1
|
Rotejanaprasert C, Malaphone V, Mayxay M, Chindavongsa K, Banouvong V, Khamlome B, Vilay P, Vanisavaeth V, Maude RJ. Spatiotemporal patterns and association with climate for malaria elimination in Lao PDR: a hierarchical modelling analysis with two-step Bayesian model selection. Malar J 2024; 23:231. [PMID: 39098946 PMCID: PMC11298089 DOI: 10.1186/s12936-024-05064-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 07/30/2024] [Indexed: 08/06/2024] Open
Abstract
BACKGROUND The government of Lao PDR has increased efforts to control malaria transmission in order to reach its national elimination goal by 2030. Weather can influence malaria transmission dynamics and should be considered when assessing the impact of elimination interventions but this relationship has not been well characterized in Lao PDR. This study examined the space-time association between climate variables and Plasmodium falciparum and Plasmodium vivax malaria incidence from 2010 to 2022. METHODS Spatiotemporal Bayesian modelling was used to investigate the monthly relationship, and model selection criteria were used to evaluate the performance of the models and weather variable specifications. As the malaria control and elimination situation was spatially and temporally dynamic during the study period, the association was examined annually at the provincial level. RESULTS Malaria incidence decreased from 2010 to 2022 and was concentrated in the southern regions for both P. falciparum and P. vivax. Rainfall and maximum humidity were identified as most strongly associated with malaria during the study period. Rainfall was associated with P. falciparum incidence in the north and central regions during 2010-2011, and with P. vivax incidence in the north and central regions during 2012-2015. Maximum humidity was persistently associated with P. falciparum and P. vivax incidence in the south. CONCLUSIONS Malaria remains prevalent in Lao PDR, particularly in the south, and the relationship with weather varies between regions but was strongest for rainfall and maximum humidity for both species. During peak periods with suitable weather conditions, vector control activities and raising public health awareness on the proper usage of intervention measures, such as indoor residual spraying and personal protection, should be prioritized.
Collapse
Affiliation(s)
- Chawarat Rotejanaprasert
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| | - Vilayvone Malaphone
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Mayfong Mayxay
- Institute for Research and Education Development, University of Health Sciences, Vientiane, Lao PDR
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | | | | | - Boualam Khamlome
- Center of Malariology, Parasitology, and Entomology, Vientiane, Lao PDR
| | - Phoutnalong Vilay
- Center of Malariology, Parasitology, and Entomology, Vientiane, Lao PDR
| | | | - Richard J Maude
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- The Open University, Milton Keynes, UK
| |
Collapse
|
2
|
Rotejanaprasert C, Chinpong K, Lawson AB, Chienwichai P, Maude RJ. Evaluation and comparison of spatial cluster detection methods for improved decision making of disease surveillance: a case study of national dengue surveillance in Thailand. BMC Med Res Methodol 2024; 24:14. [PMID: 38243198 PMCID: PMC10797994 DOI: 10.1186/s12874-023-02135-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 12/21/2023] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND Dengue is a mosquito-borne disease that causes over 300 million infections worldwide each year with no specific treatment available. Effective surveillance systems are needed for outbreak detection and resource allocation. Spatial cluster detection methods are commonly used, but no general guidance exists on the most appropriate method for dengue surveillance. Therefore, a comprehensive study is needed to assess different methods and provide guidance for dengue surveillance programs. METHODS To evaluate the effectiveness of different cluster detection methods for dengue surveillance, we selected and assessed commonly used methods: Getis Ord [Formula: see text], Local Moran, SaTScan, and Bayesian modeling. We conducted a simulation study to compare their performance in detecting clusters, and applied all methods to a case study of dengue surveillance in Thailand in 2019 to further evaluate their practical utility. RESULTS In the simulation study, Getis Ord [Formula: see text] and Local Moran had similar performance, with most misdetections occurring at cluster boundaries and isolated hotspots. SaTScan showed better precision but was less effective at detecting inner outliers, although it performed well on large outbreaks. Bayesian convolution modeling had the highest overall precision in the simulation study. In the dengue case study in Thailand, Getis Ord [Formula: see text] and Local Moran missed most disease clusters, while SaTScan was mostly able to detect a large cluster. Bayesian disease mapping seemed to be the most effective, with adaptive detection of irregularly shaped disease anomalies. CONCLUSIONS Bayesian modeling showed to be the most effective method, demonstrating the best accuracy in adaptively identifying irregularly shaped disease anomalies. In contrast, SaTScan excelled in detecting large outbreaks and regular forms. This study provides empirical evidence for the selection of appropriate tools for dengue surveillance in Thailand, with potential applicability to other disease control programs in similar settings.
