1
|
Liang R, Abudurexiti N, Wu J, Ling J, Peng Z, Yuan H, Wen S. Exosomes and miRNAs in Cardiovascular Diseases and Transcatheter Pulmonary Valve Replacement: Advancements, Gaps and Perspectives. Int J Mol Sci 2024; 25:13686. [PMID: 39769447 PMCID: PMC11727898 DOI: 10.3390/ijms252413686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/16/2025] Open
Abstract
As an important carrier of intercellular information transmission, exosomes regulate the physiological and pathological state of local or distant cells by carrying a variety of signal molecules such as microRNAs (miRNAs). Current research indicates that exosomes and miRNAs can serve as biomarkers and therapeutic targets for a variety of cardiovascular diseases (CVDs). This narrative review summarizes the research progress of exosomes and their miRNAs in CVDs, particularly in pulmonary valve diseases (PVDs), and, for the first time, explores their potential associations with transcatheter pulmonary valve replacement (TPVR). Currently, miRNAs play a crucial role in determining the optimal timing for TPVR intervention, and they demonstrate broad application prospects in post-TPVR right ventricular (RV) remodeling, treatment, and prognosis monitoring. However, the association between exosomes and miRNAs and the development of PVDs, particularly pulmonary regurgitation, remains unclear. The molecular mechanisms of exosomes and miRNAs in PVDs and RV remodeling after TPVR have not been fully elucidated, and their application in postoperative treatment following TPVR is still in its infancy. Future research must focus on advancing fundamental studies, validating biomarkers, and enhancing clinical applications to achieve significant breakthroughs.
Collapse
Affiliation(s)
- Runzhang Liang
- Department of Cardiovascular Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; (R.L.); (J.W.)
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China; (N.A.); (J.L.); (Z.P.)
| | - Naijimuding Abudurexiti
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China; (N.A.); (J.L.); (Z.P.)
| | - Jiaxiong Wu
- Department of Cardiovascular Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; (R.L.); (J.W.)
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China; (N.A.); (J.L.); (Z.P.)
| | - Jing Ling
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China; (N.A.); (J.L.); (Z.P.)
| | - Zirui Peng
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China; (N.A.); (J.L.); (Z.P.)
| | - Haiyun Yuan
- Department of Cardiovascular Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; (R.L.); (J.W.)
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China; (N.A.); (J.L.); (Z.P.)
| | - Shusheng Wen
- Department of Cardiovascular Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; (R.L.); (J.W.)
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China; (N.A.); (J.L.); (Z.P.)
| |
Collapse
|
2
|
Clouthier KL, Taylor AC, Xuhuai J, Liu Y, Parker S, Van Eyk J, Reddy S. A Noninvasive Circulating Signature of Combined Right Ventricular Pressure and Volume Overload in Tetralogy of Fallot/Pulmonary Atresia/Major Aortopulmonary Collateral Arteries. World J Pediatr Congenit Heart Surg 2024; 15:162-173. [PMID: 38128927 PMCID: PMC11991743 DOI: 10.1177/21501351231213626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Background: Despite surgical advances, children with tetralogy of Fallot/pulmonary atresia/major aortopulmonary collaterals (TOF/PA/MAPCAs) are subject to chronic right ventricular (RV) pressure and volume overload. Current diagnostic tools do not identify adverse myocardial remodeling and cannot predict progression to RV failure. We sought to identify a noninvasive, circulating signature of the systemic response to right heart stress to follow disease progression. Methods: Longitudinal data were collected from patients with TOF/PA/MAPCAs (N = 5) at the time of (1) early RV pressure overload and (2) late RV pressure and volume overload. Plasma protein and microRNA expression were evaluated using high-throughput data-independent mass spectroscopy and Agilent miR Microarray, respectively. Results: At the time of early RV pressure overload, median patient age was 0.34 years (0.02-9.37), with systemic RV pressures, moderate-severe hypertrophy, and preserved systolic function. Late RV pressure and volume overload occurred at a median age of 4.08 years (1.51-10.83), with moderate RV hypertrophy and dilation, and low normal RV function; 277 proteins were significantly dysregulated (log2FC ≥0.6/≤-0.6, FDR≤0.05), predicting downregulation in lipid transport (apolipoproteins), fibrinolytic system, and extracellular matrix structural proteins (talin 1, profilin 1); and upregulation in the respiratory burst. Increasing RV size and decreasing RV function correlated with decreasing structural protein expression. Similarly, miR expression predicted downregulation of extracellular matrix-receptor interactions and upregulation in collagen synthesis. Conclusion: To our knowledge, we show for the first time a noninvasive protein and miR signature reflecting the systemic response to adverse RV myocardial remodeling in TOF/PA/MAPCAs which could be used to follow disease progression.
