1
|
More S, Mallick S, P SS, Bose B. Pax6 expressing neuroectodermal and ocular stem cells: Its role from a developmental biology perspective. Cell Biol Int 2024; 48:1802-1815. [PMID: 39308152 DOI: 10.1002/cbin.12246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/29/2024] [Accepted: 08/16/2024] [Indexed: 11/15/2024]
Abstract
Pax-6 emerges as a critical transcription factor that guides the fate of stem cells towards neural lineages. Its expression influences the differentiation of neural progenitors into diverse neuronal subtypes, glial cells, and other neural cell types. Pax-6 operates with other regulatory factors to ensure the precise patterning and organization of the developing nervous system. The intricate interplay between Pax-6 and other signaling pathways, transcription factors, and epigenetic modifiers underpins the complicated balance between stem cell maintenance, proliferation, and differentiation in neuroectodermal and ocular contexts. Dysfunction of Pax-6 can lead to a spectrum of developmental anomalies, underscoring its importance in these processes. This review highlights the essential role of Pax-6 expression in neuroectodermal and ocular stem cells, shedding light on its significance in orchestrating the intricate journey from stem cell fate determination to the emergence of diverse neural and ocular cell types. The comprehensive understanding of Pax-6 function gained from a developmental biology perspective offers valuable insights into normal development and potential therapeutic avenues for neuroectodermal and ocular disorders.
Collapse
Affiliation(s)
- Shubhangi More
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Sumit Mallick
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Sudheer Shenoy P
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Bipasha Bose
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| |
Collapse
|
2
|
Mikami A, Huang H, Hyodo A, Horie K, Yasumatsu K, Ninomiya Y, Mitoh Y, Iida S, Yoshida R. The role of GABA in modulation of taste signaling within the taste bud. Pflugers Arch 2024; 476:1761-1775. [PMID: 39210062 PMCID: PMC11461785 DOI: 10.1007/s00424-024-03007-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/03/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
Taste buds contain 2 types of GABA-producing cells: sour-responsive Type III cells and glial-like Type I cells. The physiological role of GABA, released by Type III cells is not fully understood. Here, we investigated the role of GABA released from Type III cells using transgenic mice lacking the expression of GAD67 in taste bud cells (Gad67-cKO mice). Immunohistochemical experiments confirmed the absence of GAD67 in Type III cells of Gad67-cKO mice. Furthermore, no difference was observed in the expression and localization of cell type markers, ectonucleoside triphosphate diphosphohydrolase 2 (ENTPD2), gustducin, and carbonic anhydrase 4 (CA4) in taste buds between wild-type (WT) and Gad67-cKO mice. Short-term lick tests demonstrated that both WT and Gad67-cKO mice exhibited normal licking behaviors to each of the five basic tastants. Gustatory nerve recordings from the chorda tympani nerve demonstrated that both WT and Gad67-cKO mice similarly responded to five basic tastants when they were applied individually. However, gustatory nerve responses to sweet-sour mixtures were significantly smaller than the sum of responses to each tastant in WT mice but not in Gad67-cKO mice. In summary, elimination of GABA signalling by sour-responsive Type III taste cells eliminates the inhibitory cell-cell interactions seen with application of sour-sweet mixtures.
Collapse
Affiliation(s)
- Ayaka Mikami
- Department of Oral Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
- Department of Oral and Maxillofacial Reconstructive Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Hai Huang
- Department of Oral Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Aiko Hyodo
- Department of Oral Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
- Department of Oral and Maxillofacial Reconstructive Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kengo Horie
- Department of Oral Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
- Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1, Shikata-Cho, Kita-Ku, Okayama, 700-8525, Japan
| | | | - Yuzo Ninomiya
- Department of Oral Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
- Graduate School of Dental Science, Kyushu University, Fukuoka, Japan
- Monell Chemical Senses Center, Philadelphia, PA, USA
| | - Yoshihiro Mitoh
- Department of Oral Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
- Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1, Shikata-Cho, Kita-Ku, Okayama, 700-8525, Japan
| | - Seiji Iida
- Department of Oral and Maxillofacial Reconstructive Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
- Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1, Shikata-Cho, Kita-Ku, Okayama, 700-8525, Japan
| | - Ryusuke Yoshida
- Department of Oral Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
- Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1, Shikata-Cho, Kita-Ku, Okayama, 700-8525, Japan.
