1
|
Velázquez J, Cruz L, Pérez-Bernal M, Valdivia O, Haidar A, Rodríguez A, Herrera F, González O, Morales A, Ulloa L, Blanco R, Pérez J, Dorta D, Luna Y, Garay HE, Abreu DD, Ramos Y, Besada V, Cabrera Y, Estrada MP, Carpio Y. Monoclonal antibody generated against Nile tilapia ( Oreochromis niloticus) IgT heavy chain using a peptide-based strategy. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2023; 4:100093. [PMID: 37122444 PMCID: PMC10130216 DOI: 10.1016/j.fsirep.2023.100093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 05/02/2023] Open
Abstract
Teleost IgT/Z plays a principal role in the defense mechanisms against infectious agents in the mucosal compartments and in systemic immunity. Previously, Nile tilapia (Oreochromis niloticus) IgT was discovered and characterized at transcription level. In this work, we generated a monoclonal antibody (mAb) that specifically recognized the Nile tilapia IgT. BALB/c mice were immunized with three synthetic peptides conjugated to KLH. The sequences of these peptides derived from the constant region of the Nile tilapia IgT heavy chain. ELISA and Western blotting confirmed the specificity of the polyclonal sera and the culture supernatant from a positive hybridoma clone. We observed immunoreactivity against a recombinant IgT fragment and native IgT in skin mucus. The anti-IgT mAb did not cross-react with purified tilapia IgM. Direct ELISA analysis allowed the quantification of skin mucus IgM and IgT concentrations. Flow cytometry analysis revealed differences in the percentage of IgT+ B cell populations between juveniles and adults in peripheral blood, head kidney and spleen lymphocytes and among the tissues analyzed. For further validation of the anti-IgT mAb utility, a recombinant vaccine candidate against sea lice (TT-P0 Ls) was injected into juvenile tilapia. Direct ELISA results revealed a differential secretion of skin mucus IgT and IgM after immunostimulation. In addition, the percentages of IgT+ B cells were determined at 7 days after booster and ex-vivo stimulation by flow cytometry. This mAb constitutes an important immunological tool to study the biological function and structural characteristics of tilapia IgT.
Collapse
Affiliation(s)
- Janet Velázquez
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology (CIGB), P.O. Box 6162, Havana 10600, Cuba
| | - Lynn Cruz
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology (CIGB), P.O. Box 6162, Havana 10600, Cuba
| | - Maylin Pérez-Bernal
- Research and Development Department, Center for Genetic Engineering and Biotechnology (CIGB), P.O. Box 83, Sancti Spíritus 60200, Cuba
| | - Onel Valdivia
- Research and Development Department, Center for Genetic Engineering and Biotechnology (CIGB), P.O. Box 83, Sancti Spíritus 60200, Cuba
| | - Arlette Haidar
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology (CIGB), P.O. Box 6162, Havana 10600, Cuba
| | - Alianet Rodríguez
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology (CIGB), P.O. Box 6162, Havana 10600, Cuba
| | - Fidel Herrera
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology (CIGB), P.O. Box 6162, Havana 10600, Cuba
| | - Osmany González
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology (CIGB), P.O. Box 6162, Havana 10600, Cuba
| | - Antonio Morales
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology (CIGB), P.O. Box 6162, Havana 10600, Cuba
| | - Lisbet Ulloa
- Research and Development Department, Center for Genetic Engineering and Biotechnology (CIGB), P.O. Box 83, Sancti Spíritus 60200, Cuba
| | - Reinaldo Blanco
- Production Department, Center for Genetic Engineering and Biotechnology (CIGB), P.O. Box 83, Sancti Spíritus 60200, Cuba
| | - Joel Pérez
- Production Department, Center for Genetic Engineering and Biotechnology (CIGB), P.O. Box 83, Sancti Spíritus 60200, Cuba
| | - Dayamí Dorta
- Production Department, Center for Genetic Engineering and Biotechnology (CIGB), P.O. Box 83, Sancti Spíritus 60200, Cuba
| | - Yaramis Luna
- Production Department, Center for Genetic Engineering and Biotechnology (CIGB), P.O. Box 83, Sancti Spíritus 60200, Cuba
| | - Hilda Elisa Garay
- Peptides Synthesis Department, Center for Genetic Engineering and Biotechnology (CIGB), P.O. Box 6162, Havana 10600, Cuba
| | - David Diago Abreu
- Peptides Synthesis Department, Center for Genetic Engineering and Biotechnology (CIGB), P.O. Box 6162, Havana 10600, Cuba
| | - Yassel Ramos
- Proteomics Department, Center for Genetic Engineering and Biotechnology (CIGB), P.O. Box 6162, Havana, 10600, Cuba
| | - Vladimir Besada
- Proteomics Department, Center for Genetic Engineering and Biotechnology (CIGB), P.O. Box 6162, Havana, 10600, Cuba
| | - Yeosvany Cabrera
- Research and Development Department, Center for Genetic Engineering and Biotechnology (CIGB), P.O. Box 83, Sancti Spíritus 60200, Cuba
| | - Mario Pablo Estrada
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology (CIGB), P.O. Box 6162, Havana 10600, Cuba
- Corresponding authors.
