1
|
Nongthombam GS, Ahmed SA, Saikia K, Gogoi S, Borah JC. Breaking boundaries in diabetic nephropathy treatment: design and synthesis of novel steroidal SGLT2 inhibitors. RSC Med Chem 2024; 16:d4md00645c. [PMID: 39479473 PMCID: PMC11514366 DOI: 10.1039/d4md00645c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/13/2024] [Indexed: 11/02/2024] Open
Abstract
The activity of sodium glucose co-transporter 2 (SGLT2) has always been an important parameter influencing chronic kidney disease in type-2 diabetic patients. Herein, we have meticulously designed, synthesized, and evaluated several novel steroidal pyrimidine molecules that possess the capability to successfully bind to the SGLT2 protein and inhibit its activity, thereby remedying kidney-related ailments in diabetic patients. The lead steroidal pyrimidine compounds were selected after virtually screening from a library of probable N-heterocyclic steroidal scaffolds. A nano-catalyzed synthetic route was also explored for the synthesis of the steroidal pyrimidine analogs demonstrating an environmentally benign protocol. Extensive in vitro investigations encompassing SGLT2 screening assays and cell viability assessments were conducted on the synthesized compounds. Among the steroidal pyrimidine derivatives evaluated, compound 9a exhibited the highest SGLT2 inhibition activity and underwent further scrutiny. Western blot analysis was employed to determine the impact of 9a on inflammatory and fibrotic proteins, aiming to elucidate its mechanism of action. Additionally, in silico analyses were performed to illuminate the structural dynamics and molecular interaction mechanism of 9a. The overall investigation is crucial for advancing the development of the next generation of anti-diabetic drugs.
Collapse
Affiliation(s)
- Geetmani Singh Nongthombam
- Chemical Biology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology Guwahati-781035 Assam India
| | - Semim Akhtar Ahmed
- Chemical Biology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology Guwahati-781035 Assam India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
| | - Kangkon Saikia
- Chemical Biology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology Guwahati-781035 Assam India
| | - Sanjib Gogoi
- Applied Organic Chemistry, Chemical Sciences & Technology Division, CSIR-North East Institute of Science and Technology Jorhat 785006 India
| | - Jagat Chandra Borah
- Chemical Biology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology Guwahati-781035 Assam India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Guwahati 781101 Assam India
| |
Collapse
|
2
|
Ciubuc-Batcu MT, Stapelberg NJC, Headrick JP, Renshaw GMC. A mitochondrial nexus in major depressive disorder: Integration with the psycho-immune-neuroendocrine network. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166920. [PMID: 37913835 DOI: 10.1016/j.bbadis.2023.166920] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 11/03/2023]
Abstract
Nervous system processes, including cognition and affective state, fundamentally rely on mitochondria. Impaired mitochondrial function is evident in major depressive disorder (MDD), reflecting cumulative detrimental influences of both extrinsic and intrinsic stressors, genetic predisposition, and mutation. Glucocorticoid 'stress' pathways converge on mitochondria; oxidative and nitrosative stresses in MDD are largely mitochondrial in origin; both initiate cascades promoting mitochondrial DNA (mtDNA) damage with disruptions to mitochondrial biogenesis and tryptophan catabolism. Mitochondrial dysfunction facilitates proinflammatory dysbiosis while directly triggering immuno-inflammatory activation via released mtDNA, mitochondrial lipids and mitochondria associated membranes (MAMs), further disrupting mitochondrial function and mitochondrial quality control, promoting the accumulation of abnormal mitochondria (confirmed in autopsy studies). Established and putative mechanisms highlight a mitochondrial nexus within the psycho-immune neuroendocrine (PINE) network implicated in MDD. Whether lowering neuronal resilience and thresholds for disease, or linking mechanistic nodes within the MDD pathogenic network, impaired mitochondrial function emerges as an important risk, a functional biomarker, providing a therapeutic target in MDD. Several treatment modalities have been demonstrated to reset mitochondrial function, which could benefit those with MDD.
Collapse
Affiliation(s)
- M T Ciubuc-Batcu
- Griffith University School of Medicine and Dentistry, Australia; Gold Coast Health, Queensland, Australia
| | - N J C Stapelberg
- Bond University Faculty of Health Sciences and Medicine, Australia; Gold Coast Health, Queensland, Australia
| | - J P Headrick
- Griffith University School of Pharmacy and Medical Science, Australia
| | - G M C Renshaw
- Hypoxia and Ischemia Research Unit, Griffith University, School of Health Sciences and Social Work, Australia.