| |
Collapse
|
3
|
Yu W, Kastriti ME, Ishan M, Choudhary SK, Rashid MM, Kramer N, Do HGT, Wang Z, Xu T, Schwabe RF, Ye K, Adameyko I, Liu HX. The duct of von Ebner's glands is a source of Sox10 + taste bud progenitors and susceptible to pathogen infections. Front Cell Dev Biol 2024; 12:1460669. [PMID: 39247625 PMCID: PMC11377339 DOI: 10.3389/fcell.2024.1460669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 08/01/2024] [Indexed: 09/10/2024] Open
Abstract
Introduction We have recently demonstrated that Sox10-expressing (Sox10 +) cells give rise to mainly type-III neuronal taste bud cells that are responsible for sour and salt taste. The two tissue compartments containing Sox10 + cells in the surrounding of taste buds include the connective tissue core of taste papillae and von Ebner's glands (vEGs) that are connected to the trench of circumvallate and foliate papillae. Methods In this study, we performed single cell RNA-sequencing of the epithelium of Sox10-Cre/tdT mouse circumvallate/vEG complex and used inducible Cre mouse models to map the cell lineages of vEGs and/or connective tissue (including stromal and Schwann cells). Results Transcriptomic analysis indicated that Sox10 expression was enriched in the cell clusters of vEG ducts that contained abundant proliferating cells, while Sox10-Cre/tdT expression was enriched in type-III taste bud cells and vEG ductal cells. In vivo lineage mapping showed that the traced cells were distributed in circumvallate taste buds concurrently with those in the vEGs, but not in the connective tissue. Moreover, multiple genes encoding pathogen receptors were enriched in the vEG ducts hosting Sox10 + cells. Discussion Our data supports that it is the vEGs, not connective tissue core, that serve as the niche of Sox10 + taste bud progenitors. If this is also true in humans, our data indicates that vEG duct is a source of Sox10 + taste bud progenitors and susceptible to pathogen infections.
Collapse
Affiliation(s)
- Wenxin Yu
- Department of Animal and Dairy Science, Regenerative Bioscience Center, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States
| | | | - Mohamed Ishan
- Department of Animal and Dairy Science, Regenerative Bioscience Center, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States
| | | | - Md Mamunur Rashid
- Department of Animal and Dairy Science, Regenerative Bioscience Center, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States
| | - Naomi Kramer
- Department of Animal and Dairy Science, Regenerative Bioscience Center, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States
| | - Hy Gia Truong Do
- Department of Genetics, University of Georgia, Athens, GA, United States
| | - Zhonghou Wang
- Department of Animal and Dairy Science, Regenerative Bioscience Center, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States
| | - Ting Xu
- Department of Animal and Dairy Science, Regenerative Bioscience Center, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States
| | - Robert F Schwabe
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Kaixiong Ye
- Institute of Bioinformatics, University of Georgia, Athens, GA, United States
- Department of Genetics, University of Georgia, Athens, GA, United States
| | - Igor Adameyko
- Department of Neuroimmunology, Medical University of Vienna, Vienna, Austria
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden
| | - Hong-Xiang Liu
- Department of Animal and Dairy Science, Regenerative Bioscience Center, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States
| |
Collapse
|
4
|
Yu W, Kastriti ME, Ishan M, Choudhary SK, Kramer N, Rashid MM, Truong Do HG, Wang Z, Xu T, Schwabe RF, Ye K, Adameyko I, Liu HX. The main duct of von Ebner's glands is a source of Sox10 + taste bud progenitors and susceptible to pathogen infections. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.14.594215. [PMID: 38798668 PMCID: PMC11118543 DOI: 10.1101/2024.05.14.594215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
We have recently demonstrated that Sox10 -expressing ( Sox10 + ) cells give rise to mainly type-III neuronal taste bud cells that are responsible for sour and salt taste. The two tissue compartments containing Sox10 + cells in the surrounding of taste buds include the connective tissue core of taste papillae and von Ebner's glands (vEGs) that are connected to the trench of circumvallate and foliate papillae. In this study, we used inducible Cre mouse models to map the cell lineages of connective tissue (including stromal and Schwann cells) and vEGs and performed single cell RNA-sequencing of the epithelium of Sox10-Cre/tdT mouse circumvallate/vEG complex. In vivo lineage mapping showed that the distribution of traced cells in circumvallate taste buds was closely linked with that in the vEGs, but not in the connective tissue. Sox10 , but not the known stem cells marker Lgr5 , expression was enriched in the cell clusters of main ducts of vEGs that contained abundant proliferating cells, while Sox10-Cre/tdT expression was enriched in type-III taste bud cells and excretory ductal cells. Moreover, multiple genes encoding pathogen receptors are enriched in the vEG main ducts. Our data indicate that the main duct of vEGs is a source of Sox10 + taste bud progenitors and susceptible to pathogen infections.