| | - Yamila Carpio
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology (CIGB), P.O. Box 6162, Havana 10600, Cuba
- Corresponding authors.
| |
Collapse
|
2
|
Gislefoss E, Abdelrahim Gamil AA, Øvergård AC, Evensen Ø. Identification and characterization of two salmon louse heme peroxidases and their potential as vaccine antigens. iScience 2023; 26:107991. [PMID: 37854698 PMCID: PMC10579435 DOI: 10.1016/j.isci.2023.107991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/09/2023] [Accepted: 09/16/2023] [Indexed: 10/20/2023] Open
Abstract
Salmon louse, Lepeophtheirus salmonis, represents major challenge for salmon farming. Current treatments impose welfare issues and are costly, whereas prophylactic measures are unavailable. Two salmon louse heme peroxidases (LsPxtl-1 and LsPxtl-2) were tested for their importance for parasite development and as potential vaccine candidates. LsPxtl-1 possesses two heme peroxidase domains and is expressed in ovaries and gut, whereas LsPxtl-2 encodes one domain and contains N-terminal signal peptide and an Eph receptor ligand-binding domain. LsPxtl-1, but not LsPxtl-2, knockdown in nauplius II stage caused poor swimming and death, indicating its importance for parasite development. Immunizations using single DNA plasmid injection encoding the peroxidases or heterologous prime (DNA) and boost (recombinant LsPxtl-2 protein) gave non-significant reduction in lice numbers. Single injection gave low specific antibody levels compared with the prime-boost. The findings suggest LsPxtl-1 is important for parasite development but formulations and vaccination modalities used did not significantly reduce lice infestation.
Collapse
Affiliation(s)
- Elisabeth Gislefoss
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
- Sea Lice Research Center, University of Bergen, Bergen, Norway
| | - Amr Ahmed Abdelrahim Gamil
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
- Sea Lice Research Center, University of Bergen, Bergen, Norway
| | - Aina-Cathrine Øvergård
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- Sea Lice Research Center, University of Bergen, Bergen, Norway
| | - Øystein Evensen
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
- Sea Lice Research Center, University of Bergen, Bergen, Norway
| |
Collapse
|
3
|
Robinson NA, Robledo D, Sveen L, Daniels RR, Krasnov A, Coates A, Jin YH, Barrett LT, Lillehammer M, Kettunen AH, Phillips BL, Dempster T, Doeschl‐Wilson A, Samsing F, Difford G, Salisbury S, Gjerde B, Haugen J, Burgerhout E, Dagnachew BS, Kurian D, Fast MD, Rye M, Salazar M, Bron JE, Monaghan SJ, Jacq C, Birkett M, Browman HI, Skiftesvik AB, Fields DM, Selander E, Bui S, Sonesson A, Skugor S, Østbye TK, Houston RD. Applying genetic technologies to combat infectious diseases in aquaculture. REVIEWS IN AQUACULTURE 2023; 15:491-535. [PMID: 38504717 PMCID: PMC10946606 DOI: 10.1111/raq.12733] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/24/2022] [Accepted: 08/16/2022] [Indexed: 03/21/2024]
Abstract
Disease and parasitism cause major welfare, environmental and economic concerns for global aquaculture. In this review, we examine the status and potential of technologies that exploit genetic variation in host resistance to tackle this problem. We argue that there is an urgent need to improve understanding of the genetic mechanisms involved, leading to the development of tools that can be applied to boost host resistance and reduce the disease burden. We draw on two pressing global disease problems as case studies-sea lice infestations in salmonids and white spot syndrome in shrimp. We review how the latest genetic technologies can be capitalised upon to determine the mechanisms underlying inter- and intra-species variation in pathogen/parasite resistance, and how the derived knowledge could be applied to boost disease resistance using selective breeding, gene editing and/or with targeted feed treatments and vaccines. Gene editing brings novel opportunities, but also implementation and dissemination challenges, and necessitates new protocols to integrate the technology into aquaculture breeding programmes. There is also an ongoing need to minimise risks of disease agents evolving to overcome genetic improvements to host resistance, and insights from epidemiological and evolutionary models of pathogen infestation in wild and cultured host populations are explored. Ethical issues around the different approaches for achieving genetic resistance are discussed. Application of genetic technologies and approaches has potential to improve fundamental knowledge of mechanisms affecting genetic resistance and provide effective pathways for implementation that could lead to more resistant aquaculture stocks, transforming global aquaculture.
