jilin Academy of Agricultural Sciences, 1363 Shengtai Street, Changchun, 130033, China
| | - Zuowei Fan
- Institute of Agricultural Resources and Environment, Jilin Academy of Agricultural Sciences, 1363 Shengtai Street, Changchun, 130033, China
| | - Fangming Liu
- Institute of Agricultural Resources and Environment, Jilin Academy of Agricultural Sciences, 1363 Shengtai Street, Changchun, 130033, China
| | - Huitao Liu
- Institute of Agricultural Resources and Environment, Jilin Academy of Agricultural Sciences, 1363 Shengtai Street, Changchun, 130033, China
| | - Lichun Wang
- Institute of Agricultural Resources and Environment, Jilin Academy of Agricultural Sciences, 1363 Shengtai Street, Changchun, 130033, China.
| | - Haiyan Wu
- Institute of Agricultural Resources and Environment, Jilin Academy of Agricultural Sciences, 1363 Shengtai Street, Changchun, 130033, China.
| |
Collapse
|
10
|
Taviani E, Pedro O. Impact of the aquatic pathobiome in low-income and middle-income countries (LMICs) quest for safe water and sanitation practices. Curr Opin Biotechnol 2021; 73:220-224. [PMID: 34492621 DOI: 10.1016/j.copbio.2021.08.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/10/2021] [Accepted: 08/18/2021] [Indexed: 11/03/2022]
Abstract
Microbial contamination of surface waters is of particular relevance in low-income and middle-income countries (LMICs) since they often represent the only available source of water for drinking and domestic use. In the recent years, a growing urbanization, profound demographic shifts and drastic climate events have greatly affected LMICs capacity to reach access to safe drinking water and sanitation practices, and to protect citizens' health from risks associated to the exposure and use of contaminated water. Detailed phylogenetic and microbiological information on the exact composition of pathogenic organisms in urban and peri-urban water is scarce, especially in rapidly changing settings of sub-Saharan Africa. In this review we aim to highlight how large-scale water pathobiome studies can support the LMICs challenge to global access to safe water and sanitation practices.
Collapse
Affiliation(s)
- Elisa Taviani
- Center for Biotechnology, University Eduardo Mondlane, Maputo, Mozambique.
| | - Olivia Pedro
- Center for Biotechnology, University Eduardo Mondlane, Maputo, Mozambique
| |
Collapse
|
11
|
Thongsamer T, Neamchan R, Blackburn A, Acharya K, Sutheeworapong S, Tirachulee B, Pattanachan P, Vinitnantharat S, Zhou XY, Su JQ, Zhu YG, Graham D, Werner D. Environmental antimicrobial resistance is associated with faecal pollution in Central Thailand's coastal aquaculture region. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125718. [PMID: 33857807 DOI: 10.1016/j.jhazmat.2021.125718] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
We assessed antimicrobial resistance (AMR) potential to seven major classes of antibiotics in Central Thailand's coastal aquaculture region using high-throughput qPCR targeting 295 antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs). In parallel, we used MinION next generation sequencing (NGS) of 16S rRNA gene amplicons, qPCR of faecal pollution makers, and conventional plate count methods for the comprehensive characterization of environmental microbiomes. We tested the hypothesis that aquaculture increases environmental AMR by comparing ARGs and MGEs in water and sediment samples from five aquaculture sites and their associated canals. There was no evidence from the ARG and MGE data that aquaculture is a major driver of environmental AMR in Central Thailand. Instead, the highest relative prevalence of resistance traits was found in Hua Krabue canal water influenced by urban pollution from Bangkok at the inland edge of the coastal aquaculture region. The sum of ARGs and MGEs, relative to 16S rRNA genes used as markers for overall bacterial abundance, was between 0.495 ± 0.011 and 0.498 ± 0.013 in Hua Krabue canal water, compared with at most 0.132 ± 0.005 in all the other environmental samples. Corresponding patterns were observed for most faecal pollution markers, which were also elevated in Hua Krabue canal water.
Collapse
Affiliation(s)
- Thunchanok Thongsamer
- Environmental Technology Program, School of Energy, Environment and Materials, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
| | - Rattikan Neamchan
- Environmental Technology Program, School of Energy, Environment and Materials, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
| | - Adrian Blackburn
- School of Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Kishor Acharya
- School of Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Sawannee Sutheeworapong
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
| | - Bundit Tirachulee
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
| | - Pavinee Pattanachan
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
| | - Soydoa Vinitnantharat
- Environmental Technology Program, School of Energy, Environment and Materials, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
| | - Xin-Yuan Zhou
- Institute of Urban Environment, Chinese Academy of Science, Xiamen 361021, China
| | - Jian-Qiang Su
- Institute of Urban Environment, Chinese Academy of Science, Xiamen 361021, China
| | - Yong-Guan Zhu
- Institute of Urban Environment, Chinese Academy of Science, Xiamen 361021, China
| | - David Graham
- School of Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - David Werner
- School of Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom.
| |
Collapse
|