Collapse
|
5
|
Zhang T, Xu PX. The role of Eya1 and Eya2 in the taste system of mice from embryonic stage to adulthood. Front Cell Dev Biol 2023; 11:1126968. [PMID: 37181748 PMCID: PMC10167055 DOI: 10.3389/fcell.2023.1126968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 04/10/2023] [Indexed: 05/16/2023] Open
Abstract
Members of the Eya family, which are a class of transcription factors with phosphatase activity, are widely expressed in cranial sensory organs during development. However, it is unclear whether these genes are expressed in the taste system during development and whether they play any role in specifying taste cell fate. In this study, we report that Eya1 is not expressed during embryonic tongue development but that Eya1-expressing progenitors in somites or pharyngeal endoderm give rise to tongue musculature or taste organs, respectively. In the Eya1-deficient tongues, these progenitors do not proliferate properly, resulting in a smaller tongue at birth, impaired growth of taste papillae, and disrupted expression of Six1 in the papillary epithelium. On the other hand, Eya2 is specifically expressed in endoderm-derived circumvallate and foliate papillae located on the posterior tongue during development. In adult tongues, Eya1 is predominantly expressed in IP3R3-positive taste cells in the taste buds of the circumvallate and foliate papillae, while Eya2 is persistently expressed in these papillae at higher levels in some epithelial progenitors and at lower levels in some taste cells. We found that conditional knockout of Eya1 in the third week or Eya2 knockout reduced Pou2f3+, Six1+ and IP3R3+ taste cells. Our data define for the first time the expression patterns of Eya1 and Eya2 during the development and maintenance of the mouse taste system and suggest that Eya1 and Eya2 may act together to promote lineage commitment of taste cell subtypes.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Pin-Xian Xu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Cell Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
6
|
Ohmoto M, Jyotaki M, Yee KK, Matsumoto I. A Transcription Factor Etv1/Er81 Is Involved in the Differentiation of Sweet, Umami, and Sodium Taste Cells. eNeuro 2023; 10:ENEURO.0236-22.2023. [PMID: 37045597 PMCID: PMC10131560 DOI: 10.1523/eneuro.0236-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 04/14/2023] Open
Abstract
Taste cells are maintained by continuous turnover throughout a lifetime, yet the mechanisms of taste cell differentiation, and how taste sensations remain constant despite this continuous turnover, remain poorly understood. Here, we report that a transcription factor Etv1 (also known as Er81) is involved in the differentiation of taste cells responsible for the preference for sweet, umami, and salty tastes. Molecular analyses revealed that Etv1 is expressed by a subset of taste cells that depend on Skn-1a (also known as Pou2f3) for their generation and express T1R genes (responsible for sweet and umami tastes) or Scnn1a (responsible for amiloride-sensitive salty taste). Etv1CreERT2/CreERT2 mice express Etv1 isoform(s) but not Etv1 in putative proprioceptive neurons as comparable to wild-type mice, yet lack expression of Etv1 or an isoform in taste cells. These Etv1CreERT2/CreERT2 mice have the same population of Skn-1a-dependent cells in taste buds as wild-type mice but have altered gene expression in taste cells, with regional differences. They have markedly decreased electrophysiological responses of chorda tympani nerves to sweet and umami tastes and to amiloride-sensitive salty taste evoked by sodium cation, but they have unchanged responses to bitter or sour tastes. Our data thus show that Etv1 is involved in the differentiation of the taste cells responsible for sweet, umami, and salty taste preferences.
