1
|
Mudgal B, Verma D, Venogopal D, Atram SV, Mitra D, Gupta S. Subtractive genomics approach: A guide to unveiling therapeutic targets across pathogens. J Microbiol Methods 2025; 232-234:107127. [PMID: 40204082 DOI: 10.1016/j.mimet.2025.107127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/22/2025] [Accepted: 04/06/2025] [Indexed: 04/11/2025]
Abstract
Subtractive genomics is an adaptable bioinformatics technique that is used to identify potential therapeutic targets by differentiating essential genes in pathogens and non-pathogenic genes. Since, identification of therapeutic targets and understanding of their structure, function, and role in pathogenesis is important in development of drug design. Therefore, this review will provide a comprehensive look at the subtractive genomics technique which was applied to various pathogens, often highlighting the effectiveness of the methodology in drug target discovery and novel therapeutics development. Tools and software such as BLAST, Roary, and AutoDock Vina are widely utilized in this methodology for various aspects such as, genome comparison, essential gene identification, clustering, subcellular localization, pathway analysis, molecular docking etc. Diseases such as tuberculosis, botulism, staphylococcal infections, ventilator-associated pneumonia, secondary meningitis, gonorrhoea, septicaemia, etc., are among the infectious diseases targeted using subtractive genomics. Comparison of basic principles, tools, and advancements use these subtractive genomics studies, will provide insight into the adaptable nature of this technique and the diversity of pathogens, which have benefited with this methodology into providing successful results. The main focus is on the genome sequencing advancements, annotation and validation through in-silico techniques, to find effective drug targets while, decreasing the possibility of toxicity in the host. We have also discussed the possibility of taking a multi-omics approach and incorporating AI and machine learning to expand on the current data and finding effective therapeutics for helping globally on health challenges.
Collapse
Affiliation(s)
- Bhavya Mudgal
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, Uttarakhand 248002, India.
| | - Devvret Verma
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, Uttarakhand 248002, India.
| | - Divya Venogopal
- Department of Microbiology, Graphic Era Deemed to be University, Dehradun, Uttarakhand 248002, India
| | - Suraj V Atram
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom
| | - Debasis Mitra
- Department of Microbiology, Graphic Era Deemed to be University, Dehradun, Uttarakhand 248002, India
| | - Sugam Gupta
- Department of Applied Science and Engineering, The Tula's Institute: The Engineering and Management College, Selaqui, Uttarakhand 248197, India
| |
Collapse
|
2
|
Barazorda-Ccahuana HL, Cárcamo Rodriguez EG, Centeno-Lopez A, Paco-Chipana M, Goyzueta-Mamani LD, Chavez-Fumagalli MA. Identification of compounds from natural Peruvian sources as potential inhibitors of SARS-CoV-2 Mpro mutations by virtual screening and computational simulations. F1000Res 2024; 13:246. [PMID: 39583212 PMCID: PMC11585855 DOI: 10.12688/f1000research.143633.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/19/2024] [Indexed: 11/26/2024] Open
Abstract
Background Although the COVID-19 pandemic has diminished in intensity, the virus continues to circulate globally. The SARS-CoV-2 main protease (Mpro) is a key enzyme in the life cycle of the virus, making it important for the development of treatments against future variants of the virus. In this work, Peruvian natural compounds were evaluated against different mutations of the SARS-CoV-2 Mpro. Methods In silico techniques such as virtual screening, all-atom molecular dynamics simulations, and energy estimation analysis were applied. Results Of the tested compounds by virtual screening, rutin was identified as the best binding agent against the different proposed Mpro mutations. In addition, computational simulations and energy estimation analysis demonstrated the high structural and energetic stability between the Mpro-rutin systems. Conclusions Overall, our study identified rutin as the most promising compound with a strong affinity for various Mpro mutations, potentially playing a key role in the development of new treatments for emerging viral variants.
Collapse
Affiliation(s)
- Haruna Luz Barazorda-Ccahuana
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Catolica de Santa Maria de Arequipa, Pedro Vilcapaza, Arequipa, 04000, Peru
| | - Eymi Gladys Cárcamo Rodriguez
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Catolica de Santa Maria de Arequipa, Pedro Vilcapaza, Arequipa, 04000, Peru
- Facultad de Ciencias Farmaceuticas, Bioquímicas y Biotecnológicas, Universidad Catolica de Santa Maria de Arequipa, Pedro Vilcapaza, Arequipa, 04000, Peru
| | - Angela Emperatriz Centeno-Lopez
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Catolica de Santa Maria de Arequipa, Pedro Vilcapaza, Arequipa, 04000, Peru
- Facultad de Ciencias Farmaceuticas, Bioquímicas y Biotecnológicas, Universidad Catolica de Santa Maria de Arequipa, Pedro Vilcapaza, Arequipa, 04000, Peru
| | - Margot Paco-Chipana
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Catolica de Santa Maria de Arequipa, Pedro Vilcapaza, Arequipa, 04000, Peru
| | - Luis Daniel Goyzueta-Mamani
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Catolica de Santa Maria de Arequipa, Pedro Vilcapaza, Arequipa, 04000, Peru
- Sustainable Innovative Biomaterials, Le Qara Research Center, Arequipa, Peru
| | - Miguel Angel Chavez-Fumagalli
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Catolica de Santa Maria de Arequipa, Pedro Vilcapaza, Arequipa, 04000, Peru
| |
Collapse
|
3
|
Deshmukh N, Talkal R, Lakshmi B. In silico screening of potential inhibitors from Cordyceps species against SARS-CoV-2 main protease. J Biomol Struct Dyn 2024; 42:4395-4411. [PMID: 37325819 DOI: 10.1080/07391102.2023.2225110] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 06/05/2023] [Indexed: 06/17/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is a result of a retroviral infection of SARS-CoV-2. Due to its virulence and high infection rate, it is a matter of serious concern and a global health emergency. Currently available COVID-19 vaccines approved by regulatory bodies around the world have been shown to provide significant protection against COVID-19. But no vaccine is 100% effective at preventing infection, also they have varying efficacy rates and different side effects. However, the main protease (Mpro) of SARS-CoV-2 has been identified as a key drug target due to its essential role in viral infection and its minimal similarity with human proteases. Cordyceps mushrooms have been found to have various therapeutic properties that could effectively combat SARS-CoV-2, including improve lung functioning, anti-viral, immunomodulators, anti-infectious, and anti-inflammatory. The present study aims to screen and evaluate the inhibitory potential of the bioactive molecules from the Cordyceps species against the Mpro of SARS-CoV-2. The bioactive molecules were screened based on their docking score, molecular interactions in the binding pocket, ADME properties, toxicity, carcinogenicity, and mutagenicity. Among all the molecules that were tested, cordycepic acid was the most effective and promising candidate, with a binding affinity of -8.10 kcal/mol against Mpro. The molecular dynamics (MD) simulation and free binding energy calculations revealed that the cordycepic acid-Mpro complex was highly stable and showed fewer conformational fluctuations. These findings need to be investigated further through in-vitro and in-vivo studies for additional validation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Niketan Deshmukh
- L J School of Applied Sciences, L J University, Ahmedabad, India
| | - Reshma Talkal
- Gujarat Biotechnology Research Centre, Gandhinagar, India
| | - Bhaskaran Lakshmi
- Department of Biotechnology, Kadi Sarva Vishwavidyalaya, Gandhinagar, India
| |
Collapse
|
4
|
Ajel M, Jazayeri SM, Behboudi E, Poorebrahim M, Ahangar Oskouee M, Bannazadeh Baghi H, Hasani A, Varshochi M, Shekarchi AA, Sabbaghian M, Poortahmasebi V. Investigation of the Mutations in the SARS-CoV-2 Envelope Protein and Its Interaction with the PALS1 by Molecular Docking. Rep Biochem Mol Biol 2024; 13:124-136. [PMID: 39582830 PMCID: PMC11580137 DOI: 10.61186/rbmb.13.1.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/25/2024] [Indexed: 11/26/2024]
Abstract
Background The envelope (E) protein of globally circulating severe acute respiratory syndrome coronavirus 2 (SARS CoV 2) is highly conserved. This study aimed to find the mutation rate of the E genes in COVID-19 patients, and also to evaluate the conformational characteristics of viral E protein. Methods In this study, 120 patients with SARS-CoV-2 positive test results were selected according to real-time PCR assay. Specific primers for conventional PCR have been used to amplify E gene; furthermore, to identify the E gene mutations, direct sequencing of the E genes was also done. Bioinformatics techniques were used to investigate the possible effects of antigenic changes and 3D characteristics of amino acid substitutions. Also, the immunogenicity of wild-type and mutant E was analyzed utilizing a ClusPro docking server and the IEDB online platform. Results A total of 120 COVID-19 patients were included (57.5% were male and 42.5% female), with an overall mean age of 55.70±10.61 years old. Of 10 nucleotide changes, 8 (80%) were silent. Also, 2 (20%) missense mutations (amino acid altering) were found in the E gene (L73F and S68F). Conclusions These mutations insert some new helix structures in the E mutants. Also, the results of molecular docking studies indicated that both S68F and L73F mutations could notably enhance the stability and binding affinity of protein E's C-terminal motif to the Protein Associated with LIN7 1, MAGUK P55 Family Member (PALS1) which may probably increase local viral spread, and infiltration of immune cells into lung alveolar spaces.
Collapse
Affiliation(s)
- Maryam Ajel
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Bacteriology and Virology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Seyed Mohammad Jazayeri
- Research Center of Pediatric Infectious Diseases, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
| | - Emad Behboudi
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, Iran.
| | - Mansour Poorebrahim
- Targeted Tumor Vaccines Group, Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Mahin Ahangar Oskouee
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Bacteriology and Virology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Hossein Bannazadeh Baghi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Bacteriology and Virology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Alka Hasani
- Department of Bacteriology and Virology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mojtaba Varshochi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Ali Akbar Shekarchi
- Department of Pathology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Sabbaghian
- Department of Bacteriology and Virology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Vahdat Poortahmasebi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Bacteriology and Virology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
5
|
Alsahafi YS, Elshora DS, Mohamed ER, Hosny KM. Multilevel Threshold Segmentation of Skin Lesions in Color Images Using Coronavirus Optimization Algorithm. Diagnostics (Basel) 2023; 13:2958. [PMID: 37761325 PMCID: PMC10529071 DOI: 10.3390/diagnostics13182958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Skin Cancer (SC) is among the most hazardous due to its high mortality rate. Therefore, early detection of this disease would be very helpful in the treatment process. Multilevel Thresholding (MLT) is widely used for extracting regions of interest from medical images. Therefore, this paper utilizes the recent Coronavirus Disease Optimization Algorithm (COVIDOA) to address the MLT issue of SC images utilizing the hybridization of Otsu, Kapur, and Tsallis as fitness functions. Various SC images are utilized to validate the performance of the proposed algorithm. The proposed algorithm is compared to the following five meta-heuristic algorithms: Arithmetic Optimization Algorithm (AOA), Sine Cosine Algorithm (SCA), Reptile Search Algorithm (RSA), Flower Pollination Algorithm (FPA), Seagull Optimization Algorithm (SOA), and Artificial Gorilla Troops Optimizer (GTO) to prove its superiority. The performance of all algorithms is evaluated using a variety of measures, such as Mean Square Error (MSE), Peak Signal-To-Noise Ratio (PSNR), Feature Similarity Index Metric (FSIM), and Normalized Correlation Coefficient (NCC). The results of the experiments prove that the proposed algorithm surpasses several competing algorithms in terms of MSE, PSNR, FSIM, and NCC segmentation metrics and successfully solves the segmentation issue.
Collapse
Affiliation(s)
- Yousef S. Alsahafi
- Department of Information Technology, Khulis College, University of Jeddah, Jeddah 23890, Saudi Arabia;
| | - Doaa S. Elshora
- Department of Information Technology, Faculty of Computers and Informatics, Zagazig University, Zagazig 44519, Egypt; (D.S.E.); (E.R.M.)
| | - Ehab R. Mohamed
- Department of Information Technology, Faculty of Computers and Informatics, Zagazig University, Zagazig 44519, Egypt; (D.S.E.); (E.R.M.)
| | - Khalid M. Hosny
- Department of Information Technology, Faculty of Computers and Informatics, Zagazig University, Zagazig 44519, Egypt; (D.S.E.); (E.R.M.)
| |
Collapse
|
6
|
Akbari Rokn Abadi S, Mohammadi A, Koohi S. A new profiling approach for DNA sequences based on the nucleotides' physicochemical features for accurate analysis of SARS-CoV-2 genomes. BMC Genomics 2023; 24:266. [PMID: 37202721 PMCID: PMC10193333 DOI: 10.1186/s12864-023-09373-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 05/11/2023] [Indexed: 05/20/2023] Open
Abstract
BACKGROUND The prevalence of the COVID-19 disease in recent years and its widespread impact on mortality, as well as various aspects of life around the world, has made it important to study this disease and its viral cause. However, very long sequences of this virus increase the processing time, complexity of calculation, and memory consumption required by the available tools to compare and analyze the sequences. RESULTS We present a new encoding method, named PC-mer, based on the k-mer and physic-chemical properties of nucleotides. This method minimizes the size of encoded data by around 2 k times compared to the classical k-mer based profiling method. Moreover, using PC-mer, we designed two tools: 1) a machine-learning-based classification tool for coronavirus family members with the ability to recive input sequences from the NCBI database, and 2) an alignment-free computational comparison tool for calculating dissimilarity scores between coronaviruses at the genus and species levels. CONCLUSIONS PC-mer achieves 100% accuracy despite the use of very simple classification algorithms based on Machine Learning. Assuming dynamic programming-based pairwise alignment as the ground truth approach, we achieved a degree of convergence of more than 98% for coronavirus genus-level sequences and 93% for SARS-CoV-2 sequences using PC-mer in the alignment-free classification method. This outperformance of PC-mer suggests that it can serve as a replacement for alignment-based approaches in certain sequence analysis applications that rely on similarity/dissimilarity scores, such as searching sequences, comparing sequences, and certain types of phylogenetic analysis methods that are based on sequence comparison.