Collapse
Affiliation(s)
- Nicholas A. Robinson
- Nofima ASTromsøNorway
- Sustainable Aquaculture Laboratory—Temperate and Tropical (SALTT)School of BioSciences, The University of MelbourneMelbourneVictoriaAustralia
| | - Diego Robledo
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | | | - Rose Ruiz Daniels
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | | | - Andrew Coates
- Sustainable Aquaculture Laboratory—Temperate and Tropical (SALTT)School of BioSciences, The University of MelbourneMelbourneVictoriaAustralia
| | - Ye Hwa Jin
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | - Luke T. Barrett
- Sustainable Aquaculture Laboratory—Temperate and Tropical (SALTT)School of BioSciences, The University of MelbourneMelbourneVictoriaAustralia
- Institute of Marine Research, Matre Research StationMatredalNorway
| | | | | | - Ben L. Phillips
- Sustainable Aquaculture Laboratory—Temperate and Tropical (SALTT)School of BioSciences, The University of MelbourneMelbourneVictoriaAustralia
| | - Tim Dempster
- Sustainable Aquaculture Laboratory—Temperate and Tropical (SALTT)School of BioSciences, The University of MelbourneMelbourneVictoriaAustralia
| | - Andrea Doeschl‐Wilson
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | - Francisca Samsing
- Sydney School of Veterinary ScienceThe University of SydneyCamdenAustralia
| | | | - Sarah Salisbury
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | | | | | | | | | - Dominic Kurian
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | - Mark D. Fast
- Atlantic Veterinary CollegeThe University of Prince Edward IslandCharlottetownPrince Edward IslandCanada
| | | | | | - James E. Bron
- Institute of AquacultureUniversity of StirlingStirlingScotlandUK
| | - Sean J. Monaghan
- Institute of AquacultureUniversity of StirlingStirlingScotlandUK
| | - Celeste Jacq
- Blue Analytics, Kong Christian Frederiks Plass 3BergenNorway
| | | | - Howard I. Browman
- Institute of Marine Research, Austevoll Research Station, Ecosystem Acoustics GroupTromsøNorway
| | - Anne Berit Skiftesvik
- Institute of Marine Research, Austevoll Research Station, Ecosystem Acoustics GroupTromsøNorway
| | | | - Erik Selander
- Department of Marine SciencesUniversity of GothenburgGothenburgSweden
| | - Samantha Bui
- Institute of Marine Research, Matre Research StationMatredalNorway
| | | | | | | | | |
Collapse
|
4
|
Exploring Sea Lice Vaccines against Early Stages of Infestation in Atlantic Salmon (Salmo salar). Vaccines (Basel) 2022; 10:vaccines10071063. [PMID: 35891227 PMCID: PMC9324576 DOI: 10.3390/vaccines10071063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 11/17/2022] Open
Abstract
The sea louse Caligus rogercresseyi genome has opened the opportunity to apply the reverse vaccinology strategy for identifying antigens with potential effects on lice development and its application in sea lice control. This study aimed to explore the efficacy of three sea lice vaccines against the early stage of infestation, assessing the transcriptome modulation of immunized Atlantic salmon. Therein, three experimental groups of Salmo salar (Atlantic salmon) were vaccinated with the recombinant proteins: Peritrophin (prototype A), Cathepsin (prototype B), and the mix of them (prototype C), respectively. Sea lice infestation was evaluated during chalimus I-II, the early-infective stages attached at 7-days post infestation. In parallel, head kidney and skin tissue samples were taken for mRNA Illumina sequencing. Relative expression analyses of genes were conducted to identify immune responses, iron transport, and stress responses associated with the tested vaccines during the early stages of sea lice infection. The vaccine prototypes A, B, and C reduced the parasite burden by 24, 44, and 52% compared with the control group. In addition, the RNA-Seq analysis exhibited a prototype-dependent transcriptome modulation. The high expression differences were observed in genes associated with metal ion binding, molecular processes, and energy production. The findings suggest a balance between the host’s inflammatory response and metabolic process in vaccinated fish, increasing their transcriptional activity, which can alter the early host–parasite interactions. This study uncovers molecular responses produced by three vaccine prototypes at the early stages of infestation, providing new knowledge for sea lice control in the salmon aquaculture.