Collapse
Affiliation(s)
- Makoto Ohmoto
- Monell Chemical Senses Center, Philadelphia, PA 19104
| | | | - Karen K Yee
- Monell Chemical Senses Center, Philadelphia, PA 19104
| | | |
Collapse
|
7
|
Doyle ME, Premathilake HU, Yao Q, Mazucanti CH, Egan JM. Physiology of the tongue with emphasis on taste transduction. Physiol Rev 2023; 103:1193-1246. [PMID: 36422992 PMCID: PMC9942923 DOI: 10.1152/physrev.00012.2022] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The tongue is a complex multifunctional organ that interacts and senses both interoceptively and exteroceptively. Although it is easily visible to almost all of us, it is relatively understudied and what is in the literature is often contradictory or is not comprehensively reported. The tongue is both a motor and a sensory organ: motor in that it is required for speech and mastication, and sensory in that it receives information to be relayed to the central nervous system pertaining to the safety and quality of the contents of the oral cavity. Additionally, the tongue and its taste apparatus form part of an innate immune surveillance system. For example, loss or alteration in taste perception can be an early indication of infection as became evident during the present global SARS-CoV-2 pandemic. Here, we particularly emphasize the latest updates in the mechanisms of taste perception, taste bud formation and adult taste bud renewal, and the presence and effects of hormones on taste perception, review the understudied lingual immune system with specific reference to SARS-CoV-2, discuss nascent work on tongue microbiome, as well as address the effect of systemic disease on tongue structure and function, especially in relation to taste.
Collapse
Affiliation(s)
- Máire E Doyle
- Diabetes Section/Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Hasitha U Premathilake
- Diabetes Section/Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Qin Yao
- Diabetes Section/Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Caio H Mazucanti
- Diabetes Section/Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Josephine M Egan
- Diabetes Section/Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| |
Collapse
|
8
|
Kumari A, Mistretta CM. Anterior and Posterior Tongue Regions and Taste Papillae: Distinct Roles and Regulatory Mechanisms with an Emphasis on Hedgehog Signaling and Antagonism. Int J Mol Sci 2023; 24:4833. [PMID: 36902260 PMCID: PMC10002505 DOI: 10.3390/ijms24054833] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/21/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
Sensory receptors across the entire tongue are engaged during eating. However, the tongue has distinctive regions with taste (fungiform and circumvallate) and non-taste (filiform) organs that are composed of specialized epithelia, connective tissues, and innervation. The tissue regions and papillae are adapted in form and function for taste and somatosensation associated with eating. It follows that homeostasis and regeneration of distinctive papillae and taste buds with particular functional roles require tailored molecular pathways. Nonetheless, in the chemosensory field, generalizations are often made between mechanisms that regulate anterior tongue fungiform and posterior circumvallate taste papillae, without a clear distinction that highlights the singular taste cell types and receptors in the papillae. We compare and contrast signaling regulation in the tongue and emphasize the Hedgehog pathway and antagonists as prime examples of signaling differences in anterior and posterior taste and non-taste papillae. Only with more attention to the roles and regulatory signals for different taste cells in distinct tongue regions can optimal treatments for taste dysfunctions be designed. In summary, if tissues are studied from one tongue region only, with associated specialized gustatory and non-gustatory organs, an incomplete and potentially misleading picture will emerge of how lingual sensory systems are involved in eating and altered in disease.