Collapse
Affiliation(s)
- Chawarat Rotejanaprasert
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| | - Kawin Chinpong
- Chulabhorn Learning and Research Centre, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Andrew B Lawson
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
- Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Peerut Chienwichai
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Richard J Maude
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Harvard T.H. Chan School of Public Health, Harvard University, Cambridge, MA, USA
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- The Open University, Milton Keynes, UK
| |
Collapse
|
3
|
Rotejanaprasert C, Areechokchai D, Maude RJ. Two-step spatiotemporal anomaly detection corrected for lag reporting time with application to real-time dengue surveillance in Thailand. BMC Med Res Methodol 2024; 24:10. [PMID: 38218786 PMCID: PMC10787994 DOI: 10.1186/s12874-024-02141-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 01/02/2024] [Indexed: 01/15/2024] Open
Abstract
BACKGROUND Dengue infection ranges from asymptomatic to severe and life-threatening, with no specific treatment available. Vector control is crucial for interrupting its transmission cycle. Accurate estimation of outbreak timing and location is essential for efficient resource allocation. Timely and reliable notification systems are necessary to monitor dengue incidence, including spatial and temporal distributions, to detect outbreaks promptly and implement effective control measures. METHODS We proposed an integrated two-step methodology for real-time spatiotemporal cluster detection, accounting for reporting delays. In the first step, we employed space-time nowcasting modeling to compensate for lags in the reporting system. Subsequently, anomaly detection methods were applied to assess adverse risks. To illustrate the effectiveness of these detection methods, we conducted a case study using weekly dengue surveillance data from Thailand. RESULTS The developed methodology demonstrated robust surveillance effectiveness. By combining space-time nowcasting modeling and anomaly detection, we achieved enhanced detection capabilities, accounting for reporting delays and identifying clusters of elevated risk in real-time. The case study in Thailand showcased the practical application of our methodology, enabling timely initiation of disease control activities. CONCLUSION Our integrated two-step methodology provides a valuable approach for real-time spatiotemporal cluster detection in dengue surveillance. By addressing reporting delays and incorporating anomaly detection, it complements existing surveillance systems and forecasting efforts. Implementing this methodology can facilitate the timely initiation of disease control activities, contributing to more effective prevention and control strategies for dengue in Thailand and potentially other regions facing similar challenges.