| |
Collapse
|
3
|
Tian WS, Zhao J, Kim MK, Tae HJ, Kim IS, Ahn D, Hwang HP, Mao MX, Park BY. Veronica persica ameliorates acetaminophen-induced murine hepatotoxicity via attenuating oxidative stress and inflammation. Biomed Pharmacother 2023; 169:115898. [PMID: 37989029 DOI: 10.1016/j.biopha.2023.115898] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/23/2023] Open
Abstract
Excess acetaminophen (APAP) commonly causes severe acute liver injury (ALI), characterized by oxidative stress, pro-inflammatory responses, and hepatocyte damage. Veronica persica (VP) is a traditional medicine with antioxidant and anti-inflammatory properties. There is a paucity of information on its medicinal value, especially its potential mechanisms for alleviating ALI. This study aimed to clarify the ameliorative effects and intracellular mechanisms of VP on APAP-induced ALI via attenuating oxidative stress and inflammation. Mice were given VP for 7 days before exposure to APAP (300 mg/kg). The HPLC and radical scavenging assay found that VP contains 12 phenolic acids and 6 flavonoids, as well as show robust antioxidant capacity. In the APAP-induced ALI model, pre-treatment with VP significantly reduces APAP-induced hepatotoxicity by observing improved hepatocyte pathological injury and further confirmed by serum biochemical indicator. Also, the reduction of TUNEL-positive regions and the regulation of Bcl-2-associated X protein indicated that VP attenuates hepatocytotoxicity. Moreover, VP pre-intervention inhibits the formation of liver pro-inflammatory cytokines, the expression of inflammatory response genes, and increases in myeloperoxidase (MPO) in APAP-exposed mice. The elevated reduced glutathione (GSH) levels and decreased oxidative stress markers indicate that VP reduces APAP-promoted oxidative stress. Further study revealed that VP inhibited the phosphorylation of NF-κB/STAT3 cascade, blocked ERK and JNK phosphorylation, and activated AMP-activated protein kinase (AMPK). To sum up, this study demonstrated that VP exists hepatoprotective abilities on APAP-induced ALI, primarily by suppressing the phosphorylation of NF-κB/STAT3 cascade and ERK-JNK and inducing AMPK activation to alleviate oxidative stress and inflammation.
Collapse
Affiliation(s)
- Wei-Shun Tian
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, People's Republic of China; College of Veterinary Medicine and Institute of Animal Transplantation, Jeonbuk National University, Iksan, Jeollabuk-do 54596, Republic of Korea
| | - Jing Zhao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, People's Republic of China
| | - Myung-Kon Kim
- Department of Food Science and Technology, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Hyun-Jin Tae
- College of Veterinary Medicine and Institute of Animal Transplantation, Jeonbuk National University, Iksan, Jeollabuk-do 54596, Republic of Korea
| | - In-Shik Kim
- College of Veterinary Medicine and Institute of Animal Transplantation, Jeonbuk National University, Iksan, Jeollabuk-do 54596, Republic of Korea
| | - Dongchoon Ahn
- College of Veterinary Medicine and Institute of Animal Transplantation, Jeonbuk National University, Iksan, Jeollabuk-do 54596, Republic of Korea
| | - Hong Pil Hwang
- Department of Surgery of Jeonbuk National University Medical School and Hospital, Jeonju 54896, Republic of Korea
| | - Ming-Xian Mao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, People's Republic of China
| | - Byung-Yong Park
- College of Veterinary Medicine and Institute of Animal Transplantation, Jeonbuk National University, Iksan, Jeollabuk-do 54596, Republic of Korea.
| |
Collapse
|
4
|
Bennett CF, Ronayne CT, Puigserver P. Targeting adaptive cellular responses to mitochondrial bioenergetic deficiencies in human disease. FEBS J 2022; 289:6969-6993. [PMID: 34510753 PMCID: PMC8917243 DOI: 10.1111/febs.16195] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/25/2021] [Accepted: 09/10/2021] [Indexed: 01/13/2023]
Abstract
Mitochondrial dysfunction is increasingly appreciated as a central contributor to human disease. Oxidative metabolism at the mitochondrial respiratory chain produces ATP and is intricately tied to redox homeostasis and biosynthetic pathways. Metabolic stress arising from genetic mutations in mitochondrial genes and environmental factors such as malnutrition or overnutrition is perceived by the cell and leads to adaptive and maladaptive responses that can underlie pathology. Here, we will outline cellular sensors that react to alterations in energy production, organellar redox, and metabolites stemming from mitochondrial disease (MD) mutations. MD is a heterogeneous group of disorders primarily defined by defects in mitochondrial oxidative phosphorylation from nuclear or mitochondrial-encoded gene mutations. Preclinical therapies that improve fitness of MD mouse models have been recently identified. Targeting metabolic/energetic deficiencies, maladaptive signaling processes, and hyper-oxygenation of tissues are all strategies aside from direct genetic approaches that hold therapeutic promise. A further mechanistic understanding of these curative processes as well as the identification of novel targets will significantly impact mitochondrial biology and disease research.