Collapse
Affiliation(s)
- Archana Kumari
- Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084, USA
| | - Charlotte M. Mistretta
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
9
|
Shechtman LA, Scott JK, Larson ED, Isner TJ, Johnson BJ, Gaillard D, Dempsey PJ, Barlow LA. High Sox2 expression predicts taste lineage competency of lingual progenitors in vitro. Development 2023; 150:dev201375. [PMID: 36794954 PMCID: PMC10112921 DOI: 10.1242/dev.201375] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/19/2023] [Indexed: 02/17/2023]
Abstract
Taste buds on the tongue contain taste receptor cells (TRCs) that detect sweet, sour, salty, umami and bitter stimuli. Like non-taste lingual epithelium, TRCs are renewed from basal keratinocytes, many of which express the transcription factor SOX2. Genetic lineage tracing has shown that SOX2+ lingual progenitors give rise to both taste and non-taste lingual epithelium in the posterior circumvallate taste papilla (CVP) of mice. However, SOX2 is variably expressed among CVP epithelial cells, suggesting that their progenitor potential may vary. Using transcriptome analysis and organoid technology, we show that cells expressing SOX2 at higher levels are taste-competent progenitors that give rise to organoids comprising both TRCs and lingual epithelium. Conversely, organoids derived from progenitors that express SOX2 at lower levels are composed entirely of non-taste cells. Hedgehog and WNT/β-catenin are required for taste homeostasis in adult mice. However, manipulation of hedgehog signaling in organoids has no impact on TRC differentiation or progenitor proliferation. By contrast, WNT/β-catenin promotes TRC differentiation in vitro in organoids derived from higher but not low SOX2+ expressing progenitors.
Collapse
Affiliation(s)
- Lauren A. Shechtman
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Rocky Mountain Taste and Smell Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jennifer K. Scott
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Rocky Mountain Taste and Smell Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Eric D. Larson
- Rocky Mountain Taste and Smell Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Otolaryngology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Trevor J. Isner
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Rocky Mountain Taste and Smell Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Cell Biology, Stem Cells and Development Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Bryan J. Johnson
- Cell Biology, Stem Cells and Development Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Dany Gaillard
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Rocky Mountain Taste and Smell Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Peter J. Dempsey
- Cell Biology, Stem Cells and Development Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Section of Developmental Biology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Linda A. Barlow
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Rocky Mountain Taste and Smell Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Cell Biology, Stem Cells and Development Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
10
|
Overmiller AM, Sawaya AP, Hope ED, Morasso MI. Intrinsic Networks Regulating Tissue Repair: Comparative Studies of Oral and Skin Wound Healing. Cold Spring Harb Perspect Biol 2022; 14:a041244. [PMID: 36041785 PMCID: PMC9620853 DOI: 10.1101/cshperspect.a041244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Wound repair is a systematic biological program characterized by four overlapping phases: hemostasis, inflammation, proliferation, and remodeling. Notwithstanding differences between species and distinct anatomical sites, the fundamental phases in the wound healing process are conserved among mammalian species. Oral wound healing is defined as an ideal wound healing model because it resolves rapidly and without scar formation. Understanding the regulation and contribution of the different molecular events that drive rapid wound healing in oral mucosa compared with those of the skin will help us define how these lesions heal more efficiently and may provide new therapeutic strategies that can be translated to the clinical settings for patients with chronic nonhealing wounds. Although all epithelial tissues have remarkable ability for tissue repair, the efficiency of such repair differs between epithelia (oral mucosa vs. cutaneous). This prompts the long-standing, fundamental biological and clinically relevant questions as to why and how does the oral mucosa achieve its enhanced wound healing capacity. In this review, we focus on (1) distinct innate wound healing capabilities of the oral mucosa, (2) lessons learned from comparative transcriptomic studies of oral mucosa versus skin, and (3) translation of findings to therapeutics for enhanced wound healing.