Collapse
Affiliation(s)
- Chawarat Rotejanaprasert
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| | - Darin Areechokchai
- Division of Vector Borne Diseases, Department of Disease Control, Ministry of Public Health, Nonthaburi, Thailand
| | - Richard J Maude
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Harvard T.H. Chan School of Public Health, Harvard University, Cambridge, MA, USA
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- The Open University, Milton Keynes, UK
| |
Collapse
|
4
|
Kim J, Lawson AB, Neelon B, Korte JE, Eberth JM, Chowell G. Evaluation of Bayesian spatiotemporal infectious disease models for prospective surveillance analysis. BMC Med Res Methodol 2023; 23:171. [PMID: 37481553 PMCID: PMC10363300 DOI: 10.1186/s12874-023-01987-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 07/11/2023] [Indexed: 07/24/2023] Open
Abstract
BACKGROUND COVID-19 brought enormous challenges to public health surveillance and underscored the importance of developing and maintaining robust systems for accurate surveillance. As public health data collection efforts expand, there is a critical need for infectious disease modeling researchers to continue to develop prospective surveillance metrics and statistical models to accommodate the modeling of large disease counts and variability. This paper evaluated different likelihoods for the disease count model and various spatiotemporal mean models for prospective surveillance. METHODS We evaluated Bayesian spatiotemporal models, which are the foundation for model-based infectious disease surveillance metrics. Bayesian spatiotemporal mean models based on the Poisson and the negative binomial likelihoods were evaluated with the different lengths of past data usage. We compared their goodness of fit and short-term prediction performance with both simulated epidemic data and real data from the COVID-19 pandemic. RESULTS The simulation results show that the negative binomial likelihood-based models show better goodness of fit results than Poisson likelihood-based models as deemed by smaller deviance information criteria (DIC) values. However, Poisson models yield smaller mean square error (MSE) and mean absolute one-step prediction error (MAOSPE) results when we use a shorter length of the past data such as 7 and 3 time periods. Real COVID-19 data analysis of New Jersey and South Carolina shows similar results for the goodness of fit and short-term prediction results. Negative binomial-based mean models showed better performance when we used the past data of 52 time periods. Poisson-based mean models showed comparable goodness of fit performance and smaller MSE and MAOSPE results when we used the past data of 7 and 3 time periods. CONCLUSION We evaluate these models and provide future infectious disease outbreak modeling guidelines for Bayesian spatiotemporal analysis. Our choice of the likelihood and spatiotemporal mean models was influenced by both historical data length and variability. With a longer length of past data usage and more over-dispersed data, the negative binomial likelihood shows a better model fit than the Poisson likelihood. However, as we use a shorter length of the past data for our surveillance analysis, the difference between the Poisson and the negative binomial models becomes smaller. In this case, the Poisson likelihood shows robust posterior mean estimate and short-term prediction results.
Collapse
Affiliation(s)
- Joanne Kim
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA.
| | - Andrew B Lawson
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
- Usher Institute, Centre for Population Health Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK
| | - Brian Neelon
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Jeffrey E Korte
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Jan M Eberth
- Department of Health Management and Policy, Drexel University, Philadelphia, PA, USA
| | - Gerardo Chowell
- Department of Population Health Sciences, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
5
|
Rotejanaprasert C, Lawpoolsri S, Sa-Angchai P, Khamsiriwatchara A, Padungtod C, Tipmontree R, Menezes L, Sattabongkot J, Cui L, Kaewkungwal J. Projecting malaria elimination in Thailand using Bayesian hierarchical spatiotemporal models. Sci Rep 2023; 13:7799. [PMID: 37179429 PMCID: PMC10182757 DOI: 10.1038/s41598-023-35007-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 05/11/2023] [Indexed: 05/15/2023] Open
Abstract
Thailand has set a goal of eliminating malaria by 2024 in its national strategic plan. In this study, we used the Thailand malaria surveillance database to develop hierarchical spatiotemporal models to analyze retrospective patterns and predict Plasmodium falciparum and Plasmodium vivax malaria incidences at the provincial level. We first describe the available data, explain the hierarchical spatiotemporal framework underlying the analysis, and then display the results of fitting various space-time formulations to the malaria data with the different model selection metrics. The Bayesian model selection process assessed the sensitivity of different specifications to obtain the optimal models. To assess whether malaria could be eliminated by 2024 per Thailand's National Malaria Elimination Strategy, 2017-2026, we used the best-fitted model to project the estimated cases for 2022-2028. The study results based on the models revealed different predicted estimates between both species. The model for P. falciparum suggested that zero P. falciparum cases might be possible by 2024, in contrast to the model for P. vivax, wherein zero P. vivax cases might not be reached. Innovative approaches in the P. vivax-specific control and elimination plans must be implemented to reach zero P. vivax and consequently declare Thailand as a malaria-free country.