Collapse
Affiliation(s)
| | | | - Somayyeh Koohi
- Department of Computer Engineering, Sharif University of Technology, Tehran, Iran.
| |
Collapse
|
7
|
Benatto VG, de Jesus JPA, de Castro AA, Assis LC, Ramalho TC, La Porta FA. Prospects of ZnS and ZnO as smart semiconductor materials in light-activated antimicrobial coatings for mitigation of severe acute respiratory syndrome coronavirus-2 infection. MATERIALS TODAY. COMMUNICATIONS 2023; 34:105192. [PMID: 36570033 PMCID: PMC9758762 DOI: 10.1016/j.mtcomm.2022.105192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/26/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
We carried out theoretical and experimental analyses of ZnO and ZnS nanoparticles as smart semiconductor materials in light-activated antimicrobial coating for application in masks. We used low-cost hydrothermally processable precursors to direct the growth of the coatings on cotton fabric. Both ZnO and ZnS coatings had high reactivities as disinfection agents in photocatalysis reactions for the degradation of a methylene blue dye solution. Also, these coatings showed excellent UV protection properties. For understanding at the molecular level, the broad-spectrum biological activities of the ZnO and ZnS coatings against Fusarium Oxysporum fungi, Escherichia coli bacteria, and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) virus and their variants, were investigated computationally. Hexagonal Zn6O6 and Zn6S6 clusters were used as models for the simulations through excited- and ground-state calculations. The theoretical findings show that changes in the local chemical environment in these excited systems have a profound impact on their physical and chemical properties and thus, can provide a better understanding to engineer new functional materials in light-activated antimicrobial coatings for the mitigation of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- V G Benatto
- Laboratory of Nanotechnology and Computational Chemistry, Federal University of Technology - Paraná, Londrina 86036-370, Brazil
| | - J P A de Jesus
- Laboratory of Nanotechnology and Computational Chemistry, Federal University of Technology - Paraná, Londrina 86036-370, Brazil
| | - A A de Castro
- Department of Chemistry, Federal University of Lavras, Lavras 37200-000, Brazil
| | - L C Assis
- Department of Chemistry, Federal University of Lavras, Lavras 37200-000, Brazil
| | - T C Ramalho
- Department of Chemistry, Federal University of Lavras, Lavras 37200-000, Brazil
| | - F A La Porta
- Laboratory of Nanotechnology and Computational Chemistry, Federal University of Technology - Paraná, Londrina 86036-370, Brazil
| |
Collapse
|
8
|
Garg A, Goel N, Abhinav N, Varma T, Achari A, Bhattacharjee P, Kamal IM, Chakrabarti S, Ravichandiran V, Reddy AM, Gupta S, Jaisankar P. Virtual screening of natural products inspired in-house library to discover potential lead molecules against the SARS-CoV-2 main protease. J Biomol Struct Dyn 2023; 41:2033-2045. [PMID: 35043750 DOI: 10.1080/07391102.2022.2027271] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
SARS-CoV-2, a new coronavirus emerged in 2019, causing a global healthcare epidemic. Although a variety of drug targets have been identified as potential antiviral therapies, and effective candidate against SARS-CoV-2 remains elusive. One of the most promising targets for combating COVID-19 is SARS-CoV-2 Main protease (Mpro, a protein responsible for viral replication. In this work, an in-house curated library was thoroughly evaluated for druggability against Mpro. We identified four ligands (FG, Q5, P5, and PJ4) as potential inhibitors based on docking scores, predicted binding energies (MMGBSA), in silico ADME, and RMSD trajectory analysis. Among the selected ligands, FG, a natural product from Andrographis nallamalayana, exhibited the highest binding energy of -10.31 kcal/mol close to the docking score of clinical candidates Boceprevir and GC376. Other ligands (P5, natural product from cardiospermum halicacabum and two synthetic molecules Q5 and PJ4) have shown comparable docking scores ranging -7.65 kcal/mol to -7.18 kcal/mol. Interestingly, we found all four top ligands had Pi bond interaction with the main amino acid residues HIS41 and CYS145 (catalytic dyad), H-bonding interactions with GLU166, ARG188, and GLN189, and hydrophobic interactions with MET49 and MET165 in the binding site of Mpro. According to the ADME analysis, Q5 and P5 are within the acceptable range of drug likeliness, compared to FG and PJ4. The interaction stability of the lead molecules with viral protease was verified using replicated MD simulations. Thus, the present study opens up the opportunity of developing drug candidates targeting SARS-CoV-2 main protease (Mpro) to mitigate the disease.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Aakriti Garg
- National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, Chunilal Bhawan, Kolkata, India.,Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Narender Goel
- National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, Chunilal Bhawan, Kolkata, India.,Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Nipun Abhinav
- National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, Chunilal Bhawan, Kolkata, India.,Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Tanmay Varma
- National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, Chunilal Bhawan, Kolkata, India
| | - Anushree Achari
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Pinaki Bhattacharjee
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Izaz Monir Kamal
- Department of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Saikat Chakrabarti
- Department of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Velayutham Ravichandiran
- National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, Chunilal Bhawan, Kolkata, India
| | | | - Sreya Gupta
- National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, Chunilal Bhawan, Kolkata, India
| | - Parasuraman Jaisankar
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
9
|
Anjani, Kumar S, Rathi B, Poonam. Recent updates on the biological efficacy of approved drugs and potent synthetic compounds against SARS-CoV-2. RSC Adv 2023; 13:3677-3687. [PMID: 36756584 PMCID: PMC9890797 DOI: 10.1039/d2ra06834f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 01/16/2023] [Indexed: 01/27/2023] Open
Abstract
The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), also known as COVID-19, has triggered a global pandemic that has prompted severe public health concerns. Researchers worldwide are continuously trying to find options that could be effective against COVID-19. The main focus of research during the initial phase of the pandemic was to use the already approved drugs as supportive care, and efforts were made to find new therapeutic options. Nirmatrelvir (PF-07321332), a Pfizer chemical, recently received approval for usage in conjunction with ritonavir. This mini-review summarises the biological effectiveness of vital synthetic compounds and FDA-approved medications against SARS-CoV-2. Understanding how functional groups are included in the creation of synthetic compounds could help enhance the biological activity profile of those compounds to increase their efficacy against SARS-CoV-2. This opened the way for researchers to explore opportunities to develop better therapeutics by investigating synthetic analogs.
Collapse
Affiliation(s)
- Anjani
- Department of Chemistry, Chaudhary Charan Singh Haryana Agricultural University Hisar Haryana-125004 India
| | - Sumit Kumar
- Department of Chemistry, Miranda House, University of Delhi Delhi-110007 India
| | - Brijesh Rathi
- Laboratory for Translational Chemistry and Drug Discovery, Hansraj College, University of Delhi Delhi-110007 India
- Delhi School of Public Health, Institute of Eminence, University of Delhi Delhi-110007 India
| | - Poonam
- Department of Chemistry, Miranda House, University of Delhi Delhi-110007 India
- Delhi School of Public Health, Institute of Eminence, University of Delhi Delhi-110007 India
| |
Collapse
|
10
|
Hosny KM, Khalid AM, Hamza HM, Mirjalili S. Multilevel segmentation of 2D and volumetric medical images using hybrid Coronavirus Optimization Algorithm. Comput Biol Med 2022; 150:106003. [PMID: 36228462 PMCID: PMC9398848 DOI: 10.1016/j.compbiomed.2022.106003] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 08/10/2022] [Accepted: 08/14/2022] [Indexed: 12/01/2022]
Abstract
Medical image segmentation is a crucial step in Computer-Aided Diagnosis systems, where accurate segmentation is vital for perfect disease diagnoses. This paper proposes a multilevel thresholding technique for 2D and 3D medical image segmentation using Otsu and Kapur's entropy methods as fitness functions to determine the optimum threshold values. The proposed algorithm applies the hybridization concept between the recent Coronavirus Optimization Algorithm (COVIDOA) and Harris Hawks Optimization Algorithm (HHOA) to benefit from both algorithms' strengths and overcome their limitations. The improved performance of the proposed algorithm over COVIDOA and HHOA algorithms is demonstrated by solving 5 test problems from IEEE CEC 2019 benchmark problems. Medical image segmentation is tested using two groups of images, including 2D medical images and volumetric (3D) medical images, to demonstrate its superior performance. The utilized test images are from different modalities such as Magnetic Resonance Imaging (MRI), Computed Tomography (CT), and X-ray images. The proposed algorithm is compared with seven well-known metaheuristic algorithms, where the performance is evaluated using four different metrics, including the best fitness values, Peak Signal to Noise Ratio (PSNR), Structural Similarity Index (SSIM), and Normalized Correlation Coefficient (NCC). The experimental results demonstrate the superior performance of the proposed algorithm in terms of convergence to the global optimum and making a good balance between exploration and exploitation properties. Moreover, the quality of the segmented images using the proposed algorithm at different threshold levels is better than the other methods according to PSNR, SSIM, and NCC values. Additionally, the Wilcoxon rank-sum test is conducted to prove the statistical significance of the proposed algorithm.
Collapse
Affiliation(s)
- Khalid M Hosny
- Department of Information Technology, Faculty of Computers and Informatics, Zagazig University, Zagazig, 44519, Egypt.
| | - Asmaa M Khalid
- Department of Information Technology, Faculty of Computers and Informatics, Zagazig University, Zagazig, 44519, Egypt
| | - Hanaa M Hamza
- Department of Information Technology, Faculty of Computers and Informatics, Zagazig University, Zagazig, 44519, Egypt
| | - Seyedali Mirjalili
- Centre for Artificial Intelligence Research and Optimisation, Torrens University Australia, Fortitude Valley, Brisbane, 4006, QLD, Australia
| |
Collapse
|
11
|
Khalid AM, Hosny KM, Mirjalili S. COVIDOA: a novel evolutionary optimization algorithm based on coronavirus disease replication lifecycle. Neural Comput Appl 2022; 34:22465-22492. [PMID: 36043205 PMCID: PMC9411047 DOI: 10.1007/s00521-022-07639-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 07/18/2022] [Indexed: 11/13/2022]
Abstract
This paper presents a novel bio-inspired optimization algorithm called Coronavirus Optimization Algorithm (COVIDOA). COVIDOA is an evolutionary search strategy that mimics the mechanism of coronavirus when hijacking human cells. COVIDOA is inspired by the frameshifting technique used by the coronavirus for replication. The proposed algorithm is tested using 20 standard benchmark optimization functions with different parameter values. Besides, we utilized five IEEE Congress of Evolutionary Computation (CEC) benchmark test functions (CECC06, 2019 Competition) and five CEC 2011 real-world problems to prove the proposed algorithm's efficiency. The proposed algorithm is compared to eight of the most popular and recent metaheuristic algorithms from the state-of-the-art in terms of best cost, average cost (AVG), corresponding standard deviation (STD), and convergence speed. The results demonstrate that COVIDOA is superior to most existing metaheuristics.
Collapse
|
12
|
Kapoor N, Ghorai SM, Khuswaha PK, Bandichhor R, Brogi S. Butein as a potential binder of human ACE2 receptor for interfering with SARS-CoV-2 entry: a computer-aided analysis. J Mol Model 2022; 28:270. [PMID: 36001177 PMCID: PMC9399596 DOI: 10.1007/s00894-022-05270-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 08/12/2022] [Indexed: 12/24/2022]
Abstract
Natural products have been included in our dietary supplements and have been shown to have numerous therapeutic properties. With the looming danger of many zoonotic agents and novel emerging pathogens mainly of viral origin, many researchers are launching various clinical trials, testing these compounds for their antiviral activity. The present work deals with some of the available natural compounds from the literature that have demonstrated activity in counteracting pathogen infections. Accordingly, we screened, using in silico methods, this subset of natural compounds for searching potential drug candidates able to interfere in the recognition of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein and its target human angiotensin-converting enzyme 2 (hACE2) receptor, leading to the viral entry. Disrupting that recognition is crucial for slowing down the entrance of viral particles into host cells. The selected group of natural products was examined, and their interaction profiles against the host cell target protein ACE2 were studied at the atomic level. Based on different computer-based procedures including molecular docking, physicochemical property evaluation, and molecular dynamics, butein was identified as a potential hit molecule able to bind the hACE2 receptor. The results indicate that herbal compounds can be effective for providing possible therapeutics for treating and managing coronavirus disease 2019 (COVID-19) infection.
Collapse
Affiliation(s)
- Neha Kapoor
- Department of Chemistry, Hindu College, University of Delhi, Delhi, 110007, India.
| | - Soma Mondal Ghorai
- Department of Zoology, Hindu College, University of Delhi, Delhi, 110007, India
| | - Prem Kumar Khuswaha
- Integrated Product Development, Innovation Plaza, Dr. Reddy's Laboratories Ltd, Bachupally, Quthbullapur, Hyderabad, 500090, Telangana, India
| | - Rakeshwar Bandichhor
- Integrated Product Development, Innovation Plaza, Dr. Reddy's Laboratories Ltd, Bachupally, Quthbullapur, Hyderabad, 500090, Telangana, India
| | - Simone Brogi
- Department of Pharmacy, University of Pisa, Via Bonanno, 6, 56126, Pisa, Italy.
| |
Collapse
|
13
|
Kumar S, Kumar GS, Maitra SS, Malý P, Bharadwaj S, Sharma P, Dwivedi VD. Viral informatics: bioinformatics-based solution for managing viral infections. Brief Bioinform 2022; 23:6659740. [PMID: 35947964 DOI: 10.1093/bib/bbac326] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 06/26/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Several new viral infections have emerged in the human population and establishing as global pandemics. With advancements in translation research, the scientific community has developed potential therapeutics to eradicate or control certain viral infections, such as smallpox and polio, responsible for billions of disabilities and deaths in the past. Unfortunately, some viral infections, such as dengue virus (DENV) and human immunodeficiency virus-1 (HIV-1), are still prevailing due to a lack of specific therapeutics, while new pathogenic viral strains or variants are emerging because of high genetic recombination or cross-species transmission. Consequently, to combat the emerging viral infections, bioinformatics-based potential strategies have been developed for viral characterization and developing new effective therapeutics for their eradication or management. This review attempts to provide a single platform for the available wide range of bioinformatics-based approaches, including bioinformatics methods for the identification and management of emerging or evolved viral strains, genome analysis concerning the pathogenicity and epidemiological analysis, computational methods for designing the viral therapeutics, and consolidated information in the form of databases against the known pathogenic viruses. This enriched review of the generally applicable viral informatics approaches aims to provide an overview of available resources capable of carrying out the desired task and may be utilized to expand additional strategies to improve the quality of translation viral informatics research.
Collapse
Affiliation(s)
- Sanjay Kumar
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.,Center for Bioinformatics, Computational and Systems Biology, Pathfinder Research and Training Foundation, Greater Noida, India
| | - Geethu S Kumar
- Department of Life Science, School of Basic Science and Research, Sharda University, Greater Noida, Uttar Pradesh, India.,Center for Bioinformatics, Computational and Systems Biology, Pathfinder Research and Training Foundation, Greater Noida, India
| | | | - Petr Malý
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences v.v.i., BIOCEV Research Center, Vestec, Czech Republic
| | - Shiv Bharadwaj
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences v.v.i., BIOCEV Research Center, Vestec, Czech Republic
| | - Pradeep Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Vivek Dhar Dwivedi
- Center for Bioinformatics, Computational and Systems Biology, Pathfinder Research and Training Foundation, Greater Noida, India.,Institute of Advanced Materials, IAAM, 59053 Ulrika, Sweden
| |
Collapse
|
14
|
Khalid AM, Hamza HM, Mirjalili S, Hosny KM. BCOVIDOA: A Novel Binary Coronavirus Disease Optimization Algorithm for Feature Selection. Knowl Based Syst 2022; 248:108789. [PMID: 35464666 PMCID: PMC9014647 DOI: 10.1016/j.knosys.2022.108789] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 04/08/2022] [Accepted: 04/08/2022] [Indexed: 11/20/2022]
Abstract
The increased use of digital tools such as smart phones, Internet of Things devices, cameras, and microphones, has led to the produuction of big data. Large data dimensionality, redundancy, and irrelevance are inherent challenging problems when it comes to big data. Feature selection is a necessary process to select the optimal subset of features when addressing such problems. In this paper, the authors propose a novel Binary Coronavirus Disease Optimization Algorithm (BCOVIDOA) for feature selection, where the Coronavirus Disease Optimization Algorithm (COVIDOA) is a new optimization technique that mimics the replication mechanism used by Coronavirus when hijacking human cells. The performance of the proposed algorithm is evaluated using twenty-six standard benchmark datasets from UCI Repository. The results are compared with nine recent wrapper feature selection algorithms. The experimental results demonstrate that the proposed BCOVIDOA significantly outperforms the existing algorithms in terms of accuracy, best cost, the average cost (AVG), standard deviation (STD), and size of selected features. Additionally, the Wilcoxon rank-sum test is calculated to prove the statistical significance of the results.