Collapse
|
5
|
Tavares-Dias M, Oliveira MS. Lepeophtheirus (Copepoda: Caligidae) associated with fish: global infection patterns, parasite-host interactions and geographic range. DISEASES OF AQUATIC ORGANISMS 2022; 154:69-83. [PMID: 37318386 DOI: 10.3354/dao03731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Lepeophtheirus Nordmann, 1832 is a genus of sea lice that have been reported to cause parasitic disease problems for fish farming and the fishery industry. This first global investigation on Lepeophtheirus species associated with fish and infestation patterns, parasite-host interactions and geographic ranges linked to these ectoparasites covered articles published from 1940 to 2022. The total of 481 samples of Lepeophtheirus spp. comprised 49 species of these ectoparasites and were found parasitizing 100 teleost fish species from 46 families and 15 orders. Globally, a total of 9 Lepeophtheirus species were found in farmed fish (1 species occurred only in farmed fish and 8 species in both farmed and wild fish) and 48 in wild fish. The highest numbers of occurrences of Lepeophtheirus were in Serranidae and Pleuronectidae. L. pectoralis and L. salmonis were the species with widest geographic distribution. Host specificity was an important factor in the geographic distribution of L. salmonis. Most of the parasite species showed specificity for host fish families, as well as specificity for geographic regions. Little is known about many Lepeophtheirus species compared to the economical important L. salmonis. This could be an obstacle to developing improved management control strategies for the parasite in the fish farming industry, in addition to the diminishing knowledge of parasite taxonomy in many regions.
Collapse
|
6
|
Tartor H, Karlsen M, Skern-Mauritzen R, Monjane AL, Press CM, Wiik-Nielsen C, Olsen RH, Leknes LM, Yttredal K, Brudeseth BE, Grove S. Protective Immunization of Atlantic Salmon (S almo salar L.) against Salmon Lice ( Lepeophtheirus salmonis) Infestation. Vaccines (Basel) 2021; 10:vaccines10010016. [PMID: 35062677 PMCID: PMC8780844 DOI: 10.3390/vaccines10010016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/11/2021] [Accepted: 12/17/2021] [Indexed: 11/16/2022] Open
Abstract
Vaccination against salmon lice (Lepeophtheirus salmonis) is a means of control that averts the negative effects of chemical approaches. Here, we studied the immunogenicity and protective effect of a vaccine formulation (based on a salmon lice-gut recombinant protein [P33]) against Lepeophtheirus salmonis infestation in Atlantic salmon in a laboratory-based trial. Our findings revealed that P33 vaccine can provide a measure of protection against immature and adult salmon lice infestation. This protection seemed to be vaccine dose-dependent, where higher doses resulted in lower parasitic infestation rates. We also provide immunological evidence confirming that P33-specific immune response can be triggered in Atlantic salmon after P33 vaccination, and that production of P33-specific antibodies in blood can be detected in vaccinated fish. The negative correlation between P33-specific IgM in salmon plasma and salmon lice numbers on vaccinated fish suggests that protection against lice can be mediated by the specific antibody in salmon plasma. The success of P33 vaccination in protecting salmon against lice confirms the possibility of employing the hematophagous nature of the parasite to deliver salmon-specific antibodies against lice-gut proteins.