Collapse
Affiliation(s)
- Chawarat Rotejanaprasert
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Saranath Lawpoolsri
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Patiwat Sa-Angchai
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Amnat Khamsiriwatchara
- Center of Excellence for Biomedical and Public Health Informatics (BIOPHICS), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Chantana Padungtod
- Division of Vector Borne Diseases, Department of Disease Control, Ministry of Public Health, Nonthaburi, Thailand
| | - Rungrawee Tipmontree
- Division of Vector Borne Diseases, Department of Disease Control, Ministry of Public Health, Nonthaburi, Thailand
| | - Lynette Menezes
- Division of Infectious Diseases and Internal Medicine, Department of Internal Medicine, University of South Florida, Tampa, USA
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Liwang Cui
- Division of Infectious Diseases and Internal Medicine, Department of Internal Medicine, University of South Florida, Tampa, USA
| | - Jaranit Kaewkungwal
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
- Center of Excellence for Biomedical and Public Health Informatics (BIOPHICS), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
6
|
Rotejanaprasert C, Lawson AB, Maude RJ. Spatiotemporal reproduction number with Bayesian model selection for evaluation of emerging infectious disease transmissibility: an application to COVID-19 national surveillance data. BMC Med Res Methodol 2023; 23:62. [PMID: 36915077 PMCID: PMC10010957 DOI: 10.1186/s12874-023-01870-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/20/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND To control emerging diseases, governments often have to make decisions based on limited evidence. The effective or temporal reproductive number is used to estimate the expected number of new cases caused by an infectious person in a partially susceptible population. While the temporal dynamic is captured in the temporal reproduction number, the dominant approach is currently based on modeling that implicitly treats people within a population as geographically well mixed. METHODS In this study we aimed to develop a generic and robust methodology for estimating spatiotemporal dynamic measures that can be instantaneously computed for each location and time within a Bayesian model selection and averaging framework. A simulation study was conducted to demonstrate robustness of the method. A case study was provided of a real-world application to COVID-19 national surveillance data in Thailand. RESULTS Overall, the proposed method allowed for estimation of different scenarios of reproduction numbers in the simulation study. The model selection chose the true serial interval when included in our study whereas model averaging yielded the weighted outcome which could be less accurate than model selection. In the case study of COVID-19 in Thailand, the best model based on model selection and averaging criteria had a similar trend to real data and was consistent with previously published findings in the country. CONCLUSIONS The method yielded robust estimation in several simulated scenarios of force of transmission with computing flexibility and practical benefits. Thus, this development can be suitable and practically useful for surveillance applications especially for newly emerging diseases. As new outbreak waves continue to develop and the risk changes on both local and global scales, our work can facilitate policymaking for timely disease control.
Collapse
Affiliation(s)
- Chawarat Rotejanaprasert
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| | - Andrew B Lawson
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
- Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Richard J Maude
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Harvard T.H. Chan School of Public Health, Harvard University, Cambridge, MA, USA
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- The Open University, Milton Keynes, UK
| |
Collapse
|
7
|
Modeling Dynamic Responses to COVID-19 Epidemics: A Case Study in Thailand. Trop Med Infect Dis 2022; 7:tropicalmed7100303. [PMID: 36288044 PMCID: PMC9612314 DOI: 10.3390/tropicalmed7100303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/26/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022] Open
Abstract
Quantifying the effects of control measures during the emergence and recurrence of SARS-CoV-2 poses a challenge to understanding the dynamic responses in terms of effectiveness and the population’s reaction. This study aims to estimate and compare the non-pharmaceutical interventions applied in the first and second outbreaks of COVID-19 in Thailand. We formulated a dynamic model of transmission and control. For each outbreak, the time interval was divided into subintervals characterized by epidemic events. We used daily case report data to estimate the transmission rates, the quarantine rate, and its efficiency by the maximum likelihood method. The duration-specific control reproduction numbers were calculated. The model predicts that the reproduction number dropped by about 91% after the nationwide lockdown in the first wave. In the second wave, after a high number of cases had been reported, the reproduction number decreased to about 80% in the next phase, but the spread continued. The estimated value was below the threshold in the last phase. For both waves, successful control was mainly induced by decreased transmission rate, while the explicit quarantine measure showed less effectiveness. The relatively weak control measure estimated by the model may have implications for economic impact and the adaptation of people.