Collapse
Affiliation(s)
- Asmaa M Khalid
- Department of Information Technology, Faculty of Computers and Informatics, Zagazig University, Zagazig 44519, Egypt
| | - Hanaa M Hamza
- Department of Information Technology, Faculty of Computers and Informatics, Zagazig University, Zagazig 44519, Egypt
| | - Seyedali Mirjalili
- Centre for Artificial Intelligence Research and Optimization, Torrens University Australia, Fortitude Valley, Brisbane 4006, QLD, Australia
- Yonsei Frontier Lab, Yonsei University, Seoul, South Korea
| | - Khalid M Hosny
- Department of Information Technology, Faculty of Computers and Informatics, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
15
|
Peng J, Sun J, Yang MI, Gibson RM, Arts EJ, Olabode AS, Poon AFY, Wang X, Wheeler AR, Edwards EA, Peng H. Early Warning Measurement of SARS-CoV-2 Variants of Concern in Wastewaters by Mass Spectrometry. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2022; 9:638-644. [PMID: 37552744 PMCID: PMC9236213 DOI: 10.1021/acs.estlett.2c00280] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/07/2022] [Accepted: 06/15/2022] [Indexed: 05/24/2023]
Abstract
Wastewater surveillance has rapidly emerged as an early warning tool to track COVID-19. However, the early warning measurement of new SARS-CoV-2 variants of concern (VOCs) in wastewaters remains a major challenge. We herein report a rapid analytical strategy for quantitative measurement of VOCs, which couples nested polymerase chain reaction and liquid chromatography-mass spectrometry (nPCR-LC-MS). This method showed a greater selectivity than the current allele-specific quantitative PCR (AS-qPCR) for tracking new VOC and allowed the detection of multiple signature mutations in a single measurement. By measuring the Omicron variant in wastewaters across nine Ontario wastewater treatment plants serving over a three million population, the nPCR-LC-MS method demonstrated a better quantification accuracy than next-generation sequencing (NGS), particularly at the early stage of community spreading of Omicron. This work addresses a major challenge for current SARS-CoV-2 wastewater surveillance by rapidly and accurately measuring VOCs in wastewaters for early warning.
Collapse
Affiliation(s)
- Jiaxi Peng
- Department of Chemistry, University of
Toronto, 80 St George Street, Toronto, Ontario M5S 3H6,
Canada
- Donnelly Centre for Cellular and Biomolecular
Research, University of Toronto, 160 College Street, Toronto,
Ontario M5S 3E1, Canada
- Institute of Biomedical Engineering,
University of Toronto, 164 College Street, Toronto, Ontario
M5S 3G9, Canada
| | - Jianxian Sun
- Department of Chemistry, University of
Toronto, 80 St George Street, Toronto, Ontario M5S 3H6,
Canada
| | - Minqing Ivy Yang
- Department of Chemical Engineering and Applied
Chemistry, University of Toronto, 200 College Street, Toronto,
Ontario M5S 3E5, Canada
| | - Richard M. Gibson
- Department of Microbiology and Immunology,
Western University, 1151 Richmond Street, London, Ontario N6A
5C1, Canada
| | - Eric J. Arts
- Department of Microbiology and Immunology,
Western University, 1151 Richmond Street, London, Ontario N6A
5C1, Canada
| | - Abayomi S. Olabode
- Department of Microbiology and Immunology,
Western University, 1151 Richmond Street, London, Ontario N6A
5C1, Canada
| | - Art F. Y. Poon
- Department of Microbiology and Immunology,
Western University, 1151 Richmond Street, London, Ontario N6A
5C1, Canada
| | - Xianyao Wang
- Department of Chemistry, University of
Toronto, 80 St George Street, Toronto, Ontario M5S 3H6,
Canada
| | - Aaron R. Wheeler
- Department of Chemistry, University of
Toronto, 80 St George Street, Toronto, Ontario M5S 3H6,
Canada
- Donnelly Centre for Cellular and Biomolecular
Research, University of Toronto, 160 College Street, Toronto,
Ontario M5S 3E1, Canada
- Institute of Biomedical Engineering,
University of Toronto, 164 College Street, Toronto, Ontario
M5S 3G9, Canada
| | - Elizabeth A. Edwards
- Department of Chemical Engineering and Applied
Chemistry, University of Toronto, 200 College Street, Toronto,
Ontario M5S 3E5, Canada
| | - Hui Peng
- Department of Chemistry, University of
Toronto, 80 St George Street, Toronto, Ontario M5S 3H6,
Canada
- School of the Environment, University of
Toronto, 80 St George Street, Toronto, Ontario M5S 3H6,
Canada
| |
Collapse
|
16
|
Agarwal D, Zafar I, Ahmad SU, Kumar S, Ain QU, Sundaray JK, Rather MA. Structural, genomic information and computational analysis of emerging coronavirus (SARS-CoV-2). BULLETIN OF THE NATIONAL RESEARCH CENTRE 2022; 46:170. [PMID: 35729950 PMCID: PMC9199328 DOI: 10.1186/s42269-022-00861-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/06/2022] [Indexed: 05/08/2023]
Abstract
Background The emerging viral pandemic worldwide is associated with a novel coronavirus, SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2). This virus is said to emerge from its epidemic center in Wuhan, China, in 2019. Coronaviruses (CoVs) are single-stranded, giant, enveloped RNA viruses that come under the family of coronaviridae and order Nidovirales which are the crucial pathogens for humans and other vertebrates. Main body Coronaviruses are divided into several subfamilies and genera based on the genomic structure and phylogenetic relationship. The name corona is raised due to the presence of spike protein on the envelope of the virus. The structural and genomic study revealed that the total genome size of SARS-CoV-2 is from 29.8 kb to 29.9 kb. The spike protein (S) is a glycoprotein that attaches to the receptor of host cells for entry into the host cell, followed by the attachment of virus RNA to the host ribosome for translation. The phylogenetic analysis of SARS-CoV-2 revealed the similarity (75-88%) with bat SARS-like coronavirus. Conclusion The sign and symptoms of novel severe acute respiratory syndrome coronavirus 2 are also discussed in this paper. The worldwide outbreak and prevention from severe acute respiratory syndrome coronavirus 2 are overviewed in the present article. The latest variant of coronavirus and the status of vaccines are also overviewed in the present article.
Collapse
Affiliation(s)
- Deepak Agarwal
- Tamil Nadu Dr. Jayalalithaa Fisheries University-IFPGS, OMR Campus, Vaniyanchavadi, Chennai, India
| | - Imran Zafar
- Department of Bioinformatics and Computational Biology, Virtual University Punjab, Lahore, Pakistan
| | - Syed Umair Ahmad
- Department of Bioinformatics, Hazara University Mansehra, Mansehra, Pakistan
| | - Sujit Kumar
- Postgraduate Institute of Fisheries Education and Research Kamdhenu University, Gandhinagar, India
| | - Qurat ul Ain
- Government College Women University, Faisalabad, Pakistan
| | - Jitendra Kumar Sundaray
- ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, Odisha India 751002
| | - Mohd Ashraf Rather
- Division of Fish Genetics and Biotechnology, Faculty of Fisheries Ganderbal, Sher-e- Kashmir University of Agricultural Science and Technology, Kashmir, India
| |
Collapse
|
17
|
Bar-Or I, Indenbaum V, Weil M, Elul M, Levi N, Aguvaev I, Cohen Z, Levy V, Azar R, Mannasse B, Shirazi R, Bucris E, Mor O, Sela Brown A, Sofer D, Zuckerman NS, Mendelson E, Erster O. National Scale Real-Time Surveillance of SARS-CoV-2 Variants Dynamics by Wastewater Monitoring in Israel. Viruses 2022; 14:1229. [PMID: 35746700 PMCID: PMC9227326 DOI: 10.3390/v14061229] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/23/2022] [Accepted: 05/23/2022] [Indexed: 02/04/2023] Open
Abstract
In this report, we describe a national-scale monitoring of the SARS-CoV-2 (SC-2) variant dynamics in Israel, using multiple-time sampling of 13 wastewater treatment plants. We used a combination of inclusive and selective quantitative PCR assays that specifically identify variants A19/A20 or B.1.1.7 and tested each sample for the presence and relative viral RNA load of each variant. We show that between December 2020 and March 2021, a complete shift in the SC-2 variant circulation was observed, where the B.1.1.7 replaced the A19 in all examined test points. We further show that the normalized viral load (NVL) values and the average new cases per week reached a peak in January 2021 and then decreased gradually in almost all test points, in parallel with the progression of the national vaccination campaign, during February-March 2021. This study demonstrates the importance of monitoring SC-2 variant by using a combination of inclusive and selective PCR tests on a national scale through wastewater sampling, which is far more amendable for high-throughput monitoring compared with sequencing. This approach may be useful for real-time dynamics surveillance of current and future variants, such as the Omicron (BA.1, BA.2) and other variants.
Collapse
Affiliation(s)
- Itay Bar-Or
- Central Virology Laboratory, Israel Ministry of Health, Chaim Sheba Medical Center, Ramat Gan 5262000, Israel; (I.B.-O.); (V.I.); (M.W.); (M.E.); (N.L.); (I.A.); (Z.C.); (V.L.); (R.A.); (B.M.); (R.S.); (E.B.); (O.M.); (A.S.B.); (D.S.); (N.S.Z.); (E.M.)
| | - Victoria Indenbaum
- Central Virology Laboratory, Israel Ministry of Health, Chaim Sheba Medical Center, Ramat Gan 5262000, Israel; (I.B.-O.); (V.I.); (M.W.); (M.E.); (N.L.); (I.A.); (Z.C.); (V.L.); (R.A.); (B.M.); (R.S.); (E.B.); (O.M.); (A.S.B.); (D.S.); (N.S.Z.); (E.M.)
| | - Merav Weil
- Central Virology Laboratory, Israel Ministry of Health, Chaim Sheba Medical Center, Ramat Gan 5262000, Israel; (I.B.-O.); (V.I.); (M.W.); (M.E.); (N.L.); (I.A.); (Z.C.); (V.L.); (R.A.); (B.M.); (R.S.); (E.B.); (O.M.); (A.S.B.); (D.S.); (N.S.Z.); (E.M.)
| | - Michal Elul
- Central Virology Laboratory, Israel Ministry of Health, Chaim Sheba Medical Center, Ramat Gan 5262000, Israel; (I.B.-O.); (V.I.); (M.W.); (M.E.); (N.L.); (I.A.); (Z.C.); (V.L.); (R.A.); (B.M.); (R.S.); (E.B.); (O.M.); (A.S.B.); (D.S.); (N.S.Z.); (E.M.)
| | - Nofar Levi
- Central Virology Laboratory, Israel Ministry of Health, Chaim Sheba Medical Center, Ramat Gan 5262000, Israel; (I.B.-O.); (V.I.); (M.W.); (M.E.); (N.L.); (I.A.); (Z.C.); (V.L.); (R.A.); (B.M.); (R.S.); (E.B.); (O.M.); (A.S.B.); (D.S.); (N.S.Z.); (E.M.)
| | - Irina Aguvaev
- Central Virology Laboratory, Israel Ministry of Health, Chaim Sheba Medical Center, Ramat Gan 5262000, Israel; (I.B.-O.); (V.I.); (M.W.); (M.E.); (N.L.); (I.A.); (Z.C.); (V.L.); (R.A.); (B.M.); (R.S.); (E.B.); (O.M.); (A.S.B.); (D.S.); (N.S.Z.); (E.M.)
| | - Zvi Cohen
- Central Virology Laboratory, Israel Ministry of Health, Chaim Sheba Medical Center, Ramat Gan 5262000, Israel; (I.B.-O.); (V.I.); (M.W.); (M.E.); (N.L.); (I.A.); (Z.C.); (V.L.); (R.A.); (B.M.); (R.S.); (E.B.); (O.M.); (A.S.B.); (D.S.); (N.S.Z.); (E.M.)
| | - Virginia Levy
- Central Virology Laboratory, Israel Ministry of Health, Chaim Sheba Medical Center, Ramat Gan 5262000, Israel; (I.B.-O.); (V.I.); (M.W.); (M.E.); (N.L.); (I.A.); (Z.C.); (V.L.); (R.A.); (B.M.); (R.S.); (E.B.); (O.M.); (A.S.B.); (D.S.); (N.S.Z.); (E.M.)
| | - Roberto Azar
- Central Virology Laboratory, Israel Ministry of Health, Chaim Sheba Medical Center, Ramat Gan 5262000, Israel; (I.B.-O.); (V.I.); (M.W.); (M.E.); (N.L.); (I.A.); (Z.C.); (V.L.); (R.A.); (B.M.); (R.S.); (E.B.); (O.M.); (A.S.B.); (D.S.); (N.S.Z.); (E.M.)
| | - Batya Mannasse
- Central Virology Laboratory, Israel Ministry of Health, Chaim Sheba Medical Center, Ramat Gan 5262000, Israel; (I.B.-O.); (V.I.); (M.W.); (M.E.); (N.L.); (I.A.); (Z.C.); (V.L.); (R.A.); (B.M.); (R.S.); (E.B.); (O.M.); (A.S.B.); (D.S.); (N.S.Z.); (E.M.)
| | - Rachel Shirazi
- Central Virology Laboratory, Israel Ministry of Health, Chaim Sheba Medical Center, Ramat Gan 5262000, Israel; (I.B.-O.); (V.I.); (M.W.); (M.E.); (N.L.); (I.A.); (Z.C.); (V.L.); (R.A.); (B.M.); (R.S.); (E.B.); (O.M.); (A.S.B.); (D.S.); (N.S.Z.); (E.M.)
| | - Efrat Bucris
- Central Virology Laboratory, Israel Ministry of Health, Chaim Sheba Medical Center, Ramat Gan 5262000, Israel; (I.B.-O.); (V.I.); (M.W.); (M.E.); (N.L.); (I.A.); (Z.C.); (V.L.); (R.A.); (B.M.); (R.S.); (E.B.); (O.M.); (A.S.B.); (D.S.); (N.S.Z.); (E.M.)
| | - Orna Mor
- Central Virology Laboratory, Israel Ministry of Health, Chaim Sheba Medical Center, Ramat Gan 5262000, Israel; (I.B.-O.); (V.I.); (M.W.); (M.E.); (N.L.); (I.A.); (Z.C.); (V.L.); (R.A.); (B.M.); (R.S.); (E.B.); (O.M.); (A.S.B.); (D.S.); (N.S.Z.); (E.M.)