Collapse
Affiliation(s)
- Haitham Tartor
- Norwegian Veterinary Institute, 1433 Ås, Norway; (H.T.); (A.L.M.)
| | - Marius Karlsen
- PHARMAQ AS, P.O. Box 267 Skøyen, 0213 Oslo, Norway; (M.K.); (C.W.-N.); (R.H.O.); (L.M.L.); (K.Y.)
| | | | | | - Charles McLean Press
- Department of Preclinical Sciences and Pathology, Norwegian University of Life Sciences, 1430 Ås, Norway;
| | - Christer Wiik-Nielsen
- PHARMAQ AS, P.O. Box 267 Skøyen, 0213 Oslo, Norway; (M.K.); (C.W.-N.); (R.H.O.); (L.M.L.); (K.Y.)
| | - Rolf Hetlelid Olsen
- PHARMAQ AS, P.O. Box 267 Skøyen, 0213 Oslo, Norway; (M.K.); (C.W.-N.); (R.H.O.); (L.M.L.); (K.Y.)
| | - Lisa Marie Leknes
- PHARMAQ AS, P.O. Box 267 Skøyen, 0213 Oslo, Norway; (M.K.); (C.W.-N.); (R.H.O.); (L.M.L.); (K.Y.)
| | - Karine Yttredal
- PHARMAQ AS, P.O. Box 267 Skøyen, 0213 Oslo, Norway; (M.K.); (C.W.-N.); (R.H.O.); (L.M.L.); (K.Y.)
| | - Bjørn Erik Brudeseth
- PHARMAQ AS, P.O. Box 267 Skøyen, 0213 Oslo, Norway; (M.K.); (C.W.-N.); (R.H.O.); (L.M.L.); (K.Y.)
- Correspondence: (B.E.B.); (S.G.); Tel.: +47-9288-1518 (B.E.B.); +47-4588-2346 (S.G.)
| | - Søren Grove
- Norwegian Veterinary Institute, 1433 Ås, Norway; (H.T.); (A.L.M.)
- Institute of Marine Research, 5005 Bergen, Norway;
- Correspondence: (B.E.B.); (S.G.); Tel.: +47-9288-1518 (B.E.B.); +47-4588-2346 (S.G.)
| |
Collapse
|
7
|
Holzer AS, Piazzon MC, Barrett D, Bartholomew JL, Sitjà-Bobadilla A. To React or Not to React: The Dilemma of Fish Immune Systems Facing Myxozoan Infections. Front Immunol 2021; 12:734238. [PMID: 34603313 PMCID: PMC8481699 DOI: 10.3389/fimmu.2021.734238] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/01/2021] [Indexed: 11/13/2022] Open
Abstract
Myxozoans are microscopic, metazoan, obligate parasites, belonging to the phylum Cnidaria. In contrast to the free-living lifestyle of most members of this taxon, myxozoans have complex life cycles alternating between vertebrate and invertebrate hosts. Vertebrate hosts are primarily fish, although they are also reported from amphibians, reptiles, trematodes, mollusks, birds and mammals. Invertebrate hosts include annelids and bryozoans. Most myxozoans are not overtly pathogenic to fish hosts, but some are responsible for severe economic losses in fisheries and aquaculture. In both scenarios, the interaction between the parasite and the host immune system is key to explain such different outcomes of this relationship. Innate immune responses contribute to the resistance of certain fish strains and species, and the absence or low levels of some innate and regulatory factors explain the high pathogenicity of some infections. In many cases, immune evasion explains the absence of a host response and allows the parasite to proliferate covertly during the first stages of the infection. In some infections, the lack of an appropriate regulatory response results in an excessive inflammatory response, causing immunopathological consequences that are worse than inflicted by the parasite itself. This review will update the available information about the immune responses against Myxozoa, with special focus on T and B lymphocyte and immunoglobulin responses, how these immune effectors are modulated by different biotic and abiotic factors, and on the mechanisms of immune evasion targeting specific immune effectors. The current and future design of control strategies for myxozoan diseases is based on understanding this myxozoan-fish interaction, and immune-based strategies such as improvement of innate and specific factors through diets and additives, host genetic selection, passive immunization and vaccination, are starting to be considered.