Collapse
|
8
|
Nash RK, Nouvellet P, Cori A. Real-time estimation of the epidemic reproduction number: Scoping review of the applications and challenges. PLOS DIGITAL HEALTH 2022; 1:e0000052. [PMID: 36812522 PMCID: PMC9931334 DOI: 10.1371/journal.pdig.0000052] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/27/2022] [Indexed: 12/24/2022]
Abstract
The time-varying reproduction number (Rt) is an important measure of transmissibility during outbreaks. Estimating whether and how rapidly an outbreak is growing (Rt > 1) or declining (Rt < 1) can inform the design, monitoring and adjustment of control measures in real-time. We use a popular R package for Rt estimation, EpiEstim, as a case study to evaluate the contexts in which Rt estimation methods have been used and identify unmet needs which would enable broader applicability of these methods in real-time. A scoping review, complemented by a small EpiEstim user survey, highlight issues with the current approaches, including the quality of input incidence data, the inability to account for geographical factors, and other methodological issues. We summarise the methods and software developed to tackle the problems identified, but conclude that significant gaps remain which should be addressed to enable easier, more robust and applicable estimation of Rt during epidemics.
Collapse
Affiliation(s)
- Rebecca K. Nash
- MRC Centre for Global Infectious Disease Analysis, Jameel Institute, School of Public Health, Imperial College London
| | - Pierre Nouvellet
- MRC Centre for Global Infectious Disease Analysis, Jameel Institute, School of Public Health, Imperial College London
- School of Life Sciences, University of Sussex
| | - Anne Cori
- MRC Centre for Global Infectious Disease Analysis, Jameel Institute, School of Public Health, Imperial College London
| |
Collapse
|
9
|
Chinpong K, Thavornwattana K, Armatrmontree P, Chienwichai P, Lawpoolsri S, Silachamroon U, Maude RJ, Rotejanaprasert C. Spatiotemporal Epidemiology of Tuberculosis in Thailand from 2011 to 2020. BIOLOGY 2022; 11:755. [PMID: 35625483 PMCID: PMC9138531 DOI: 10.3390/biology11050755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 11/16/2022]
Abstract
Tuberculosis is a leading cause of infectious disease globally, especially in developing countries. Better knowledge of spatial and temporal patterns of tuberculosis burden is important for effective control programs as well as informing resource and budget allocation. Studies have demonstrated that TB exhibits highly complex dynamics in both spatial and temporal dimensions at different levels. In Thailand, TB research has been primarily focused on surveys and clinical aspects of the disease burden with little attention on spatiotemporal heterogeneity. This study aimed to describe temporal trends and spatial patterns of TB incidence and mortality in Thailand from 2011 to 2020. Monthly TB case and death notification data were aggregated at the provincial level. Age-standardized incidence and mortality were calculated; time series and global and local clustering analyses were performed for the whole country. There was an overall decreasing trend with seasonal peaks in the winter. There was spatial heterogeneity with disease clusters in many regions, especially along international borders, suggesting that population movement and socioeconomic variables might affect the spatiotemporal distribution in Thailand. Understanding the space-time distribution of TB is useful for planning targeted disease control program activities. This is particularly important in low- and middle-income countries including Thailand to help prioritize allocation of limited resources.
Collapse
Affiliation(s)
- Kawin Chinpong
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok 10210, Thailand; (K.C.); (K.T.); (P.A.); (P.C.)
- Department of Computer Engineering, Faculty of Engineering, King Mongkut’s University of technology Thonburi, Bangkok 10140, Thailand
| | - Kaewklao Thavornwattana
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok 10210, Thailand; (K.C.); (K.T.); (P.A.); (P.C.)