- Sackler Faculty of Medicine, School of Public Health, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Alin Sela Brown
- Central Virology Laboratory, Israel Ministry of Health, Chaim Sheba Medical Center, Ramat Gan 5262000, Israel; (I.B.-O.); (V.I.); (M.W.); (M.E.); (N.L.); (I.A.); (Z.C.); (V.L.); (R.A.); (B.M.); (R.S.); (E.B.); (O.M.); (A.S.B.); (D.S.); (N.S.Z.); (E.M.)
| | - Danit Sofer
- Central Virology Laboratory, Israel Ministry of Health, Chaim Sheba Medical Center, Ramat Gan 5262000, Israel; (I.B.-O.); (V.I.); (M.W.); (M.E.); (N.L.); (I.A.); (Z.C.); (V.L.); (R.A.); (B.M.); (R.S.); (E.B.); (O.M.); (A.S.B.); (D.S.); (N.S.Z.); (E.M.)
| | - Neta S. Zuckerman
- Central Virology Laboratory, Israel Ministry of Health, Chaim Sheba Medical Center, Ramat Gan 5262000, Israel; (I.B.-O.); (V.I.); (M.W.); (M.E.); (N.L.); (I.A.); (Z.C.); (V.L.); (R.A.); (B.M.); (R.S.); (E.B.); (O.M.); (A.S.B.); (D.S.); (N.S.Z.); (E.M.)
| | - Ella Mendelson
- Central Virology Laboratory, Israel Ministry of Health, Chaim Sheba Medical Center, Ramat Gan 5262000, Israel; (I.B.-O.); (V.I.); (M.W.); (M.E.); (N.L.); (I.A.); (Z.C.); (V.L.); (R.A.); (B.M.); (R.S.); (E.B.); (O.M.); (A.S.B.); (D.S.); (N.S.Z.); (E.M.)
- Sackler Faculty of Medicine, School of Public Health, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Oran Erster
- Central Virology Laboratory, Israel Ministry of Health, Chaim Sheba Medical Center, Ramat Gan 5262000, Israel; (I.B.-O.); (V.I.); (M.W.); (M.E.); (N.L.); (I.A.); (Z.C.); (V.L.); (R.A.); (B.M.); (R.S.); (E.B.); (O.M.); (A.S.B.); (D.S.); (N.S.Z.); (E.M.)
| |
Collapse
|
18
|
Goud VR, Chakraborty R, Chakraborty A, Lavudi K, Patnaik S, Sharma S, Patnaik S. A bioinformatic approach of targeting SARS-CoV-2 replication by silencing a conserved alternative reserve of the orf8 gene using host miRNAs. Comput Biol Med 2022; 145:105436. [PMID: 35366472 PMCID: PMC8942883 DOI: 10.1016/j.compbiomed.2022.105436] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/11/2022] [Accepted: 03/20/2022] [Indexed: 12/16/2022]
Abstract
The causative agent of the COVID-19 pandemic, the SARS-CoV-2 virus has yielded multiple relevant mutations, many of which have branched into major variants. The Omicron variant has a huge similarity with the original viral strain (first COVID-19 strain from Wuhan). Among different genes, the highly variable orf8 gene is responsible for crucial host interactions and has undergone multiple mutations and indels. The sequence of the orf8 gene of the Omicron variant is, however, identical with the gene sequence of the wild type. orf8 modulates the host immunity making it easier for the virus to conceal itself and remain undetected. Variants seem to be deleting this gene without affecting the viral replication. While analyzing, we came across the conserved orf7a gene in the viral genome which exhibits a partial sequence homology as well as functional similarity with the SARS-CoV-2 orf8. Hence, we have proposed here in our hypothesis that, orf7a might be an alternative reserve of orf8 present in the virus which was compensating for the lost gene. A computational approach was adopted where we screened various miRNAs targeted against the orf8 gene. These miRNAs were then docked onto the orf8 mRNA sequences. The same set of miRNAs was then used to check for their binding affinity with the orf7a reference mRNA. Results showed that miRNAs targeting the orf8 had favorable shape complementarity and successfully docked with the orf7a gene as well. These findings provide a basis for developing new therapeutic approaches where both orf8 and orf7a can be targeted simultaneously.
Collapse
Affiliation(s)
| | | | | | - Kousalya Lavudi
- School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Sriram Patnaik
- School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Swati Sharma
- School of Biotechnology, KIIT University, Bhubaneswar, India,Dept. of Skill Buildings Shri Ramasamy Memorial University, Sikkim, Gangtok, 737102, India
| | - Srinivas Patnaik
- School of Biotechnology, KIIT University, Bhubaneswar, India,Corresponding author. School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| |
Collapse
|
19
|
Kim J, Cheon S, Ahn I. NGS data vectorization, clustering, and finding key codons in SARS-CoV-2 variations. BMC Bioinformatics 2022; 23:187. [PMID: 35581558 PMCID: PMC9113074 DOI: 10.1186/s12859-022-04718-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 05/06/2022] [Indexed: 11/10/2022] Open
Abstract
The rapid global spread and dissemination of SARS-CoV-2 has provided the virus with numerous opportunities to develop several variants. Thus, it is critical to determine the degree of the variations and in which part of the virus those variations occurred. Therefore, in this study, methods that could be used to vectorize the sequence data, perform clustering analysis, and visualize the results were proposed using machine learning methods. To conduct this study, a total of 224,073 cases of SARS-CoV-2 sequence data were collected through NCBI and GISAID, and the data were visualized using dimensionality reduction and clustering analysis models such as T-SNE and DBSCAN. The SARS-CoV-2 virus, which was first detected, was distinguished from different variations, including Omicron and Delta, in the cluster results. Furthermore, it was possible to examine which codon changes in the spike protein caused the variants to be distinguished using feature importance extraction models such as Random Forest or Shapely Value. The proposed method has the advantage of being able to analyse and visualize a large amount of data at once compared to the existing tree-based sequence data analysis. The proposed method was able to identify and visualize significant changes between the SARS-CoV-2 virus, which was first detected in Wuhan, China, in December 2019, and the newly formed mutant virus group. As a result of clustering analysis using sequence data, it was possible to confirm the formation of clusters among various variants in a two-dimensional graph, and by extracting the importance of variables, it was possible to confirm which codon changes played a major role in distinguishing variants. Furthermore, since the proposed method can handle a variety of data sequences, it can be used for all kinds of diseases, including influenza and SARS-CoV-2. Therefore, the proposed method has the potential to become widely used for the effective analysis of disease variations.
Collapse
Affiliation(s)
- Juhyeon Kim
- Department of Data-Centric Problem Solving Research, Korea Institute of Science and Technology Information, Yuseong-gu, Daejeon, Korea.,Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon, Korea.,Department of Industrial Engineering, Ajou University, Suwon, South Korea
| | - Saeyeon Cheon
- Applied Artificial Intelligence Major, University of Science & Technology, Yuseong-gu, Daejeon, Korea
| | - Insung Ahn
- Department of Data-Centric Problem Solving Research, Korea Institute of Science and Technology Information, Yuseong-gu, Daejeon, Korea. .,Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon, Korea. .,Applied Artificial Intelligence Major, University of Science & Technology, Yuseong-gu, Daejeon, Korea.
| |
Collapse
|
20
|
Li J, Jia H, Tian M, Wu N, Yang X, Qi J, Ren W, Li F, Bian H. SARS-CoV-2 and Emerging Variants: Unmasking Structure, Function, Infection, and Immune Escape Mechanisms. Front Cell Infect Microbiol 2022; 12:869832. [PMID: 35646741 PMCID: PMC9134119 DOI: 10.3389/fcimb.2022.869832] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 04/06/2022] [Indexed: 12/24/2022] Open
Abstract
As of April 1, 2022, over 468 million COVID-19 cases and over 6 million deaths have been confirmed globally. Unlike the common coronavirus, SARS-CoV-2 has highly contagious and attracted a high level of concern worldwide. Through the analysis of SARS-CoV-2 structural, non-structural, and accessory proteins, we can gain a deeper understanding of structure-function relationships, viral infection mechanisms, and viable strategies for antiviral therapy. Angiotensin-converting enzyme 2 (ACE2) is the first widely acknowledged SARS-CoV-2 receptor, but researches have shown that there are additional co-receptors that can facilitate the entry of SARS-CoV-2 to infect humans. We have performed an in-depth review of published papers, searching for co-receptors or other auxiliary membrane proteins that enhance viral infection, and analyzing pertinent pathogenic mechanisms. The genome, and especially the spike gene, undergoes mutations at an abnormally high frequency during virus replication and/or when it is transmitted from one individual to another. We summarized the main mutant strains currently circulating global, and elaborated the structural feature for increased infectivity and immune evasion of variants. Meanwhile, the principal purpose of the review is to update information on the COVID-19 outbreak. Many countries have novel findings on the early stage of the epidemic, and accruing evidence has rewritten the timeline of the outbreak, triggering new thinking about the origin and spread of COVID-19. It is anticipated that this can provide further insights for future research and global epidemic prevention and control.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Feifei Li
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Hongjun Bian
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
21
|
Niu M, Han Y, Dong X, Yang L, Li F, Zhang Y, Hu Q, Xia X, Li H, Sun Y. Highly Sensitive Detection Method for HV69-70del in SARS-CoV-2 Alpha and Omicron Variants Based on CRISPR/Cas13a. Front Bioeng Biotechnol 2022; 10:831332. [PMID: 35497364 PMCID: PMC9039052 DOI: 10.3389/fbioe.2022.831332] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/21/2022] [Indexed: 11/21/2022] Open
Abstract
As SARS-CoV-2 variants continue to evolve, identifying variants with adaptive diagnostic tool is critical to containing the ongoing COVID-19 pandemic. Herein, we establish a highly sensitive and portable on-site detection method for the HV69-70del which exist in SARS-CoV-2 Alpha and Omicron variants using a PCR-based CRISPR/Cas13a detection system (PCR-CRISPR). The specific crRNA (CRISPR RNA) targeting the HV69-70del is screened using the fluorescence-based CRISPR assay, and the sensitivity and specificity of this method are evaluated using diluted nucleic acids of SARS-CoV-2 variants and other pathogens. The results show that the PCR-CRISPR detection method can detect 1 copies/μL SARS-CoV-2 HV69-70del mutant RNA and identify 0.1% of mutant RNA in mixed samples, which is more sensitive than the RT-qPCR based commercial SARS-CoV-2 variants detection kits and sanger sequencing. And it has no cross reactivity with ten other pathogens nucleic acids. Additionally, by combined with our previously developed ERASE (Easy-Readout and Sensitive Enhanced) lateral flow strip suitable for CRISPR detection, we provide a novel diagnosis tool to identify SARS-CoV-2 variants in primary and resource-limited medical institutions without professional and expensive fluorescent detector.
Collapse
Affiliation(s)
- Mengwei Niu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Yao Han
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xue Dong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Lan Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Fan Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Youcui Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Qiang Hu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xueshan Xia
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Hao Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yansong Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|
22
|
Hassan SS, Basu P, Redwan EM, Lundstrom K, Choudhury PP, Serrano-Aroca Á, Azad GK, Aljabali AAA, Palu G, Abd El-Aziz TM, Barh D, Uhal BD, Adadi P, Takayama K, Bazan NG, Tambuwala MM, Lal A, Chauhan G, Baetas-da-Cruz W, Sherchan SP, Uversky VN. Periodically aperiodic pattern of SARS-CoV-2 mutations underpins the uncertainty of its origin and evolution. ENVIRONMENTAL RESEARCH 2022; 204:112092. [PMID: 34562480 PMCID: PMC8457672 DOI: 10.1016/j.envres.2021.112092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 05/20/2023]
Abstract
Various lineages of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) have contributed to prolongation of the Coronavirus Disease 2019 (COVID-19) pandemic. Several non-synonymous mutations in SARS-CoV-2 proteins have generated multiple SARS-CoV-2 variants. In our previous report, we have shown that an evenly uneven distribution of unique protein variants of SARS-CoV-2 is geo-location or demography-specific. However, the correlation between the demographic transmutability of the SARS-CoV-2 infection and mutations in various proteins remains unknown due to hidden symmetry/asymmetry in the occurrence of mutations. This study tracked how these mutations are emerging in SARS-CoV-2 proteins in six model countries and globally. In a geo-location, considering the mutations having a frequency of detection of at least 500 in each SARS-CoV-2 protein, we studied the country-wise percentage of invariant residues. Our data revealed that since October 2020, highly frequent mutations in SARS-CoV-2 have been observed mostly in the Open Reading Frame (ORF) 7b and ORF8, worldwide. No such highly frequent mutations in any of the SARS-CoV-2 proteins were found in the UK, India, and Brazil, which does not correlate with the degree of transmissibility of the virus in India and Brazil. However, we have found a signature that SARS-CoV-2 proteins were evolving at a higher rate, and considering global data, mutations are detected in the majority of the available amino acid locations. Fractal analysis of each protein's normalized factor time series showed a periodically aperiodic emergence of dominant variants for SARS-CoV-2 protein mutations across different countries. It was noticed that certain high-frequency variants have emerged in the last couple of months, and thus the emerging SARS-CoV-2 strains are expected to contain prevalent mutations in the ORF3a, membrane, and ORF8 proteins. In contrast to other beta-coronaviruses, SARS-CoV-2 variants have rapidly emerged based on demographically dependent mutations. Characterization of the periodically aperiodic nature of the demographic spread of SARS-CoV-2 variants in various countries can contribute to the identification of the origin of SARS-CoV-2.
Collapse
Affiliation(s)
- Sk Sarif Hassan
- Department of Mathematics, Pingla Thana Mahavidyalaya, Maligram, Paschim Medinipur, 721140, West Bengal, India.
| | - Pallab Basu
- School of Physics, University of the Witwatersrand, Johannesburg, Braamfontein 2000, 721140, South Africa.
| | - Elrashdy M Redwan
- Biological Science Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications, New Borg EL-Arab, 21934, Alexandria, Egypt.
| | | | - Pabitra Pal Choudhury
- Indian Statistical Institute, Applied Statistics Unit, 203 B T Road, Kolkata, 700108, India.
| | - Ángel Serrano-Aroca
- Biomaterials & Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia, San Vicente Mártir, Valencia 46001, Spain.
| | | | - Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Faculty of Pharmacy, Irbid, 566, Jordan.
| | - Giorgio Palu
- Department of Molecular Medicine, University of Padova, Via Gabelli 63, 35121, Padova, Italy.
| | - Tarek Mohamed Abd El-Aziz
- Zoology Department, Faculty of Science, Minia University, El-Minia, 61519, Egypt; Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229-3900, USA.
| | - Debmalya Barh
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur, WB, India; Departamento de Geńetica, Ecologia e Evolucao, Instituto de Cîencias Bioĺogicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | - Bruce D Uhal
- Department of Physiology, Michigan State University, East Lansing, MI, 48824, USA.
| | - Parise Adadi
- Department of Food Science, University of Otago, Dunedin, 9054, New Zealand.
| | - Kazuo Takayama
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 6068507, Japan.
| | - Nicolas G Bazan
- Neuroscience Center of Excellence, School of Medicine, LSU Health New Orleans, New Orleans, LA, 70112, USA.
| | - Murtaza M Tambuwala
- School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine, BT52 1SA, Northern Ireland, UK.
| | - Amos Lal
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN, USA.
| | - Gaurav Chauhan
- School of Engineering and Sciences, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, 64849, Monterrey, Nuevo Léon, Mexico.
| | - Wagner Baetas-da-Cruz
- Translational Laboratory in Molecular Physiology, Centre for Experimental Surgery, College of Medicine, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.
| | - Samendra P Sherchan
- Department of Environmental Health Sciences, Tulane University, New Orleans, LA, 70112, USA.