Collapse
Affiliation(s)
- Christopher F Bennett
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Conor T Ronayne
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Pere Puigserver
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Zhang M, Sun Y, Ding C, Hong S, Li N, Guan Y, Zhang L, Dong X, Cao J, Yao W, Ren W, Yao S. Metformin mitigates gas explosion‑induced blast lung injuries through AMPK‑mediated energy metabolism and NOX2‑related oxidation pathway in rats. Exp Ther Med 2022; 24:529. [PMID: 35837050 PMCID: PMC9257965 DOI: 10.3892/etm.2022.11456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/31/2022] [Indexed: 11/17/2022] Open
Abstract
Gas explosions are a recurrent event in coal mining that cause severe pulmonary damage due to shock waves, and there is currently no effective targeted treatment. To illustrate the mechanism of gas explosion-induced lung injury and to explore strategies for blast lung injury (BLI) treatment, the present study used a BLI rat model and supplementation with metformin (MET), an AMP-activated protein kinase (AMPK) activator, at a dose of 10 mg/kg body weight by intraperitoneal injection. Protein expression levels were detected by western blotting. Significantly decreased expression of phosphorylated (p)-AMPK, peroxisome proliferator-activated receptor-γ coactivator-1α (PGC1α) and metabolic activity were observed in the BLI group compared with those in the control group. However, the mitochondrial stability, metabolic activity and expression of p-AMPK and PGC1α were elevated following MET treatment. These results suggested that MET could attenuate gas explosion-induced BLI by improving mitochondrial homeostasis. Meanwhile, high expression of nicotinamide adenine dinucleotide phosphate oxidase (NOX2) and low expression of catalase (CAT) were observed in the BLI group. The expression levels of NOX2 and CAT were restored in the BLI + MET group relative to changes in the BLI group, and the accumulation of oxidative stress was successfully reversed following MET treatment. Overall, these findings revealed that MET could alleviate BLI by activating the AMPK/PGC1α pathway and inhibiting oxidative stress caused by NOX2 activation.
Collapse
Affiliation(s)
- Miao Zhang
- Research Center for Precision Prevention and Control of Occupational Hazards, School of Public Health, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Yunzhe Sun
- Research Center for Precision Prevention and Control of Occupational Hazards, School of Public Health, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Chunjie Ding
- Research Center for Precision Prevention and Control of Occupational Hazards, School of Public Health, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Shan Hong
- Research Center for Precision Prevention and Control of Occupational Hazards, School of Public Health, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Ning Li
- Department of Occupational and Environmental Health, School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063000, P.R. China
| | - Yi Guan
- Department of Occupational and Environmental Health, School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063000, P.R. China
| | - Lin Zhang
- Key Laboratory of Birth Regulation and Control Technology, National Health Commission of China, Maternal and Child Care Hospital of Shandong Province, Shandong University, Jinan, Shandong 250001, P.R. China
| | - Xinwen Dong
- Research Center for Precision Prevention and Control of Occupational Hazards, School of Public Health, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Jia Cao
- Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing 400038, P.R. China
| | - Wu Yao
- Department of Occupational and Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Wenjie Ren
- Research Center for Precision Prevention and Control of Occupational Hazards, School of Public Health, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Sanqiao Yao
- Research Center for Precision Prevention and Control of Occupational Hazards, School of Public Health, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| |
Collapse
|
6
|
NGLY1 Deficiency, a Congenital Disorder of Deglycosylation: From Disease Gene Function to Pathophysiology. Cells 2022; 11:cells11071155. [PMID: 35406718 PMCID: PMC8997433 DOI: 10.3390/cells11071155] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 02/01/2023] Open
Abstract
N-Glycanase 1 (NGLY1) is a cytosolic enzyme involved in removing N-linked glycans of misfolded N-glycoproteins and is considered to be a component of endoplasmic reticulum-associated degradation (ERAD). The 2012 identification of recessive NGLY1 mutations in a rare multisystem disorder has led to intense research efforts on the roles of NGLY1 in animal development and physiology, as well as the pathophysiology of NGLY1 deficiency. Here, we present a review of the NGLY1-deficient patient phenotypes, along with insights into the function of this gene from studies in rodent and invertebrate animal models, as well as cell culture and biochemical experiments. We will discuss critical processes affected by the loss of NGLY1, including proteasome bounce-back response, mitochondrial function and homeostasis, and bone morphogenetic protein (BMP) signaling. We will also cover the biologically relevant targets of NGLY1 and the genetic modifiers of NGLY1 deficiency phenotypes in animal models. Together, these discoveries and disease models have provided a number of avenues for preclinical testing of potential therapeutic approaches for this disease.
Collapse
|
7
|
Ji MH, Kreymerman A, Belle K, Ghiam BK, Muscat SR, Mahajan VB, Enns GM, Mercola M, Wood EH. The Present and Future of Mitochondrial-Based Therapeutics for Eye Disease. Transl Vis Sci Technol 2021; 10:4. [PMID: 34232272 PMCID: PMC8267180 DOI: 10.1167/tvst.10.8.4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Translational Relevance Mitochondria are viable therapeutic targets for a broad spectrum of ocular diseases.
Collapse
Affiliation(s)
- Marco H Ji
- Department of Ophthalmology, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Alexander Kreymerman
- Department of Ophthalmology, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA.,Stanford Cardiovascular Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Kinsley Belle
- Department of Ophthalmology, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Benjamin K Ghiam
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Stephanie R Muscat
- Department of Ophthalmology, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Vinit B Mahajan
- Department of Ophthalmology, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Gregory M Enns
- Department of Pediatrics, Division of Medical Genetics, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Mark Mercola
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Edward H Wood
- Department of Ophthalmology, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA.,Stanford Cardiovascular Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| |
Collapse
|