- Department of Computer Engineering, Faculty of Engineering, King Mongkut’s University of technology Thonburi, Bangkok 10140, Thailand
| | - Peerawich Armatrmontree
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok 10210, Thailand; (K.C.); (K.T.); (P.A.); (P.C.)
- Department of Computer Engineering, Faculty of Engineering, King Mongkut’s University of technology Thonburi, Bangkok 10140, Thailand
| | - Peerut Chienwichai
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok 10210, Thailand; (K.C.); (K.T.); (P.A.); (P.C.)
| | - Saranath Lawpoolsri
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand;
| | - Udomsak Silachamroon
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand;
| | - Richard J. Maude
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand;
- Harvard T.H. Chan School of Public Health, Harvard University, Cambridge, MA 02115, USA
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, New Road, Oxford OX1 1NF, UK
- The Open University, Milton Keynes MK7 6AA, UK
| | - Chawarat Rotejanaprasert
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand;
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand;
| |
Collapse
|
10
|
Hridoy AEE, Tipo IH, Sami MS, Babu MR, Ahmed MS, Rahman SM, Tusher SMSH, Rashid KJ, Naim M. Spatio-temporal estimation of basic and effective reproduction number of COVID-19 and post-lockdown transmissibility in Bangladesh. SPATIAL INFORMATION RESEARCH 2022; 30:23-35. [PMCID: PMC8237036 DOI: 10.1007/s41324-021-00409-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/28/2021] [Accepted: 06/04/2021] [Indexed: 11/04/2023]
Abstract
The ongoing COVID-19 pandemic has caused unprecedented public health concern in Bangladesh. This study investigated the role of Non-Pharmaceutical Interventions on COVID-19 transmission and post-lockdown scenarios of 64 administrative districts and the country as a whole based on the spatiotemporal variations of effective reproduction number (R t) of COVID-19 incidences. The daily confirmed COVID-19 data of Bangladesh and its administrative districts from March 8, 2020, to March 10, 2021, were used to estimate R t. This study finds that the maximum value of R t reached 4.15 (3.43, 4.97, 95% CI) in late March 2020, which remained above 1 afterwards in most of the districts. Containment measures are moderately effective in reducing transmission by 24.03%. The R t was established below 1 from early December 2020 for overall Bangladesh and a gradual increase of R t above 1 has been seen from early February 2021. The basic reproduction number (R 0) in Bangladesh probably varied around 2.02 (1.33–3.28, 95% CI). This study finds a significant positive correlation (r = 0.75) between population density and COVID-19 incidence and explaining 56% variation in Bangladesh. The findings of this study are expected to support the policymakers to adopt appropriate measures for curbing the COVID-19 transmission effectively.
Collapse
Affiliation(s)
- Al-Ekram Elahee Hridoy
- Department of Geography and Environmental Studies, University of Chittagong, Chattogram, 4331 Bangladesh
| | - Imrul Hasan Tipo
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chattogram, 4331 Bangladesh
| | - Md. Shamsudduha Sami
- Department of Geography and Environment, Jagannath University, Dhaka, 1100 Bangladesh
| | - Md. Ripon Babu
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chattogram, 4331 Bangladesh
| | - Md. Sayem Ahmed
- Department of Pharmacy, East West University, Dhaka, 1212 Bangladesh
| | - Syed Masiur Rahman
- Center for Environment & Water, Research Institute, King Fahd University of Petroleum & Minerals, KFUPM Box 713, Dhahran, 31261 Saudi Arabia
| | | | - Kazi Jihadur Rashid
- Center for Environmental and Geographic Information Services (CEGIS), Dhaka, 1212 Bangladesh
| | - Mohammad Naim
- Department of Electrical and Computer Engineering, North South University, Dhaka, 1229 Bangladesh
| |
Collapse
|
11