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA; Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Institutskiy pereulok, 9, Dolgoprudny, 141700, Russia.
| |
Collapse
|
23
|
Cosar B, Karagulleoglu ZY, Unal S, Ince AT, Uncuoglu DB, Tuncer G, Kilinc BR, Ozkan YE, Ozkoc HC, Demir IN, Eker A, Karagoz F, Simsek SY, Yasar B, Pala M, Demir A, Atak IN, Mendi AH, Bengi VU, Cengiz Seval G, Gunes Altuntas E, Kilic P, Demir-Dora D. SARS-CoV-2 Mutations and their Viral Variants. Cytokine Growth Factor Rev 2022; 63:10-22. [PMID: 34580015 PMCID: PMC8252702 DOI: 10.1016/j.cytogfr.2021.06.001] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 12/23/2022]
Abstract
Mutations in the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) occur spontaneously during replication. Thousands of mutations have accumulated and continue to since the emergence of the virus. As novel mutations continue appearing at the scene, naturally, new variants are increasingly observed. Since the first occurrence of the SARS-CoV-2 infection, a wide variety of drug compounds affecting the binding sites of the virus have begun to be studied. As the drug and vaccine trials are continuing, it is of utmost importance to take into consideration the SARS-CoV-2 mutations and their respective frequencies since these data could lead the way to multi-drug combinations. The lack of effective therapeutic and preventive strategies against human coronaviruses (hCoVs) necessitates research that is of interest to the clinical applications. The reason why the mutations in glycoprotein S lead to vaccine escape is related to the location of the mutation and the affinity of the protein. At the same time, it can be said that variations should occur in areas such as the receptor-binding domain (RBD), and vaccines and antiviral drugs should be formulated by targeting more than one viral protein. In this review, a literature survey in the scope of the increasing SARS-CoV-2 mutations and the viral variations is conducted. In the light of current knowledge, the various disguises of the mutant SARS-CoV-2 forms and their apparent differences from the original strain are examined as they could possibly aid in finding the most appropriate therapeutic approaches.
Collapse
Affiliation(s)
- Begum Cosar
- Başkent University, Faculty of Science and Letters, Department of Molecular Biology and Genetics, Ankara, Turkey
| | - Zeynep Yagmur Karagulleoglu
- Yıldız Technical University, Faculty of Arts and Science, Department of Molecular Biology and Genetics, İstanbul, Turkey
| | - Sinan Unal
- Yıldız Technical University, Faculty of Arts and Science, Department of Molecular Biology and Genetics, İstanbul, Turkey
| | | | - Dilruba Beyza Uncuoglu
- Ankara University, Graduate School of Natural and Applied Sciences, Department of Biology, Ankara, Turkey
| | - Gizem Tuncer
- Hacettepe University, Graduate School of Science and Engineering, General Biology Program, Ankara, Turkey; HücreCELL Biotechnology Development and Commerce, Inc., Ankara, Turkey
| | - Bugrahan Regaip Kilinc
- Kastamonu University, School of Engineering and Architecture, Department of Genetics and Bioengineering, Kastamonu, Turkey; Kastamonu University, School of Engineering and Architecture, Department of Biomedical Engineering, Kastamonu, Turkey
| | - Yunus Emre Ozkan
- Gebze Technical University, Faculty of Science, Department of Molecular Biology and Genetics, Kocaeli, Turkey
| | - Hikmet Ceyda Ozkoc
- Akdeniz University, Faculty of Medicine, Department of Medical Pharmacology, Antalya, Turkey
| | | | - Ali Eker
- Akdeniz University, Faculty of Medicine, Antalya, Turkey
| | | | | | - Bunyamin Yasar
- Alanya Alaaddin Keykubat University, Department of Molecular Medicine, Antalya, Turkey
| | - Mehmetcan Pala
- Sivas Cumhuriyet University, Faculty of Science, Department of Molecular Biology and Genetics, Sivas, Turkey
| | - Aysegul Demir
- Üsküdar University, Faculty of Engineering and Natural Sciences, Department of Molecular Biology and Genetics, İstanbul, Turkey
| | - Irem Naz Atak
- Ankara University, Faculty of Science, Department of Biology, Ankara, Turkey
| | - Aysegul Hanife Mendi
- Gazi University, Faculty of Dentistry, Department of Basic Sciences, Division of Medical Microbiology, Ankara, Turkey
| | - Vahdi Umut Bengi
- Gülhane Training and Research Hospital, Faculty of Dentistry, Department of Periodontology, Ankara, Turkey
| | - Guldane Cengiz Seval
- Ankara University, School of Medicine Department of Hematology, Cebeci, Ankara, Turkey
| | | | - Pelin Kilic
- HücreCELL Biotechnology Development and Commerce, Inc., Ankara, Turkey; Ankara University, Stem Cell Institute, Ankara, Turkey.
| | - Devrim Demir-Dora
- Akdeniz University, Faculty of Medicine, Department of Medical Pharmacology, Antalya, Turkey; Akdeniz University, Health Sciences Institute, Department of Gene and Cell Therapy, Antalya, Turkey; Akdeniz University, Health Sciences Institute, Department of Medical Biotechnology, Antalya, Turkey.
| |
Collapse
|
24
|
Ahmed-Abakur EH, Ullah MF, Elssaig EH, Alnour TM. In-Silico genomic landscape characterization and evolution of SARS- CoV- 2 variants isolated in India shows significant drift with high frequency of mutations. Saudi J Biol Sci 2022; 29:3494-3501. [PMID: 35233173 PMCID: PMC8875766 DOI: 10.1016/j.sjbs.2022.02.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 01/27/2022] [Accepted: 02/20/2022] [Indexed: 01/09/2023] Open
Abstract
In-silico studies on SARS-CoV-2 genome are considered important to identify the significant pattern of variations and its possible effects on the structural and functional characteristics of the virus. The current study determined such genetic variations and their possible impact among SARS-CoV-2 variants isolated in India. A total of 546 SARS-CoV-2 genomic sequences (India) were retrieved from the gene bank (NCBI) and subjected to alignment against the Wuhan variant (NC_045512.2), the corresponding amino acid changes were analyzed using NCBI Protein-BLAST. These 546 variants revealed 841 mutations; most of these were non-synonymous 464/841 (55.1%), there was no identical variant compared to the original strain. All genes; coding and non-coding showed nucleotide changes, most of the structural genes showed frequent nonsynonymous mutations. The most affected genes were ORF1a/b followed by the S gene which showed 515/841 (61.2%) and 120/841 (14.3%) mutations, respectively. The most frequent non-synonymous mutation 486/546 (89.01%) occurred in the S gene (structural gene) at position 23,403 where A changed to G leading to the replacement of aspartic acid by glycine in position (D614G). Interestingly, four variants also showed deletion. The variants MT800923 and MT800925 showed 12 consecutive nucleotide deletion in position 21982–21993 resulting in 4 consecutive amino acid deletions that were leucine, glycine, valine, and tyrosine in positions 141, 142, 143, and 144 respectively. The present study exhibited a higher mutations rate per variant compared to other studies carried out in India.
Collapse
Affiliation(s)
- Eltayib H. Ahmed-Abakur
- Department of Medical Laboratory Technology (FAMS), University of Tabuk, P.O. Box 741, Tabuk 71411, Saudi Arabia
- Prince Fahad Research Chair, University of Tabuk, P.O. Box 741, Tabuk 71411, Saudi Arabia
| | - Mohammad Fahad Ullah
- Department of Medical Laboratory Technology (FAMS), University of Tabuk, P.O. Box 741, Tabuk 71411, Saudi Arabia
- Prince Fahad Research Chair, University of Tabuk, P.O. Box 741, Tabuk 71411, Saudi Arabia
| | - Elmutuz H. Elssaig
- Department of Medical Laboratory Technology (FAMS), University of Tabuk, P.O. Box 741, Tabuk 71411, Saudi Arabia
- Prince Fahad Research Chair, University of Tabuk, P.O. Box 741, Tabuk 71411, Saudi Arabia
| | - Tarig M.S. Alnour
- Department of Medical Laboratory Technology (FAMS), University of Tabuk, P.O. Box 741, Tabuk 71411, Saudi Arabia
- Prince Fahad Research Chair, University of Tabuk, P.O. Box 741, Tabuk 71411, Saudi Arabia
- Faculty of Medical Laboratory Science, Department of Microbiology and Immunology, Alzaiem Alazhari University, Khartoum North 11111, Sudan
- Corresponding author at: Department of Medical Laboratory Technology (FAMS), University of Tabuk, P.O. Box 741, Tabuk 71411, Saudi Arabia.
| |
Collapse
|
25
|
Genomic Characterization of SARS-CoV2 from Peshawar Pakistan Using Next-Generation Sequencing. Curr Microbiol 2022; 79:48. [PMID: 34982246 PMCID: PMC8750362 DOI: 10.1007/s00284-021-02743-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 12/06/2021] [Indexed: 11/18/2022]
Abstract
This study aimed to characterize the whole genome of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV2) isolated from an oropharyngeal swab specimen of a Pashtun Pakistani patient using next-generation sequencing. Upon comparing the SARS-CoV2 genome to the reference genome, a total of 10 genetic variants were identified. Among the 10 genetic variants, 1 missense mutation (c.1139A > G, p.Lys292Glu) in the Open Reading Frame 1ab (ORF1ab) positioned at 112 in the non-structural protein 2 (NSP2) was found to be unique. Phylogenetic analysis (n = 84) revealed that the current SARS-CoV2 genome was closely clustered with 8 Pakistani strains belonging to Punjab, Federal Capital, Azad Jammu and Kashmir (AJK), and Khyber Pakhtunkhwa (KP). In addition, the current SARS-CoV2 genome was very similar to the genome of SARS-CoV2 reported from Guam, Taiwan, India, the USA, and France. Overall, this study reports a slight mismatch in the SARS-CoV2 genome, indicating the presence of a single unique missense mutation. However, phylogenetic analysis revealed that the current SARS-CoV2 genome was closely clustered with 8 other Pakistani strains.
Collapse
|
26
|
Abstract
Unique pneumonia due to an unknown source emerged in December 2019 in the city of Wuhan, China. Consequently, the World Health Organization (WHO) declared this condition as a new coronavirus disease-19 also known as COVID-19 on February 11, 2020, which on March 13, 2020 was declared as a pandemic. The virus that causes COVID-19 was found to have a similar genome (80% similarity) with the previously known acute respiratory syndrome also known as SARS-CoV. The novel virus was later named Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). SARS-CoV-2 falls in the family of Coronaviridae which is further divided into Nidovirales and another subfamily called Orthocoronavirinae. The four generations of the coronaviruses belongs to the Orthocoronavirinae family that consists of alpha, beta, gamma and delta coronavirus which are denoted as α-CoV, β-CoV, γ-CoV, δ-CoV respectively. The α-CoV and β-CoVs are mainly known to infect mammals whereas γ-CoV and δ-CoV are generally found in birds. The β-CoVs also comprise of SARS-CoV and also include another virus that was found in the Middle East called the Middle East respiratory syndrome virus (MERS-CoV) and the cause of current pandemic SARS-CoV-2. These viruses initially cause the development of pneumonia in the patients and further development of a severe case of acute respiratory distress syndrome (ARDS) and other related symptoms that can be fatal leading to death.
Collapse
|
27
|
Yaniv K, Ozer E, Lewis Y, Kushmaro A. RT-qPCR assays for SARS-CoV-2 variants of concern in wastewater reveals compromised vaccination-induced immunity. WATER RESEARCH 2021; 207:117808. [PMID: 34753092 PMCID: PMC8551083 DOI: 10.1016/j.watres.2021.117808] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 05/02/2023]
Abstract
SARS-CoV-2 variants of concern, demonstrating higher infection rate and lower vaccine effectiveness as compared with the original virus, are important factors propelling the ongoing COVID-19 global outbreak. Therefore, prompt identification of these variants in the environment is essential for pandemic assessment and containment efforts. One well established tool for such viral monitoring is the use of wastewater systems. Here, we describe continuous monitoring of traces of SARS-CoV-2 viruses in the municipal wastewater of a large city in Israel. By observing morbidity fluctuations (during three main COVID-19 surges) occurring in parallel with Pfizer-BioNTech COVID-19 vaccine vaccination rate, compromised immunity was revealed in the current morbidity peak. RT-qPCR assays for the Original (D614G), Alpha and Beta variants had been previously developed and are being employed for wastewater surveillance. In the present study we developed a sensitive RT-qPCR assay designed for the rapid, direct detection of Gamma and Delta variants of concern. Sensitive quantification and detection of the various variants showed the prevalence of the original variant during the first morbidity peak. The dominance of the Alpha variant over the original variant correlated with the second morbidity peak. These variants decreased concurrently with an increase in vaccinations (Feb-March 2021) and the observed decrease in morbidity. The appearance and subsequent rise of the Delta variant became evident and corresponded to the third morbidity peak (June-August 2021). These results suggest a high vaccine neutralization efficiency towards the Alpha variant compared to its neutralization efficiency towards the Delta variant. Moreover, the third vaccination dose (booster) seems to regain neutralization efficiency towards the Delta variant. The developed assays and wastewater-based epidemiology are important tools aiding in morbidity surveillance and disclosing vaccination efforts and immunity dynamics in the community.
Collapse
Affiliation(s)
- Karin Yaniv
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben- Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Eden Ozer
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | | | - Ariel Kushmaro
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben- Gurion University of the Negev, Beer-Sheva 84105, Israel; The Ilse Katz Center for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; School of Sustainability and Climate Change, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
| |
Collapse
|
28
|
Global Pandemic as a Result of Severe Acute Respiratory Syndrome Coronavirus 2 Outbreak: A Biomedical Perspective. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.4.53] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
In December 2019, a novel coronavirus had emerged in Wuhan city, China that led to an outbreak resulting in a global pandemic, taking thousands of lives. The infectious virus was later classified as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Individuals infected by this novel virus initially exhibit nonspecific symptoms such as dry cough, fever, dizziness and many more bodily complications. From the “public health emergency of international concern” declaration by the World Health Organisation (WHO), several countries have taken steps in controlling the transmission and many researchers share their knowledge on the SARS-COV-2 characteristics and viral life cycle, that may aid in pharmaceutical and biopharmaceutical companies to develop SARS-CoV-2 vaccine and antiviral drugs that interfere with the viral life cycle. In this literature review the origin, classification, aetiology, life cycle, clinical manifestations, laboratory diagnosis and treatment are all reviewed.
Collapse
|
29
|
Effect of immunonutrition on serum levels of C-reactive protein and lymphocytes in patients with COVID-19: a randomized, controlled, double-blind clinical trial. NUTR HOSP 2021; 39:20-26. [PMID: 34839672 DOI: 10.20960/nh.03847] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
INTRODUCTION patients with COVID-19 undergo changes in leukocyte count, respiratory disorders, and an increase in inflammatory substances. To improve the inflammatory condition, some nutrients can be used, including arginine, omega-3 fatty acids and nucleotides. This study aims to evaluate how oral immunonutrient supplements affects serum C-reactive protein (CRP) levels and lymphocyte count in patients with COVID-19. METHODS in this double-blind clinical trial, we randomized 43 adult patients with COVID-19 to receive a standard high-protein normocaloric supplement (control) or an immunonutrient-enriched supplement (experiment) for 7 days. The primary outcome was to evaluate changes in total lymphocyte count and serum level of CRP. The assessment of risk and nutritional status of these patients was also performed. RESULTS forty-three patients with mean age of 41.5 (± 1.8) years were followed up, 39.5 % of them women. The mean body mass index was 27.6 (± 0.8) kg/m² and 58.1 % had low nutritional risk. In the experiment group, there was a CRP reduction of 23.6 (± 7.5) mg/L, while in the control branch the decrease was 14.8 (± 12.1) mg/L (p = 0.002). There was an increase in lymphocytes in the experiment group (+367.5 ± 401.8 cells/mm³) and a reduction in the control group (-282.8 ± 327.8 cells/mm³), although there was no statistical significance (p = 0.369). Relative risk (RR) of treatment in reducing CRP by 30 % or more was 4.45 (p < 0.001; 95 % CI, 1.79-11.07). RR in increasing lymphocyte count by 30 % or more was 1.28 (p = 0.327; 95 % CI, 0.67-2.45). CONCLUSION we conclude that immunonutrient supplements seem to reduce CRP levels more than standard high-protein normocaloric supplements.