Collapse
Affiliation(s)
- Katie L. Clouthier
- Department of Pediatrics (Cardiology), Stanford University, Palo Alto, CA, USA
| | - Anne C. Taylor
- Department of Pediatrics (Cardiology), Stanford University, Palo Alto, CA, USA
| | - Ji Xuhuai
- Human Immune Monitoring Center and Functional Genomics Facility, Stanford University, Palo Alto, CA, USA
| | - Yuhan Liu
- Department of Medicine (Quantitative Science Unit), Stanford University, Palo Alto, CA, USA
| | - Sarah Parker
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jennifer Van Eyk
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Sushma Reddy
- Department of Pediatrics (Cardiology), Stanford University, Palo Alto, CA, USA
- Cardiovascular Institute, Stanford University, Los Angeles, CA, USA
| |
Collapse
|
3
|
Davidson JA, Thomson LM, Frank BS. Invited Commentary: Omics Approaches to Mechanistic, Biomarker, and Therapeutic Development for Right Ventricular Failure in Congenital Right-Sided Obstructive Lesions: A Brave New World? World J Pediatr Congenit Heart Surg 2024; 15:174-176. [PMID: 38478369 DOI: 10.1177/21501351231217172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Affiliation(s)
- Jesse A Davidson
- Department of Pediatrics, University of Colorado - Anschutz Medical Campus, Aurora, CO, USA
- Heart Institute, Children's Hospital Colorado, Aurora, CO, USA
| | | | - Benjamin S Frank
- Department of Pediatrics, University of Colorado - Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
4
|
Avesani M, Jalal Z, Friedberg MK, Villemain O, Venet M, Di Salvo G, Thambo JB, Iriart X. Adverse remodelling in tetralogy of Fallot: From risk factors to imaging analysis and future perspectives. Hellenic J Cardiol 2024; 75:48-59. [PMID: 37495104 DOI: 10.1016/j.hjc.2023.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/29/2023] [Accepted: 07/21/2023] [Indexed: 07/28/2023] Open
Abstract
Although contemporary outcomes of initial surgical repair of tetralogy of Fallot (TOF) are excellent, the survival of adult patients remains significantly lower than that of the normal population due to the high incidence of heart failure, ventricular arrhythmias, and sudden cardiac death. The underlying mechanisms are only partially understood but involve an adverse biventricular response, so-called remodelling, to key stressors such as right ventricular (RV) pressure-and/or volume-overload, myocardial fibrosis, and electro-mechanical dyssynchrony. In this review, we explore risk factors and mechanisms of biventricular remodelling, from histological to electro-mechanical aspects, and the role of imaging in their assessment. We discuss unsolved challenges and future directions to better understand and treat the long-term sequelae of this complex congenital heart disease.
Collapse
Affiliation(s)
- Martina Avesani
- Paediatric and Congenital Cardiology Department, M3C National Reference Centre, Bordeaux University Hospital, Bordeaux, France; IHU Liryc, Electrophysiology and Heart Modelling Institute, Bordeaux University Foundation, Pessac, France; Paediatric Cardiology Unit, Department of Woman's and Child's Health, University-Hospital of Padova, University of Padua, Padua, Italy
| | - Zakaria Jalal
- Paediatric and Congenital Cardiology Department, M3C National Reference Centre, Bordeaux University Hospital, Bordeaux, France; IHU Liryc, Electrophysiology and Heart Modelling Institute, Bordeaux University Foundation, Pessac, France
| | - Mark K Friedberg
- Labatt Family Heart Center, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Olivier Villemain
- Labatt Family Heart Center, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Maeyls Venet
- Labatt Family Heart Center, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Giovanni Di Salvo
- Paediatric Cardiology Unit, Department of Woman's and Child's Health, University-Hospital of Padova, University of Padua, Padua, Italy
| | - Jean-Benoît Thambo
- Paediatric and Congenital Cardiology Department, M3C National Reference Centre, Bordeaux University Hospital, Bordeaux, France; IHU Liryc, Electrophysiology and Heart Modelling Institute, Bordeaux University Foundation, Pessac, France
| | - Xavier Iriart
- Paediatric and Congenital Cardiology Department, M3C National Reference Centre, Bordeaux University Hospital, Bordeaux, France; IHU Liryc, Electrophysiology and Heart Modelling Institute, Bordeaux University Foundation, Pessac, France.