|
Meintrup D, Nowak-Machen M, Borgmann S. Nine Months of COVID-19 Pandemic in Europe: A Comparative Time Series Analysis of Cases and Fatalities in 35 Countries. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18126680. [PMID: 34205809 PMCID: PMC8296382 DOI: 10.3390/ijerph18126680] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/12/2021] [Accepted: 06/14/2021] [Indexed: 01/08/2023]
Abstract
(1) Background: to describe the dynamic of the pandemic across 35 European countries over a period of 9 months. (2) Methods: a three-phase time series model was fitted for 35 European countries, predicting deaths based on SARS-CoV-2 incidences. Hierarchical clustering resulted in three clusters of countries. A multiple regression model was developed predicting thresholds for COVID-19 incidences, coupled to death numbers. (3) Results: The model showed strongly connected deaths and incidences during the waves in spring and fall. The corrected case-fatality rates ranged from 2% to 20.7% in the first wave, and from 0.5% to 4.2% in the second wave. If the incidences stay below a threshold, predicted by the regression model (R2=85.0%), COVID-19 related deaths and incidences were not necessarily coupled. The clusters represented different regions in Europe, and the corrected case-fatality rates in each cluster flipped from high to low or vice versa. Severely and less severely affected countries flipped between the first and second wave. (4) Conclusions: COVID-19 incidences and related deaths were uncoupled during the summer but coupled during two waves. Once a country-specific threshold of infections is reached, death numbers will start to rise, allowing health care systems and countries to prepare.
Collapse
Affiliation(s)
- David Meintrup
- Faculty of Engineering and Management, University of Applied Sciences Ingolstadt, 85049 Ingolstadt, Germany
- Correspondence:
| | - Martina Nowak-Machen
- Department of Anaesthesia and Intensive Care Medicine, Ingolstadt Hospital, 85049 Ingolstadt, Germany;
| | - Stefan Borgmann
- Department of Infectious Diseases and Infection Control, Ingolstadt Hospital, 85049 Ingolstadt, Germany;
| |
Collapse
|
12
|
Frank TD, Chiangga S. SEIR order parameters and eigenvectors of the three stages of completed COVID-19 epidemics: with an illustration for Thailand January to May 2020. Phys Biol 2021; 18. [PMID: 33789256 DOI: 10.1088/1478-3975/abf426] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/31/2021] [Indexed: 12/23/2022]
Abstract
By end of October 2020, the COVID-19 pandemic has taken a tragic toll of 1150 000 lives and this number is expected to increase. Despite the pandemic is raging in most parts of the world, in a few countries COVID-19 epidemics subsided due to successful implementations of intervention measures. A unifying perspective of the beginnings, middle stages, and endings of such completed COVID-19 epidemics is developed based on the order parameter and eigenvalue concepts of nonlinear physics, in general, and synergetics, in particular. To this end, a standard susceptible-exposed-infected-recovered (SEIR) epidemiological model is used. It is shown that COVID-19 epidemic outbreaks follow a suitably defined SEIR order parameter. Intervention measures switch the eigenvalue of the order parameter from a positive to a negative value, and in doing so, stabilize the COVID-19 disease-free state. The subsiding of COVID-19 epidemics eventually follows the remnant of the order parameter of the infection dynamical system. These considerations are illustrated for the COVID-19 epidemic in Thailand from January to May 2020. The decay of effective contact rates throughout the three epidemic stages is demonstrated. Evidence for the sign-switching of the dominant eigenvalue is given and the order parameter and its stage-3 remnant are identified. The presumed impacts of interventions measures implemented in Thailand are discussed in this context.