Collapse
|
30
|
Khan MI, Baig MH, Mondal T, Alorabi M, Sharma T, Dong JJ, Cho JY. Impact of the Double Mutants on Spike Protein of SARS-CoV-2 B.1.617 Lineage on the Human ACE2 Receptor Binding: A Structural Insight. Viruses 2021; 13:2295. [PMID: 34835101 PMCID: PMC8625741 DOI: 10.3390/v13112295] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 01/08/2023] Open
Abstract
The recent emergence of novel SARS-CoV-2 variants has threatened the efforts to contain the COVID-19 pandemic. The emergence of these "variants of concern" has increased immune escape and has supplanted the ancestral strains. The novel variants harbored by the B.1.617 lineage (kappa and delta) carry mutations within the receptor-binding domain of spike (S) protein (L452R + E484Q and L452R + T478K), the region binding to the host receptor. The double mutations carried by these novel variants are primarily responsible for an upsurge number of COVID-19 cases in India. In this study, we thoroughly investigated the impact of these double mutations on the binding capability to the human host receptor. We performed several structural analyses and found that the studied double mutations increase the binding affinity of the spike protein to the human host receptor (ACE2). Furthermore, our study showed that these double mutants might be a dominant contributor enhancing the receptor-binding affinity of SARS-CoV-2 and consequently making it more stable. We also investigated the impact of these mutations on the binding affinity of two monoclonal antibodies (Abs) (2-15 and LY-CoV555) and found that the presence of the double mutations also hinders its binding with the studied Abs. The principal component analysis, free energy landscape, intermolecular interaction, and other investigations provided a deeper structural insight to better understand the molecular mechanism responsible for increased viral transmissibility of these variants.
Collapse
Affiliation(s)
- Mohd Imran Khan
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Gangnam-gu, Seoul 120-752, Korea;
| | - Mohammad Hassan Baig
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Gangnam-gu, Seoul 120-752, Korea; (M.H.B.); (T.S.)
| | - Tanmoy Mondal
- Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, 41345 Gothenburg, Sweden;
| | - Mohammed Alorabi
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Tanuj Sharma
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Gangnam-gu, Seoul 120-752, Korea; (M.H.B.); (T.S.)
| | - Jae-June Dong
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Gangnam-gu, Seoul 120-752, Korea; (M.H.B.); (T.S.)
| | - Jae Yong Cho
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Gangnam-gu, Seoul 120-752, Korea;
| |
Collapse
|
31
|
Picomolar inhibition of SARS-CoV-2 variants of concern by an engineered ACE2-IgG4-Fc fusion protein. Antiviral Res 2021; 196:105197. [PMID: 34774603 PMCID: PMC8579703 DOI: 10.1016/j.antiviral.2021.105197] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/27/2021] [Accepted: 10/26/2021] [Indexed: 01/06/2023]
Abstract
SARS-CoV-2 enters host cells after binding through its spike glycoprotein to the angiotensin-converting enzyme 2 (ACE2) receptor. Soluble ACE2 ectodomains bind and neutralize the virus, yet their short in vivo half-live limits their therapeutic use. This limitation can be overcome by fusing the fragment crystallizable (Fc) part of human immunoglobulin G (IgG) to the ACE2 ectodomain, but this bears the risk of Fc-receptor activation and antibody-dependent cellular cytotoxicity. Here, we describe optimized ACE2-IgG4-Fc fusion constructs that avoid Fc-receptor activation, preserve the desired ACE2 enzymatic activity and show promising pharmaceutical properties. The engineered ACE2-IgG4-Fc fusion proteins neutralize the original SARS-CoV, pandemic SARS-CoV-2 as well as the rapidly spreading SARS-CoV-2 alpha, beta and delta variants of concern. Importantly, these variants of concern are inhibited at picomolar concentrations proving that ACE2-IgG4 maintains - in contrast to therapeutic antibodies - its full antiviral potential. Thus, ACE2-IgG4-Fc fusion proteins are promising candidate anti-antivirals to combat the current and future pandemics.
Collapse
|
32
|
Yaniv K, Ozer E, Shagan M, Lakkakula S, Plotkin N, Bhandarkar NS, Kushmaro A. Direct RT-qPCR assay for SARS-CoV-2 variants of concern (Alpha, B.1.1.7 and Beta, B.1.351) detection and quantification in wastewater. ENVIRONMENTAL RESEARCH 2021; 201:111653. [PMID: 34245731 PMCID: PMC8262398 DOI: 10.1016/j.envres.2021.111653] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/02/2021] [Accepted: 07/02/2021] [Indexed: 05/18/2023]
Abstract
Less than a year following the Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak, variants of concern have emerged in the form of variant Alpha (B.1.1.7, the British variant) and Beta (B.1.351, the South Africa variant). Due to their high infectivity and morbidity, it has become clear that it is crucial to quickly and effectively detect these and other variants. Here, we report improved primers-probe sets for reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) for SARS-CoV-2 detection including a rapid, cost-effective, and direct RT-qPCR method for detection of the two variants of concern (Alpha, B.1.1.7 and Beta, B.1.351). All the developed primers-probe sets were fully characterized, demonstrating sensitive and specific detection. These primer-probe sets were also successfully employed on wastewater samples aimed at detecting and even quantifying new variants in a geographical area, even prior to the reports by the medical testing. The novel primers-probe sets presented here will enable proper responses for pandemic containment, particularly considering the emergence of variants of concern.
Collapse
Affiliation(s)
- Karin Yaniv
- Avram and Stella Goldstein-Goren, Department of Biotechnology Engineering, Ben- Gurion University of the Negev, Beer-Sheva, Israel
| | - Eden Ozer
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Marilou Shagan
- Avram and Stella Goldstein-Goren, Department of Biotechnology Engineering, Ben- Gurion University of the Negev, Beer-Sheva, Israel
| | - Satish Lakkakula
- Avram and Stella Goldstein-Goren, Department of Biotechnology Engineering, Ben- Gurion University of the Negev, Beer-Sheva, Israel
| | - Noam Plotkin
- Avram and Stella Goldstein-Goren, Department of Biotechnology Engineering, Ben- Gurion University of the Negev, Beer-Sheva, Israel
| | - Nikhil Suresh Bhandarkar
- Avram and Stella Goldstein-Goren, Department of Biotechnology Engineering, Ben- Gurion University of the Negev, Beer-Sheva, Israel
| | - Ariel Kushmaro
- Avram and Stella Goldstein-Goren, Department of Biotechnology Engineering, Ben- Gurion University of the Negev, Beer-Sheva, Israel; The Ilse Katz Center for Meso and Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel.
| |
Collapse
|
33
|
Yaniv K, Ozer E, Shagan M, Lakkakula S, Plotkin N, Bhandarkar NS, Kushmaro A. Direct RT-qPCR assay for SARS-CoV-2 variants of concern (Alpha, B.1.1.7 and Beta, B.1.351) detection and quantification in wastewater. ENVIRONMENTAL RESEARCH 2021. [PMID: 34245731 DOI: 10.1016/j.envres.2021a.111653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Less than a year following the Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak, variants of concern have emerged in the form of variant Alpha (B.1.1.7, the British variant) and Beta (B.1.351, the South Africa variant). Due to their high infectivity and morbidity, it has become clear that it is crucial to quickly and effectively detect these and other variants. Here, we report improved primers-probe sets for reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) for SARS-CoV-2 detection including a rapid, cost-effective, and direct RT-qPCR method for detection of the two variants of concern (Alpha, B.1.1.7 and Beta, B.1.351). All the developed primers-probe sets were fully characterized, demonstrating sensitive and specific detection. These primer-probe sets were also successfully employed on wastewater samples aimed at detecting and even quantifying new variants in a geographical area, even prior to the reports by the medical testing. The novel primers-probe sets presented here will enable proper responses for pandemic containment, particularly considering the emergence of variants of concern.
Collapse
Affiliation(s)
- Karin Yaniv
- Avram and Stella Goldstein-Goren, Department of Biotechnology Engineering, Ben- Gurion University of the Negev, Beer-Sheva, Israel
| | - Eden Ozer
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Marilou Shagan
- Avram and Stella Goldstein-Goren, Department of Biotechnology Engineering, Ben- Gurion University of the Negev, Beer-Sheva, Israel
| | - Satish Lakkakula
- Avram and Stella Goldstein-Goren, Department of Biotechnology Engineering, Ben- Gurion University of the Negev, Beer-Sheva, Israel
| | - Noam Plotkin
- Avram and Stella Goldstein-Goren, Department of Biotechnology Engineering, Ben- Gurion University of the Negev, Beer-Sheva, Israel
| | - Nikhil Suresh Bhandarkar
- Avram and Stella Goldstein-Goren, Department of Biotechnology Engineering, Ben- Gurion University of the Negev, Beer-Sheva, Israel
| | - Ariel Kushmaro
- Avram and Stella Goldstein-Goren, Department of Biotechnology Engineering, Ben- Gurion University of the Negev, Beer-Sheva, Israel; The Ilse Katz Center for Meso and Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel.
| |
Collapse
|
34
|
Selvaraj C, Dinesh DC, Krafcikova P, Boura E, Aarthy M, Pravin MA, Singh SK. Structural Understanding of SARS-CoV-2 Drug Targets, Active Site Contour Map Analysis and COVID-19 Therapeutics. Curr Mol Pharmacol 2021; 15:418-433. [PMID: 34488601 DOI: 10.2174/1874467214666210906125959] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/11/2021] [Accepted: 03/17/2021] [Indexed: 11/22/2022]
Abstract
The most iconic word of the year 2020 is 'COVID-19', the shortened name for coronavirus disease 2019. The pandemic, caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), is responsible for multiple worldwide lockdowns, an economic crisis, and a substantial increase in hospitalizations for viral pneumonia along with respiratory failure and multiorgan dysfunctions. Recently, the first few vaccines were approved by World Health Organization (WHO) and can eventually save millions of lives. Even though, few emergency use drugs like Remdesivir and several other repurposed drugs, still there is no approved drug for COVID-19. The coronaviral encoded proteins involved in host-cell entry, replication, and host-cell invading mechanism are potentially therapeutic targets. This perspective review provides the molecular overview of SARS-CoV-2 life cycle for summarizing potential drug targets, structural insights, active site contour map analyses of those selected SARS-CoV-2 protein targets for drug discovery, immunology, and pathogenesis.
Collapse
Affiliation(s)
- Chandrabose Selvaraj
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi-630004, Tamil Nadu. India
| | | | - Petra Krafcikova
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Flemingovo nam. 2, 166 10 Prague 6. Czech Republic
| | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Flemingovo nam. 2, 166 10 Prague 6. Czech Republic
| | - Murali Aarthy
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi-630004, Tamil Nadu. India
| | - Muthuraja Arun Pravin
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi-630004, Tamil Nadu. India
| | - Sanjeev Kumar Singh
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi-630004, Tamil Nadu. India
| |
Collapse
|
35
|
Ghanchi NK, Nasir A, Masood KI, Abidi SH, Mahmood SF, Kanji A, Razzak S, Khan W, Shahid S, Yameen M, Raza A, Ashraf J, Ansar Z, Dharejo MB, Islam N, Hasan Z, Hasan R. Higher entropy observed in SARS-CoV-2 genomes from the first COVID-19 wave in Pakistan. PLoS One 2021; 16:e0256451. [PMID: 34464419 PMCID: PMC8407562 DOI: 10.1371/journal.pone.0256451] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 08/09/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND We investigated the genome diversity of SARS-CoV-2 associated with the early COVID-19 period to investigate evolution of the virus in Pakistan. MATERIALS AND METHODS We studied ninety SARS-CoV-2 strains isolated between March and October 2020. Whole genome sequences from our laboratory and available genomes were used to investigate phylogeny, genetic variantion and mutation rates of SARS-CoV-2 strains in Pakistan. Site specific entropy analysis compared mutation rates between strains isolated before and after June 2020. RESULTS In March, strains belonging to L, S, V and GH clades were observed but by October, only L and GH strains were present. The highest diversity of clades was present in Sindh and Islamabad Capital Territory and the least in Punjab province. Initial introductions of SARS-CoV-2 GH (B.1.255, B.1) and S (A) clades were associated with overseas travelers. Additionally, GH (B.1.255, B.1, B.1.160, B.1.36), L (B, B.6, B.4), V (B.4) and S (A) clades were transmitted locally. SARS-CoV-2 genomes clustered with global strains except for ten which matched Pakistani isolates. RNA substitution rates were estimated at 5.86 x10-4. The most frequent mutations were 5' UTR 241C > T, Spike glycoprotein D614G, RNA dependent RNA polymerase (RdRp) P4715L and Orf3a Q57H. Strains up until June 2020 exhibited an overall higher mean and site-specific entropy as compared with sequences after June. Relative entropy was higher across GH as compared with GR and L clades. More sites were under selection pressure in GH strains but this was not significant for any particular site. CONCLUSIONS The higher entropy and diversity observed in early pandemic as compared with later strains suggests increasing stability of the genomes in subsequent COVID-19 waves. This would likely lead to the selection of site-specific changes that are advantageous to the virus, as has been currently observed through the pandemic.