Collapse
Affiliation(s)
- Andrew M Overmiller
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Andrew P Sawaya
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Emma D Hope
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Maria I Morasso
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
11
|
Barlow LA. The sense of taste: Development, regeneration, and dysfunction. WIREs Mech Dis 2022; 14:e1547. [PMID: 34850604 PMCID: PMC11152580 DOI: 10.1002/wsbm.1547] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/28/2021] [Accepted: 10/21/2021] [Indexed: 12/12/2022]
Abstract
Gustation or the sense of taste is a primary sense, which functions as a gatekeeper for substances that enter the body. Animals, including humans, ingest foods that contain appetitive taste stimuli, including those that have sweet, moderately salty and umami (glutamate) components, and tend to avoid bitter-tasting items, as many bitter compounds are toxic. Taste is mediated by clusters of heterogeneous taste receptors cells (TRCs) organized as taste buds on the tongue, and these convey taste information from the oral cavity to higher order brain centers via the gustatory sensory neurons of the seventh and ninth cranial ganglia. One remarkable aspect of taste is that taste perception is mostly uninterrupted throughout life yet TRCs within buds are constantly renewed; every 1-2 months all taste cells have been steadily replaced. In the past decades we have learned a substantial amount about the cellular and molecular regulation of taste bud cell renewal, and how taste buds are initially established during embryogenesis. Here I review more recent findings pertaining to taste development and regeneration, as well as discuss potential mechanisms underlying taste dysfunction that often occurs with disease or its treatment. This article is categorized under: Infectious Diseases > Stem Cells and Development Cancer > Stem Cells and Development Neurological Diseases > Stem Cells and Development.
Collapse
Affiliation(s)
- Linda A Barlow
- Department of Cell & Developmental Biology, Graduate Program in Cell Biology, Stem Cells & Development, and the Rocky Mountain Taste & Smell Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
12
|
Lu C, Lin X, Yamashita J, Xi R, Zhou M, Zhang YV, Wang H, Margolskee RF, Koo BK, Clevers H, Matsumoto I, Jiang P. RNF43/ZNRF3 negatively regulates taste tissue homeostasis and positively regulates dorsal lingual epithelial tissue homeostasis. Stem Cell Reports 2022; 17:369-383. [PMID: 34995498 PMCID: PMC8828551 DOI: 10.1016/j.stemcr.2021.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 11/13/2022] Open
Abstract
Taste bud cells are renewed throughout life in a process requiring innervation. Recently, we reported that R-spondin substitutes for neuronal input for taste cell regeneration. R-spondin amplifies WNT signaling by interacting with stem-cell-expressed E3 ubiquitin ligases RNF43/ZNRF3 (negative regulators of WNT signaling) and G-protein-coupled receptors LGR4/5/6 (positive regulators of WNT signaling). Therefore, we hypothesized that RNF43/ZNRF3 may serve as a brake, controlled by gustatory neuron-produced R-spondin, for regulating taste tissue homeostasis. Here, we show that mice deficient for Rnf43/Znrf3 in KRT5-expressing epithelial stem/progenitor cells (RZ dKO) exhibited taste cell hyperplasia; in stark contrast, epithelial tissue on the tongue degenerated. WNT signaling blockade substantially reversed all these effects in RZ dKO mice. Furthermore, innervation becomes dispensable for taste cell renewal in RZ dKO mice. We thus demonstrate important but distinct functions of RNF43/ZNRF3 in regulating taste versus lingual epithelial tissue homeostasis.
Collapse
Affiliation(s)
- Chanyi Lu
- Monell Chemical Senses Center, Philadelphia, PA 19104, USA
| | - Xiaoli Lin
- Monell Chemical Senses Center, Philadelphia, PA 19104, USA
| | | | - Ranhui Xi
- Monell Chemical Senses Center, Philadelphia, PA 19104, USA
| | - Minliang Zhou
- Monell Chemical Senses Center, Philadelphia, PA 19104, USA
| | - Yali V Zhang
- Monell Chemical Senses Center, Philadelphia, PA 19104, USA
| | - Hong Wang
- Monell Chemical Senses Center, Philadelphia, PA 19104, USA
| | | | - Bon-Kyoung Koo
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Hans Clevers
- Hubrecht Institute, University Medical Center Utrecht, and University Utrecht, Utrecht, the Netherlands
| | | | - Peihua Jiang
- Monell Chemical Senses Center, Philadelphia, PA 19104, USA.