Collapse
Affiliation(s)
- T D Frank
- Department of Psychology and Department of Physics, University of Connecticut, Storrs, CT 06269, United States of America
| | - S Chiangga
- Department of Physics, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| |
Collapse
|
13
|
A foci cohort analysis to monitor successful and persistent foci under Thailand's Malaria Elimination Strategy. Malar J 2021; 20:118. [PMID: 33639951 PMCID: PMC7910787 DOI: 10.1186/s12936-021-03648-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/12/2021] [Accepted: 02/13/2021] [Indexed: 12/04/2022] Open
Abstract
Background Thailand’s success in reducing malaria burden is built on the efficient “1-3-7” strategy applied to the surveillance system. The strategy is based on rapid case notification within 1 day, case investigation within 3 days, and targeted foci response to reduce the spread of Plasmodium spp. within 7 days. Autochthonous transmission is still occurring in the country, threatening the goal of reaching malaria-free status by 2024. This study aimed to assess the effectiveness of the 1-3-7 strategy and identify factors associated with presence of active foci. Methods Data from the national malaria information system were extracted from fiscal years 2013 to 2019; after data cleaning, the final dataset included 81,012 foci. A Cox’s proportional hazards model was built to investigate factors linked with the probability of becoming an active focus from 2015 to 2019 among foci that changed status from non-active to active focus during the study period. We performed a model selection technique based on the Akaike Information Criteria (AIC). Results The number of yearly active foci decreased from 2227 to 2013 to 700 in 2019 (68.5 %), and the number of autochthonous cases declined from 17,553 to 3,787 (78.4 %). The best Cox’s hazard model showed that foci in which vector control interventions were required were 18 % more likely to become an active focus. Increasing compliance with the 1-3-7 strategy had a protective effect, with a 22 % risk reduction among foci with over 80 % adherence to 1-3-7 timeliness protocols. Other factors associated with likelihood to become or remain an active focus include previous classification as an active focus, presence of Plasmodium falciparum infections, level of forest disturbance, and location in border provinces. Conclusions These results identified factors that favored regression of non-active foci to active foci during the study period. The model and relative risk map align with the national malaria program’s district stratification and shows strong spatial heterogeneity, with high probability to record active foci in border provinces. The results of the study may be useful for honing Thailand’s program to eliminate malaria and for other countries aiming to accelerate malaria elimination.
Collapse
|
14
|
Mahikul W, Chotsiri P, Ploddi K, Pan-ngum W. Evaluating the Impact of Intervention Strategies on the First Wave and Predicting the Second Wave of COVID-19 in Thailand: A Mathematical Modeling Study. BIOLOGY 2021; 10:biology10020080. [PMID: 33499138 PMCID: PMC7911628 DOI: 10.3390/biology10020080] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 01/13/2021] [Indexed: 12/15/2022]
Abstract
Coronavirus disease 2019 (COVID-19) has spread rapidly worldwide. This study aimed to assess and predict the incidence of COVID-19 in Thailand, including the preparation and evaluation of intervention strategies. An SEIR (susceptible, exposed, infected, recovered) model was implemented with model parameters estimated using the Bayesian approach. The model's projections showed that the highest daily reported incidence of COVID-19 would be approximately 140 cases (95% credible interval, CrI: 83-170 cases) by the end of March 2020. After Thailand declared an emergency decree, the numbers of new cases and case fatalities decreased, with no new imported cases. According to the model's predictions, the incidence would be zero at the end of June if non-pharmaceutical interventions (NPIs) were strictly and widely implemented. These stringent NPIs reduced the effective reproductive number (Rt) to 0.73 per day (95% CrI: 0.53-0.93) during April and May. Sensitivity analysis showed that contact rate, hand washing, and face mask wearing effectiveness were the parameters that most influenced the number of reported daily new cases. Our evaluation shows that Thailand's intervention strategies have been highly effective in mitigating disease propagation. Continuing with these strict disease prevention behaviors could minimize the risk of a new COVID-19 outbreak in Thailand.
Collapse
Affiliation(s)
- Wiriya Mahikul
- Faculty of Medicine and Public Health, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok 10210, Thailand;
- Department of Fundamentals of Public Health, Faculty of Public Health, Burapha University, Chonburi 20131, Thailand
| | - Palang Chotsiri
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand;
| | - Kritchavat Ploddi
- Division of Epidemiology, Department of Disease Control, Ministry of Public Health, Nonthaburi 11000, Thailand;
| | - Wirichada Pan-ngum
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand;
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Correspondence: ; Tel.: +66-2-354-9188; Fax: +66-2-354-9169
| |
Collapse
|