Collapse
Affiliation(s)
- Najia Karim Ghanchi
- Department of Pathology and Laboratory Medicine, The Aga Khan University (AKU), Karachi, Pakistan
| | - Asghar Nasir
- Department of Pathology and Laboratory Medicine, The Aga Khan University (AKU), Karachi, Pakistan
| | - Kiran Iqbal Masood
- Department of Pathology and Laboratory Medicine, The Aga Khan University (AKU), Karachi, Pakistan
| | - Syed Hani Abidi
- Department of Biological and Biomedical Sciences, AKU, Karachi, Pakistan
| | | | - Akbar Kanji
- Department of Pathology and Laboratory Medicine, The Aga Khan University (AKU), Karachi, Pakistan
| | - Safina Razzak
- Department of Pathology and Laboratory Medicine, The Aga Khan University (AKU), Karachi, Pakistan
| | - Waqasuddin Khan
- Department of Pediatrics and Child Health, AKU, Karachi, Pakistan
| | - Saba Shahid
- Department of Pathology and Laboratory Medicine, The Aga Khan University (AKU), Karachi, Pakistan
| | - Maliha Yameen
- Department of Pathology and Laboratory Medicine, The Aga Khan University (AKU), Karachi, Pakistan
| | - Ali Raza
- Department of Pathology and Laboratory Medicine, The Aga Khan University (AKU), Karachi, Pakistan
| | - Javaria Ashraf
- Department of Pathology and Laboratory Medicine, The Aga Khan University (AKU), Karachi, Pakistan
| | - Zeeshan Ansar
- Department of Pathology and Laboratory Medicine, The Aga Khan University (AKU), Karachi, Pakistan
| | | | - Nazneen Islam
- Department of Pathology and Laboratory Medicine, The Aga Khan University (AKU), Karachi, Pakistan
| | - Zahra Hasan
- Department of Pathology and Laboratory Medicine, The Aga Khan University (AKU), Karachi, Pakistan
| | - Rumina Hasan
- Department of Pathology and Laboratory Medicine, The Aga Khan University (AKU), Karachi, Pakistan
- Faculty of Infectious and Tropical Disease, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
36
|
Patel AK, Mukherjee S, Leifels M, Gautam R, Kaushik H, Sharma S, Kumar O. Mega festivals like MahaKumbh, a largest mass congregation, facilitated the transmission of SARS-CoV-2 to humans and endangered animals via contaminated water. Int J Hyg Environ Health 2021; 237:113836. [PMID: 34481208 PMCID: PMC8419625 DOI: 10.1016/j.ijheh.2021.113836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 12/23/2022]
Abstract
Our surrounding environment has been influenced by the COVID-19 pandemic situation. The second wave of COVID-19 in India has proven to be more devastating and aggressive than the first wave of the pandemic, which led to recognizing India as one of the world's topmost worst-hit nations considering >4000 fatalities reported in a single day in May 2021. Such "resurgence and acceleration" of COVID-19 transmission has been fuelled by the MahaKumbh festival and political mass gathering (elections rallies) events, where the COVID-19 protocols have been ignored by millions of pilgrims/followers. The present review discusses only the consequences of this year's MahaKumbh festivals, the largest religious mass gathering on earth, which was held during the COVID-19 pandemic in India, and its impact on both the spread of SARS-CoV-2 among participants and their families and its influence on the quality of the river Ganga. This article tries to give readers outside of India an overview of how much impact of any such single large gathering of any relgion in any part of the world can drive coronavirus infections and effectively commence the second/third wave outbreak with this case study. Furthermore, the religious large scale celebration are widely accepted through out the world that have played a significant role in the spread of the pandemic into remote villages and towns all over the subcontinent/world, thus affecting many areas with insufficient healthcare facilities that have been relatively spared. This review also highlights the potential risk of transmission from infected humans into the aquatic environment of the river Ganga. Besides the obvious relevance of SARS-CoV-2, a large variety of other water-related disease vectors (bacteria, viruses, and protozoa) stemming from visitors to the religious congregation were introduced into the upstream regions of the Ganga river. Their sheer number is assumed to have had a severe influence on its delicate ecosystem, including endangered mammals such as the river Dolphins. The detailed epidemiological and clinical study on transmission routes of SARS-CoV-2 is the need of the hour to understand the pathogenesis of RNA virus infection and prevent the massive spreading of such infectious respiratory diseases. An interdisciplinary approach, rooted in evidence-based efficient learning, contextual strategies, and a streamlined unified approach should be adopted to help in the development of a proactive prevention model during future MahaKumbh festival (and similar religious gatherings) instead of just "picking up the pieces" in a conventional post-event model.
Collapse
Affiliation(s)
- Arbind Kumar Patel
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi-110067, India
| | - Santanu Mukherjee
- School of Agriculture, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India.
| | - Mats Leifels
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
| | - Rohit Gautam
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi-110067, India
| | - Himanshu Kaushik
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi-110067, India
| | - Saloni Sharma
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi-110067, India
| | - Om Kumar
- Department of Environmental Sciences, Lakshmibai College, University of Delhi-110052, India.
| |
Collapse
|
37
|
A Novel Therapeutic Peptide Blocks SARS-CoV-2 Spike Protein Binding with Host Cell ACE2 Receptor. Drugs R D 2021; 21:273-283. [PMID: 34324175 PMCID: PMC8319882 DOI: 10.1007/s40268-021-00357-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2021] [Indexed: 01/21/2023] Open
Abstract
Background and Objective Coronavirus disease 2019 is a novel disease caused by the severe acute respiratory syndrome coronavirus (SARS-CoV)-2 virus. It was first detected in December 2019 and has since been declared a pandemic causing millions of deaths worldwide. Therefore, there is an urgent need to develop effective therapeutics against coronavirus disease 2019. A critical step in the crosstalk between the virus and the host cell is the binding of the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein to the peptidase domain of the angiotensin-converting enzyme 2 (ACE2) receptor present on the surface of host cells. Methods An in silico approach was employed to design a 13-amino acid peptide inhibitor (13AApi) against the RBD of the SARS-CoV-2 spike protein. Its binding specificity for RBD was confirmed by molecular docking using pyDockWEB, ClusPro 2.0, and HDOCK web servers. The stability of 13AApi and the SARS-CoV-2 spike protein complex was determined by molecular dynamics simulation using the GROMACS program while the physicochemical and ADMET (absorption, distribution, metabolism, excretion, and toxicity) properties of 13AApi were determined using the ExPASy tool and pkCSM server. Finally, in vitro validation of the inhibitory activity of 13AApi against the spike protein was performed by an enzyme-linked immunosorbent assay. Results In silico analyses indicated that the 13AApi could bind to the RBD of the SARS-CoV-2 spike protein at the ACE2 binding site with high affinity. In vitro experiments validated the in silico findings, showing that 13AApi could significantly block the RBD of the SARS-CoV-2 spike protein. Conclusions Blockage of binding of the SARS-CoV-2 spike protein with ACE2 in the presence of the 13AApi may prevent virus entry into host cells. Therefore, the 13AApi can be utilized as a promising therapeutic agent to combat coronavirus disease 2019. Supplementary Information The online version contains supplementary material available at 10.1007/s40268-021-00357-0.
Collapse
|
38
|
Chong WC, Chellappan DK, Shukla SD, Peterson GM, Patel RP, Jha NK, Eri RD, Dua K, Tambuwala MM, Shastri MD. An Appraisal of the Current Scenario in Vaccine Research for COVID-19. Viruses 2021; 13:1397. [PMID: 34372603 PMCID: PMC8310376 DOI: 10.3390/v13071397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 12/15/2022] Open
Abstract
The recent coronavirus disease 2019 (COVID-19) outbreak has drawn global attention, affecting millions, disrupting economies and healthcare modalities. With its high infection rate, COVID-19 has caused a colossal health crisis worldwide. While information on the comprehensive nature of this infectious agent, SARS-CoV-2, still remains obscure, ongoing genomic studies have been successful in identifying its genomic sequence and the presenting antigen. These may serve as promising, potential therapeutic targets in the effective management of COVID-19. In an attempt to establish herd immunity, massive efforts have been directed and driven toward developing vaccines against the SARS-CoV-2 pathogen. This review, in this direction, is aimed at providing the current scenario and future perspectives in the development of vaccines against SARS-CoV-2.
Collapse
Affiliation(s)
- Wai Chin Chong
- Department of Molecular and Translational Science, Monash University, Clayton 3168, Australia;
| | - Dinesh K. Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University (IMU), Kuala Lumpur 57000, Malaysia;
| | - Shakti D. Shukla
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney 2007, Australia; (S.D.S.); (K.D.)
| | - Gregory M. Peterson
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart 7005, Australia; (G.M.P.); (R.P.P.)
| | - Rahul P. Patel
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart 7005, Australia; (G.M.P.); (R.P.P.)
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida 201310, UP, India;
| | - Rajaraman D. Eri
- School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston 7248, Australia;
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney 2007, Australia; (S.D.S.); (K.D.)
| | - Murtaza M. Tambuwala
- School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine BT52 1SA, UK
| | - Madhur D. Shastri
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart 7005, Australia; (G.M.P.); (R.P.P.)
- School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston 7248, Australia;
| |
Collapse
|
39
|
Raj CTD, Kandaswamy DK, Danduga RCSR, Rajasabapathy R, James RA. COVID-19: molecular pathophysiology, genetic evolution and prospective therapeutics-a review. Arch Microbiol 2021. [PMID: 33555378 DOI: 10.1007/s00203-021-02183-z/tables/1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2023]
Abstract
The Covid-19 pandemic is highly contagious and has spread rapidly across the globe. To date there have been no specific treatment options available for this life-threatening disease. During this medical emergency, target-based drug repositioning/repurposing with a continuous monitoring and recording of results is an effective method for the treatment and drug discovery. This review summarizes the recent findings on COVID-19, its genomic organization, molecular evolution through phylogenetic analysis and has recapitulated the drug targets by analyzing the viral molecular machinery as drug targets and repurposing of most frequently used drugs worldwide and their therapeutic applications in COVID-19. Data from solidarity trials have shown that the treatment with Chloroquine, hydroxychloroquine and lopinavir-ritonavir had no effect in reducing the mortality rate and also had adverse side effects. Remdesivir, Favipiravir and Ribavirin might be a safer therapeutic option for COVID-19. Recent clinical trial has revealed that dexamethasone and convalescent plasma treatment can reduce mortality in patients with severe forms of COVID-19.
Collapse
Affiliation(s)
- C T Dhanya Raj
- Department of Marine Science, Bharathidasan University, Tiruchirappalli, Tamilnadu, 620024, India
| | - Dinesh Kumar Kandaswamy
- Department of Epidemiology and Public Health, Central University of Tamilnadu, Thiruvarur, Tamil Nadu, India.
- School of Optometry and Vision Sciences, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK.
| | | | - Raju Rajasabapathy
- Department of Marine Science, Bharathidasan University, Tiruchirappalli, Tamilnadu, 620024, India
| | - Rathinam Arthur James
- Department of Marine Science, Bharathidasan University, Tiruchirappalli, Tamilnadu, 620024, India.
| |
Collapse
|
40
|
Raj CTD, Kandaswamy DK, Danduga RCSR, Rajasabapathy R, James RA. COVID-19: molecular pathophysiology, genetic evolution and prospective therapeutics-a review. Arch Microbiol 2021; 203:2043-2057. [PMID: 33555378 PMCID: PMC7868660 DOI: 10.1007/s00203-021-02183-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/20/2020] [Accepted: 12/27/2020] [Indexed: 12/27/2022]
Abstract
The Covid-19 pandemic is highly contagious and has spread rapidly across the globe. To date there have been no specific treatment options available for this life-threatening disease. During this medical emergency, target-based drug repositioning/repurposing with a continuous monitoring and recording of results is an effective method for the treatment and drug discovery. This review summarizes the recent findings on COVID-19, its genomic organization, molecular evolution through phylogenetic analysis and has recapitulated the drug targets by analyzing the viral molecular machinery as drug targets and repurposing of most frequently used drugs worldwide and their therapeutic applications in COVID-19. Data from solidarity trials have shown that the treatment with Chloroquine, hydroxychloroquine and lopinavir-ritonavir had no effect in reducing the mortality rate and also had adverse side effects. Remdesivir, Favipiravir and Ribavirin might be a safer therapeutic option for COVID-19. Recent clinical trial has revealed that dexamethasone and convalescent plasma treatment can reduce mortality in patients with severe forms of COVID-19.
Collapse
Affiliation(s)
- C T Dhanya Raj
- Department of Marine Science, Bharathidasan University, Tiruchirappalli, Tamilnadu, 620024, India
| | - Dinesh Kumar Kandaswamy
- Department of Epidemiology and Public Health, Central University of Tamilnadu, Thiruvarur, Tamil Nadu, India.
- School of Optometry and Vision Sciences, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK.
| | | | - Raju Rajasabapathy
- Department of Marine Science, Bharathidasan University, Tiruchirappalli, Tamilnadu, 620024, India
| | - Rathinam Arthur James
- Department of Marine Science, Bharathidasan University, Tiruchirappalli, Tamilnadu, 620024, India.
| |
Collapse
|
41
|
Rajput R, Sharma J. SARS-CoV-2 in Pregnancy: Fitting Into the Existing Viral Repertoire. Front Glob Womens Health 2021; 2:647836. [PMID: 34816202 PMCID: PMC8594046 DOI: 10.3389/fgwh.2021.647836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/28/2021] [Indexed: 11/17/2022] Open
Abstract
The risk of viral infection during pregnancy is well-documented; however, the intervention modalities that in practice enable maternal-fetal protection are restricted by limited understanding. This becomes all the more challenging during pandemics. During many different epidemic and pandemic viral outbreaks, worse outcomes (fetal abnormalities, mortality, preterm labor, etc.) seem to affect pregnant women than what has been evident when compared to non-pregnant women. The condition of pregnancy, which is widely understood as "immunosuppressed," needs to be re-understood in terms of the way the immune system works during such a state. The immune system gets transformed to accommodate and facilitate fetal growth. The interference of such supportive conversion by viral infection and the risk of co-infection lead to adverse fetal outcomes. Hence, it is crucial to understand the risk and impact of potent viral infections likely to be encountered during pregnancy. In the present article, we review the effects imposed by previously established and recently emerging/re-emerging viral infections on maternal and fetal health. Such understanding is important in devising strategies for better preparedness and knowing the treatment options available to mitigate the relevant adverse outcomes.
Collapse
Affiliation(s)
| | - Jitender Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Bathinda, India
| |
Collapse
|
42
|
Amino acid metabolism and signalling pathways: potential targets in the control of infection and immunity. Eur J Clin Nutr 2021; 75:1319-1327. [PMID: 34163018 PMCID: PMC8220356 DOI: 10.1038/s41430-021-00943-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/04/2021] [Accepted: 05/12/2021] [Indexed: 12/13/2022]
Abstract
Defences to pathogens such as SarCoV2 in mammals involves interactions between immune functions and metabolic pathways to eradicate infection while preventing hyperinflammation. Amino acid metabolic pathways represent with other antimicrobial agent potential targets for therapeutic strategies. iNOS-mediated production of NO from Arg is involved in the innate inflammatory response to pathogens and NO overproduction can induce hyperinflammation. The two Arg- and Trp-catabolising enzymes Arg1 and IDO1 reduce the hyperinflammation by an immunosuppressive effect via either Arg starvation (for Arg1) or via the immunoregulatory activity of the Trp-derived metabolites Kyn (for IDO1). In response to amino acid abundance mTOR activates the host protein translation and Coronaviruses use this machinery for their own protein synthesis and replication. In contrast GCN2, the sensor of amino acid starvation, activates pathways that restrict inflammation and viral replication. Gln depletion alters the immune response that become more suppressive, by favouring a regulatory T phenotype rather than a Th1 phenotype. Proliferating activated immune cells are highly dependent on Ser, activation and differentiation of T cells need enough Ser and dietary Ser restriction can inhibit their proliferation. Cys is strictly required for T-cell proliferation because they cannot convert Met to Cys. Restricting Met inhibits both viral RNA cap methylation and replication, and the proliferation of infected cells with an increased requirement for Met. Phe catabolism produces antimicrobial metabolites resulting in the inhibition of microbial growth and an immunosuppressive activity towards T lymphocytes.
Collapse
|
43
|
Tomé D. Amino acid metabolism and signalling pathways: potential targets in the control of infection and immunity. Nutr Diabetes 2021; 11:20. [PMID: 34168115 PMCID: PMC8223530 DOI: 10.1038/s41387-021-00164-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/04/2021] [Accepted: 05/12/2021] [Indexed: 02/06/2023] Open
Abstract
Defences to pathogens such as SarCoV2 in mammals involves interactions between immune functions and metabolic pathways to eradicate infection while preventing hyperinflammation. Amino acid metabolic pathways represent with other antimicrobial agent potential targets for therapeutic strategies. iNOS-mediated production of NO from Arg is involved in the innate inflammatory response to pathogens and NO overproduction can induce hyperinflammation. The two Arg-catabolising enzymes Arg1 and IDO1 reduce the hyperinflammation by an immunosuppressive effect via either Arg starvation (for Arg1) or via the immunoregulatory activity of the Arg-derived metabolites Kyn (for IDO1). In response to amino acid abundance mTOR activates the host protein translation and Coronaviruses use this machinery for their own protein synthesis and replication. In contrast GCN2, the sensor of amino acid starvation, activates pathways that restrict inflammation and viral replication. Gln depletion alters the immune response that become more suppressive, by favouring a regulatory T phenotype rather than a Th1 phenotype. Proliferating activated immune cells are highly dependent on Ser, activation and differentiation of T cells need enough Ser and dietary Ser restriction can inhibit their proliferation. Cys is strictly required for T-cell proliferation because they cannot convert Met to Cys. Restricting Met inhibits both viral RNA cap methylation and replication, and the proliferation of infected cells with an increased requirement for Met. Phe catabolism produces antimicrobial metabolites resulting in the inhibition of microbial growth and an immunosuppressive activity towards T lymphocytes.