| |
Collapse
|
13
|
Pereira D, Sequeira I. A Scarless Healing Tale: Comparing Homeostasis and Wound Healing of Oral Mucosa With Skin and Oesophagus. Front Cell Dev Biol 2021; 9:682143. [PMID: 34381771 PMCID: PMC8350526 DOI: 10.3389/fcell.2021.682143] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/24/2021] [Indexed: 12/14/2022] Open
Abstract
Epithelial tissues are the most rapidly dividing tissues in the body, holding a natural ability for renewal and regeneration. This ability is crucial for survival as epithelia are essential to provide the ultimate barrier against the external environment, protecting the underlying tissues. Tissue stem and progenitor cells are responsible for self-renewal and repair during homeostasis and following injury. Upon wounding, epithelial tissues undergo different phases of haemostasis, inflammation, proliferation and remodelling, often resulting in fibrosis and scarring. In this review, we explore the phenotypic differences between the skin, the oesophagus and the oral mucosa. We discuss the plasticity of these epithelial stem cells and contribution of different fibroblast subpopulations for tissue regeneration and wound healing. While these epithelial tissues share global mechanisms of stem cell behaviour for tissue renewal and regeneration, the oral mucosa is known for its outstanding healing potential with minimal scarring. We aim to provide an updated review of recent studies that combined cell therapy with bioengineering exporting the unique scarless properties of the oral mucosa to improve skin and oesophageal wound healing and to reduce fibrotic tissue formation. These advances open new avenues toward the ultimate goal of achieving scarless wound healing.
Collapse
Affiliation(s)
| | - Inês Sequeira
- Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
14
|
Golden EJ, Larson ED, Shechtman LA, Trahan GD, Gaillard D, Fellin TJ, Scott JK, Jones KL, Barlow LA. Onset of taste bud cell renewal starts at birth and coincides with a shift in SHH function. eLife 2021; 10:64013. [PMID: 34009125 PMCID: PMC8172241 DOI: 10.7554/elife.64013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 05/18/2021] [Indexed: 12/12/2022] Open
Abstract
Embryonic taste bud primordia are specified as taste placodes on the tongue surface and differentiate into the first taste receptor cells (TRCs) at birth. Throughout adult life, TRCs are continually regenerated from epithelial progenitors. Sonic hedgehog (SHH) signaling regulates TRC development and renewal, repressing taste fate embryonically, but promoting TRC differentiation in adults. Here, using mouse models, we show TRC renewal initiates at birth and coincides with onset of SHHs pro-taste function. Using transcriptional profiling to explore molecular regulators of renewal, we identified Foxa1 and Foxa2 as potential SHH target genes in lingual progenitors at birth and show that SHH overexpression in vivo alters FoxA1 and FoxA2 expression relevant to taste buds. We further bioinformatically identify genes relevant to cell adhesion and cell locomotion likely regulated by FOXA1;FOXA2 and show that expression of these candidates is also altered by forced SHH expression. We present a new model where SHH promotes TRC differentiation by regulating changes in epithelial cell adhesion and migration.