Collapse
Affiliation(s)
- Astrid S Holzer
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
| | - M Carla Piazzon
- Fish Pathology Group, Institute of Aquaculture Torre de la Sal - Consejo Superior de Investigaciones Científicas (IATS-CSIC), Castellón, Spain
| | - Damien Barrett
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | - Jerri L Bartholomew
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | - Ariadna Sitjà-Bobadilla
- Fish Pathology Group, Institute of Aquaculture Torre de la Sal - Consejo Superior de Investigaciones Científicas (IATS-CSIC), Castellón, Spain
| |
Collapse
|
8
|
Sveen L, Krasnov A, Timmerhaus G, Bogevik AS. Responses to Mineral Supplementation and Salmon Lice ( Lepeophtheirus salmonis) Infestation in Skin Layers of Atlantic Salmon ( Salmo salar L.). Genes (Basel) 2021; 12:genes12040602. [PMID: 33921813 PMCID: PMC8073069 DOI: 10.3390/genes12040602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 01/29/2023] Open
Abstract
The crustacean ectoparasite salmon louse (Lepeophtheirus salmonis), which severely affects Atlantic salmon health and welfare is one of the main problems of commercial aquaculture. In the present study, fish were fed a diet supplemented with extra minerals through the inclusion of a commercial additive (Biofeed Forte Salmon), substituting wheat in the control diet, before experimental infestation with salmon lice. Lice counts reduced with time but with no apparent effect of the diets. Further, fish fed the mineral diet had an overall higher number of blue (acidic) mucous cells, while the ratio of purple mucous cells was higher in the mineral diet. The transcriptional response in skin was enhanced at 7 dpc (copepodite life stage) in fish fed the mineral diet including immune and stress responses, while at 21 dpc (pre-adult life stage), the difference disappeared, or reversed with stronger induction in the control diet. Overall, 9.3% of the genes affected with lice also responded to the feed, with marked differences in outer (scale + epidermis) and inner (dermis) skin layers. A comparison of transcriptome data with five datasets from previous trials revealed common features and gene markers of responses to lice, stress, and mechanically induced wounds. Results suggested a prevalence of generic responses in wounded skin and lice-infected salmon.
Collapse
|
9
|
Das P, Badhe MR, Sahoo PK, Reddy RRK, Suryawanshi AR, Mohanty J. Immunoproteomic analysis of fish ectoparasite, Argulus siamensis antigens. Parasite Immunol 2021; 43:e12837. [PMID: 33811350 DOI: 10.1111/pim.12837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/25/2022]
Abstract
AIM An immunoproteomic approach was followed to identify immunoreactive antigens of fish ectoparasite, Argulus siamensis with rohu (Labeo rohita) immune sera for screening of potential vaccine candidates. MATERIALS AND RESULTS The whole adult Argulus antigen was run in 2D electrophoresis with IEF in 7 cm IPG strips of pH 4-7 and SDS-PAGE with 12% acrylamide concentration. Two parallel gels were run; one was stained with silver stain, and the other was Western blotted to nitrocellulose paper (NCP) and reacted with rohu anti-A siamensis sera. Fourteen protein spots corresponding to the spots developed in NCP were picked from the silver-stained gel and subjected to mass spectrometry in MALDI-TOF/TOF. The MS/MS spectra were analysed in MASCOT software with taxonomy 'other metazoa' and the proteins identified based on similarity with the proteins from heterologous species. The gene ontology analysis revealed a majority of proteins being involved in binding activity in 'molecular function' and belonging to metabolic processes in 'biologic process' categories. The possibility of these proteins as vaccine candidates against A siamensis is discussed in the paper. CONCLUSION Three of the identified proteins namely, bromodomain-containing protein, anaphase-promoting complex subunit 5 and elongation factor-2 could possibly serve as vaccine candidates against argulosis in carps.
Collapse
Affiliation(s)
- Priyanka Das
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, India
| | - Mohan R Badhe
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, India
| | | | | | | | | |
Collapse
|
10
|
Miccoli A, Manni M, Picchietti S, Scapigliati G. State-of-the-Art Vaccine Research for Aquaculture Use: The Case of Three Economically Relevant Fish Species. Vaccines (Basel) 2021; 9:140. [PMID: 33578766 PMCID: PMC7916455 DOI: 10.3390/vaccines9020140] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 11/16/2022] Open
Abstract
In the last three decades, the aquaculture sector has experienced a 527% growth, producing 82 million tons for a first sale value estimated at 250 billion USD. Infectious diseases caused by bacteria, viruses, or parasites are the major causes of mortality and economic losses in commercial aquaculture. Some pathologies, especially those of bacterial origin, can be treated with commercially available drugs, while others are poorly managed. In fact, despite having been recognized as a useful preventive measure, no effective vaccination against many economically relevant diseases exist yet, such as for viral and parasitic infections. The objective of the present review is to provide the reader with an updated perspective on the most significant and innovative vaccine research on three key aquaculture commodities. European sea bass (Dicentrarchus labrax), Nile tilapia (Oreochromis niloticus), and Atlantic salmon (Salmo salar) were chosen because of their economic relevance, geographical distinctiveness, and representativeness of different culture systems. Scientific papers about vaccines against bacterial, viral, and parasitic diseases will be objectively presented; their results critically discussed and compared; and suggestions for future directions given.
Collapse
|