Collapse
Affiliation(s)
- Daniel Tomé
- grid.417885.70000 0001 2185 8223UMR PNCA, AgroParisTech, INRAE, Université Paris-Saclay, Paris, France
| |
Collapse
|
44
|
Miljanovic D, Milicevic O, Loncar A, Abazovic D, Despot D, Banko A. The First Molecular Characterization of Serbian SARS-CoV-2 Isolates From a Unique Early Second Wave in Europe. Front Microbiol 2021; 12:691154. [PMID: 34220784 PMCID: PMC8250835 DOI: 10.3389/fmicb.2021.691154] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/19/2021] [Indexed: 12/23/2022] Open
Abstract
March 6, 2020 is considered as the official date of the beginning of the COVID-19 epidemic in Serbia. In late spring and early summer 2020, Europe recorded a decline in the rate of SARS-CoV-2 infection and subsiding of the first wave. This trend lasted until the fall, when the second wave of the epidemic began to appear. Unlike the rest of Europe, Serbia was hit by the second wave of the epidemic a few months earlier. Already in June 2020, newly confirmed cases had risen exponentially. As the COVID-19 pandemic is the first pandemic in which there has been instant sharing of genomic information on isolates around the world, the aim of this study was to analyze whole SARS-CoV-2 viral genomes from Serbia, to identify circulating variants/clade/lineages, and to explore site-specific mutational patterns in the unique early second wave of the European epidemic. This analysis of Serbian isolates represents the first publication from Balkan countries, which demonstrates the importance of specificities of local transmission especially when preventive measures differ among countries. One hundred forty-eight different genome variants among 41 Serbian isolates were detected in this study. One unique and seven extremely rare mutations were identified, with locally specific continuous dominance of the 20D clade. At the same time, amino acid substitutions of newly identified variants of concern were found in our isolates from October 2020. Future research should be focused on functional characterization of novel mutations in order to understand the exact role of these variations.
Collapse
Affiliation(s)
- Danijela Miljanovic
- Virology Laboratory, Faculty of Medicine, Institute of Microbiology and Immunology, University of Belgrade, Belgrade, Serbia
| | - Ognjen Milicevic
- Faculty of Medicine, Institute for Medical Statistics and Informatics, University of Belgrade, Belgrade, Serbia
| | - Ana Loncar
- Laboratory of Molecular Microbiology, Institute for Biocides and Medical Ecology, Belgrade, Serbia
| | - Dzihan Abazovic
- Biocell Hospital, Belgrade, Serbia
- Emergency Medical Centre of Montenegro, Podgorica, Montenegro
| | - Dragana Despot
- Laboratory of Molecular Microbiology, Institute for Biocides and Medical Ecology, Belgrade, Serbia
| | - Ana Banko
- Virology Laboratory, Faculty of Medicine, Institute of Microbiology and Immunology, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
45
|
Kelta Wabalo E, Dukessa Dubiwak A, Welde Senbetu M, Sime Gizaw T. Effect of Genomic and Amino Acid Sequence Mutation on Virulence and Therapeutic Target of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS COV-2). Infect Drug Resist 2021; 14:2187-2192. [PMID: 34163183 PMCID: PMC8214021 DOI: 10.2147/idr.s307374] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/26/2021] [Indexed: 01/08/2023] Open
Abstract
The COVID-19 pandemic is caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). It is one of the RNA coronaviruses which share the highest mutation rates of RNA viruses when compared with that of their hosts. The collective mutation rate of RNA viruses is up to a million times higher than their hosts and is correlated with enhanced virulence of viruses. The RNA, genomic material of SARS-CoV-2, has the capacity of showing amplified fast changes as the infection spreads. These changes were frequently observed in genes for spike glycoprotein, nucleocapsid, ORF1ab, and ORF8, together with RNA dependent RNA polymerase. In contrast, genes for envelope, membrane, ORF6, ORF7a and ORF7b showed no observable changes in terms of amino acid substitutions. Mutated SARS COV-2 at these particular sites has been associated with viral infectivity, false laboratory results and viral genome mutation and interferes with therapeutic targets. Interferences with therapeutic targets is frequently observed in genes for RdRp. Additionally, mutated viral genes for RdRp render slow fidelity of RdRp protein, resulting in a high mutation rate. Such a high mutation rate might allow new virulent forms of the virus to emerge and influence the disease profile. This review aimed to elaborate on the effect of genomic and amino acid sequence mutations on the virulence and therapeutic targets of SARS COV-2. To achieve this objective, multiple literatures have been reviewed.
Collapse
Affiliation(s)
- Endriyas Kelta Wabalo
- Department of Biomedical Sciences, Faculty of Medical Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
| | - Abebe Dukessa Dubiwak
- Department of Biomedical Sciences, Faculty of Medical Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
| | - Mengistu Welde Senbetu
- Department of Biomedical Sciences, Faculty of Medical Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
| | - Tariku Sime Gizaw
- Department of Biomedical Sciences, Faculty of Medical Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
| |
Collapse
|
46
|
Cao Y, Yang R, Lee I, Zhang W, Sun J, Wang W, Meng X. Characterization of the SARS-CoV-2 E Protein: Sequence, Structure, Viroporin, and Inhibitors. Protein Sci 2021; 30:1114-1130. [PMID: 33813796 PMCID: PMC8138525 DOI: 10.1002/pro.4075] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 12/19/2022]
Abstract
The COVID-19 epidemic is one of the most influential epidemics in history. Understanding the impact of coronaviruses (CoVs) on host cells is very important for disease treatment. The SARS-CoV-2 envelope (E) protein is a small structural protein involved in many aspects of the viral life cycle. The E protein promotes the packaging and reproduction of the virus, and deletion of this protein weakens or even abolishes the virulence. This review aims to establish new knowledge by combining recent advances in the study of the SARS-CoV-2 E protein and by comparing it with the SARS-CoV E protein. The E protein amino acid sequence, structure, self-assembly characteristics, viroporin mechanisms and inhibitors are summarized and analyzed herein. Although the mechanisms of the SARS-CoV-2 and SARS-CoV E proteins are similar in many respects, specific studies on the SARS-CoV-2 E protein, for both monomers and oligomers, are still lacking. A comprehensive understanding of this protein should prompt further studies on the design and characterization of effective targeted therapeutic measures.
Collapse
Affiliation(s)
- Yipeng Cao
- Tianjin Medical University Cancer Institute and HospitalKey Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for CancerTianjinPeople's Republic of China
- National Supercomputer Center in TianjinTEDA‐Tianjin Economic‐Technological Development AreaTianjinPeople's Republic of China
| | - Rui Yang
- Department of Infection and ImmunityTianjin Union Medical Center, Nankai University Affiliated HospitalTianjinPeople's Republic of China
| | - Imshik Lee
- College of PhysicsNankai UniversityTianjinPeople's Republic of China
| | - Wenwen Zhang
- Tianjin Medical University Cancer Institute and HospitalKey Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for CancerTianjinPeople's Republic of China
| | - Jiana Sun
- Tianjin Medical University Cancer Institute and HospitalKey Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for CancerTianjinPeople's Republic of China
| | - Wei Wang
- Tianjin Medical University Cancer Institute and HospitalKey Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for CancerTianjinPeople's Republic of China
| | - Xiangfei Meng
- National Supercomputer Center in TianjinTEDA‐Tianjin Economic‐Technological Development AreaTianjinPeople's Republic of China
| |
Collapse
|
47
|
Porto WF. Virtual screening of peptides with high affinity for SARS-CoV-2 main protease. Comput Biol Med 2021; 133:104363. [PMID: 33862305 PMCID: PMC8018786 DOI: 10.1016/j.compbiomed.2021.104363] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/26/2022]
Abstract
The current pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused more than 2,000,000 deaths worldwide. Currently, vaccine development and drug repurposing have been the main strategies to find a COVID-19 treatment. However, the development of new drugs could be the solution if the main strategies fail. Here, a virtual screening of pentapeptides was applied in order to identify peptides with high affinity to SARS-CoV-2 main protease (Mpro). Over 70,000 peptides were screened employing a genetic algorithm that uses a docking score as the fitness function. The algorithm was coupled with a RESTful API to persist data and avoid redundancy. The docking exhaustiveness was adapted to the number of peptides in each virtual screening step, where the higher the number of peptides, the lower the docking exhaustiveness. Two potential peptides were selected (HHYWH and HYWWT), which have higher affinity to Mpro than to human proteases. Albeit preliminary, the data presented here provide some basis for the rational design of peptide-based drugs to treat COVID-19.
Collapse
|
48
|
Sharma T, Abohashrh M, Baig MH, Dong JJ, Alam MM, Ahmad I, Irfan S. Screening of drug databank against WT and mutant main protease of SARS-CoV-2: Towards finding potential compound for repurposing against COVID-19. Saudi J Biol Sci 2021; 28:3152-3159. [PMID: 33649700 PMCID: PMC7901282 DOI: 10.1016/j.sjbs.2021.02.059] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/09/2021] [Accepted: 02/16/2021] [Indexed: 01/07/2023] Open
Abstract
Although several pharmacological agents are under investigation to be repurposed as therapeutic against COVID-19, not much success has been achieved yet. So, the search for an effective and active option for the treatment of COVID-19 is still a big challenge. The Spike protein (S), RNA-dependent RNA polymerase (RdRp), and Main protease (Mpro) are considered to be the primary therapeutic drug target for COVID-19. In this study we have screened the drugbank compound library against the Main Protease. But our search was not limited to just Mpro. Like other viruses, SARS-CoV-2, have also acquired unique mutations. These mutations within the active site of these target proteins may be an important factor hindering effective drug candidate development. In the present study we identified important active site mutations within the SARS-CoV-2 Mpro (Y54C, N142S, T190I and A191V). Further the drugbank database was computationally screened against Mpro and the selected mutants. Finally, we came up with the common molecules effective against the wild type (WT) and all the selected Mpro. The study found Imiglitazar, was found to be the most active compound against the wild type of Mpro. While PF-03715455 (Y54C), Salvianolic acid A (N142S and T190I), and Montelukast (A191V) were found to be most active against the other selected mutants. It was also found that some other compounds such as Acteoside, 4-Amino-N- {4-[2-(2,6-Dimethyl-Phenoxy)-Acetylamino]-3-Hydroxy-1-Isobutyl-5-Phenyl-Pentyl}-Benzamide, PF-00610355, 4-Amino-N-4-[2-(2,6-Dimethyl-Phenoxy)-Acetylamino]-3-Hydroxy-1-Isobutyl-5-Phenyl-Pentyl}-Benzamide and Atorvastatin were showing high efficacy against the WT as well as other selected mutants. We believe that these molecules will provide a better and effective option for the treatment of COVID-19 clinical manifestations.
Collapse
Affiliation(s)
- Tanuj Sharma
- Department of Family Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Mohammed Abohashrh
- Department of Basic Medical Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mohammad Hassan Baig
- Department of Family Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae-June Dong
- Department of Family Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Mohammad Mahtab Alam
- Department of Basic Medical Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Safia Irfan
- Department of Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
49
|
Majumdar P, Niyogi S. SARS-CoV-2 mutations: the biological trackway towards viral fitness. Epidemiol Infect 2021; 149:e110. [PMID: 33928885 PMCID: PMC8134885 DOI: 10.1017/s0950268821001060] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/26/2021] [Accepted: 04/27/2021] [Indexed: 01/10/2023] Open
Abstract
The outbreak of pneumonia-like respiratory disorder at China and its rapid transmission world-wide resulted in public health emergency, which brought lineage B betacoronaviridae SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) into spotlight. The fairly high mutation rate, frequent recombination and interspecies transmission in betacoronaviridae are largely responsible for their temporal changes in infectivity and virulence. Investigation of global SARS-CoV-2 genotypes revealed considerable mutations in structural, non-structural, accessory proteins as well as untranslated regions. Among the various types of mutations, single-nucleotide substitutions are the predominant ones. In addition, insertion, deletion and frame-shift mutations are also reported, albeit at a lower frequency. Among the structural proteins, spike glycoprotein and nucleocapsid phosphoprotein accumulated a larger number of mutations whereas envelope and membrane proteins are mostly conserved. Spike protein and RNA-dependent RNA polymerase variants, D614G and P323L in combination became dominant world-wide. Divergent genetic variants created serious challenge towards the development of therapeutics and vaccines. This review will consolidate mutations in different SARS-CoV-2 proteins and their implications on viral fitness.
Collapse
Affiliation(s)
| | - Sougata Niyogi
- Dinabandhu Andrews Institute of Technology and Management, Block-S, 1/406A, Patuli, Kolkata, West Bengal700094, India
| |
Collapse
|
50
|
Natesh J, Mondal P, Kaur B, Abdul Salam AA, Kasilingam S, Meeran SM. Promising phytochemicals of traditional Himalayan medicinal plants against putative replication and transmission targets of SARS-CoV-2 by computational investigation. Comput Biol Med 2021; 133:104383. [PMID: 33915361 PMCID: PMC8056879 DOI: 10.1016/j.compbiomed.2021.104383] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/25/2021] [Accepted: 04/02/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Identification and repurposing of therapeutic and preventive strategies against COVID-19 are rapidly undergoing. Several medicinal plants from the Himalayan region have been traditionally used to treat various human disorders. Thus, in our current study, we intended to explore the potential ability of Himalayan medicinal plant (HMP) bioactives against COVID-19 using computational investigations. METHODS Molecular docking was performed against six crucial targets involved in the replication and transmission of SARS-CoV-2. About forty-two HMP bioactives were analyzed against these targets for their binding energy, molecular interactions, inhibition constant, and biological pathway enrichment analysis. Pharmacological properties and potential biological functions of HMP bioactives were predicted using the ADMETlab and PASS webserver respectively. RESULTS Our current investigation has demonstrated that the bioactives of HMPs potentially act against COVID-19. Docking results showed that several HMP bioactives had a superior binding affinity with SARS-CoV-2 essential targets like 3CLpro, PLpro, RdRp, helicase, spike protein, and human ACE2. Based on the binding energies, several bioactives were selected and analyzed for pathway enrichment studies. We have found that selected HMP bioactives may have a role in regulating immune and apoptotic pathways. Furthermore, these selected HMP bioactives have shown lower toxicity with pleiotropic biological activities, including anti-viral activities in predicting activity spectra for substances. CONCLUSIONS Current study results can explore the possibility of HMPs as therapeutic agents against COVID-19.
Collapse
Affiliation(s)
- Jagadish Natesh
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, 570 020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Priya Mondal
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, 570 020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Bhavjot Kaur
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, 570 020, India
| | - Abdul Ajees Abdul Salam
- Department of Atomic and Molecular Physics, Centre for Applied Nanosciences, Manipal Academy of Higher Education, Manipal, 576 104, India
| | - Srikaa Kasilingam
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, 570 020, India
| | - Syed Musthapa Meeran
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, 570 020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India.
| |
Collapse
|