Collapse
Affiliation(s)
- Erin J Golden
- Department of Cell & Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, United States.,The Rocky Mountain Taste and Smell Center, University of Colorado Anschutz Medical Campus, Aurora, United States
| | - Eric D Larson
- The Rocky Mountain Taste and Smell Center, University of Colorado Anschutz Medical Campus, Aurora, United States.,Department of Otolaryngology, University of Colorado Anschutz Medical Campus, Aurora, United States
| | - Lauren A Shechtman
- Department of Cell & Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, United States.,The Rocky Mountain Taste and Smell Center, University of Colorado Anschutz Medical Campus, Aurora, United States
| | - G Devon Trahan
- Department of Pediatrics, Section of Hematology, Oncology, and Bone Marrow Transplant, University of Colorado Anschutz Medical Campus, Aurora, United States
| | - Dany Gaillard
- Department of Cell & Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, United States.,The Rocky Mountain Taste and Smell Center, University of Colorado Anschutz Medical Campus, Aurora, United States
| | - Timothy J Fellin
- Department of Cell & Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, United States.,The Rocky Mountain Taste and Smell Center, University of Colorado Anschutz Medical Campus, Aurora, United States
| | - Jennifer K Scott
- Department of Cell & Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, United States.,The Rocky Mountain Taste and Smell Center, University of Colorado Anschutz Medical Campus, Aurora, United States
| | - Kenneth L Jones
- Department of Pediatrics, Section of Hematology, Oncology, and Bone Marrow Transplant, University of Colorado Anschutz Medical Campus, Aurora, United States
| | - Linda A Barlow
- Department of Cell & Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, United States.,The Rocky Mountain Taste and Smell Center, University of Colorado Anschutz Medical Campus, Aurora, United States
| |
Collapse
|
15
|
Abstract
Taste buds are the sensory end organs for gustation, mediating sensations of salty, sour, bitter, sweet and umami as well as other possible modalities, e.g. fat and kokumi. Understanding of the structure and function of these sensory organs has increased greatly in the last decades with advances in ultrastructural methods, molecular genetics, and in vitro models. This review will focus on the cellular constituents of taste buds, and molecular regulation of taste bud cell renewal and differentiation.
Collapse
Affiliation(s)
- Thomas E Finger
- Dept. Cell & Developmental Biology, Univ. Colorado School of Medicine, Anschutz Medical Campus, MS 8108, Room L18-11118, RC-1, 12801 E. 17th Ave., Aurora CO 80045
| | - Linda A Barlow
- Dept. Cell & Developmental Biology, Univ. Colorado School of Medicine, Anschutz Medical Campus, MS 8108, Room L18-11118, RC-1, 12801 E. 17th Ave., Aurora CO 80045
| |
Collapse
|
16
|
Sodium-Taste Cells Require Skn-1a for Generation and Share Molecular Features with Sweet, Umami, and Bitter Taste Cells. eNeuro 2020; 7:ENEURO.0385-20.2020. [PMID: 33219051 PMCID: PMC7729297 DOI: 10.1523/eneuro.0385-20.2020] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/23/2020] [Accepted: 11/10/2020] [Indexed: 01/03/2023] Open
Abstract
Taste buds are maintained via continuous turnover of taste bud cells derived from local epithelial stem cells. A transcription factor Skn-1a (also known as Pou2f3) is required for the generation of sweet, umami (savory), and bitter taste cells that commonly express TRPM5 and CALHM ion channels. Here, we demonstrate that sodium-taste cells distributed only in the anterior oral epithelia and involved in evoking salty taste also require Skn-1a for their generation. We discovered taste cells in fungiform papillae and soft palate that show similar but not identical molecular feature with sweet, umami, and bitter taste-mediated Type II cells. This novel cell population expresses Plcb2, Itpr3, Calhm3, Skn-1a, and ENaCα (also known as Scnn1a) encoding the putative amiloride-sensitive (AS) salty taste receptor but lacks Trpm5 and Gnat3 Skn-1a-deficient taste buds are predominantly composed of putative non-sensory Type I cells and sour-sensing Type III cells, whereas wild-type taste buds include Type II (i.e., sweet, umami, and bitter taste) cells and sodium-taste cells. Both Skn-1a and Calhm3-deficient mice have markedly decreased chorda tympani nerve responses to sodium chloride, and those decreased responses are attributed to the loss of the AS salty taste response. Thus, AS salty taste is mediated by Skn-1a-dependent taste cells, whereas amiloride-insensitive salty taste is mediated largely by Type III sour taste cells and partly by bitter taste cells. Our results demonstrate that Skn-1a regulates differentiation toward all types of taste cells except sour taste cells.
Collapse
|