| |
Collapse
|
5
|
Toro V, Jutras-Beaudoin N, Boucherat O, Bonnet S, Provencher S, Potus F. Right Ventricle and Epigenetics: A Systematic Review. Cells 2023; 12:2693. [PMID: 38067121 PMCID: PMC10705252 DOI: 10.3390/cells12232693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/08/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
There is an increasing recognition of the crucial role of the right ventricle (RV) in determining the functional status and prognosis in multiple conditions. In the past decade, the epigenetic regulation (DNA methylation, histone modification, and non-coding RNAs) of gene expression has been raised as a critical determinant of RV development, RV physiological function, and RV pathological dysfunction. We thus aimed to perform an up-to-date review of the literature, gathering knowledge on the epigenetic modifications associated with RV function/dysfunction. Therefore, we conducted a systematic review of studies assessing the contribution of epigenetic modifications to RV development and/or the progression of RV dysfunction regardless of the causal pathology. English literature published on PubMed, between the inception of the study and 1 January 2023, was evaluated. Two authors independently evaluated whether studies met eligibility criteria before study results were extracted. Amongst the 817 studies screened, 109 studies were included in this review, including 69 that used human samples (e.g., RV myocardium, blood). While 37 proposed an epigenetic-based therapeutic intervention to improve RV function, none involved a clinical trial and 70 are descriptive. Surprisingly, we observed a substantial discrepancy between studies investigating the expression (up or down) and/or the contribution of the same epigenetic modifications on RV function or development. This exhaustive review of the literature summarizes the relevant epigenetic studies focusing on RV in human or preclinical setting.
Collapse
Affiliation(s)
| | | | | | | | | | - François Potus
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Québec, QC G1V 4G5, Canada; (V.T.); (N.J.-B.); (O.B.); (S.B.); (S.P.)
| |
Collapse
|
6
|
Navarre BM, Clouthier KL, Ji X, Taylor A, Weldy CS, Dubin AM, Reddy S. miR Profile of Chronic Right Ventricular Pacing: a Pilot Study in Children with Congenital Complete Atrioventricular Block. J Cardiovasc Transl Res 2023; 16:287-299. [PMID: 36121621 PMCID: PMC10151311 DOI: 10.1007/s12265-022-10318-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/01/2022] [Indexed: 11/28/2022]
Abstract
Chronic ventricular pacing can lead to pacing-induced cardiomyopathy (PICM). Clinical data alone is insufficient to predict who will develop PICM. Our study aimed to evaluate the circulating miR profile associated with chronic right ventricular pacing in children with congenital complete AV block (CCAVB) and to identify candidate miRs for longitudinal monitoring. Clinical data and blood were collected from chronically paced children (N = 9) and compared with non-paced controls (N = 13). miR microarrays from the buffy coat revealed 488 differentially regulated miRs between groups. Pathway analysis predicted both adaptive and maladaptive miR signaling associated with chronic pacing despite preserved ventricular function. Greater profibrotic signaling (miRs-92a, 130, 27, 29) and sodium and calcium channel dysregulation (let-7) were seen in those paced > 10 years with the most dyregulation seen in a patient with sudden death vs. those paced < 10 years. These miRs may help to identify early adverse remodeling in this population.
Collapse
Affiliation(s)
- Brittany M Navarre
- Department of Pediatrics (Cardiology), Lucile Packard Children's Hospital, Stanford University, 750 Welch Road, Suite 325, Stanford, CA, 94304, USA
| | - Katie L Clouthier
- Department of Pediatrics (Cardiology), Lucile Packard Children's Hospital, Stanford University, 750 Welch Road, Suite 325, Stanford, CA, 94304, USA
| | - Xuhuai Ji
- Human Immune Monitoring Center and Functional Genomics Facility, Stanford University, Stanford, CA, 94305, USA
| | - Anne Taylor
- Department of Pediatrics (Cardiology), Lucile Packard Children's Hospital, Stanford University, 750 Welch Road, Suite 325, Stanford, CA, 94304, USA
| | - Chad S Weldy
- Department of Medicine (Cardiovascular), Stanford Medical Center, Stanford University, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Anne M Dubin
- Department of Pediatrics (Cardiology), Lucile Packard Children's Hospital, Stanford University, 750 Welch Road, Suite 325, Stanford, CA, 94304, USA
| | - Sushma Reddy
- Department of Pediatrics (Cardiology), Lucile Packard Children's Hospital, Stanford University, 750 Welch Road, Suite 325, Stanford, CA, 94304, USA.
- Cardiovascular Institute, Stanford University, Stanford, USA.
| |
Collapse
|
7
|
miRNA Dysregulation in Cardiovascular Diseases: Current Opinion and Future Perspectives. Int J Mol Sci 2023; 24:ijms24065192. [PMID: 36982265 PMCID: PMC10048938 DOI: 10.3390/ijms24065192] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/01/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
MicroRNAs (miRNAs), small noncoding RNAs, are post-transcriptional gene regulators that can promote the degradation or decay of coding mRNAs, regulating protein synthesis. Many experimental studies have contributed to clarifying the functions of several miRNAs involved in regulatory processes at the cardiac level, playing a pivotal role in cardiovascular disease (CVD). This review aims to provide an up-to-date overview, with a focus on the past 5 years, of experimental studies on human samples to present a clear background of the latest advances to summarize the current knowledge and future perspectives. SCOPUS and Web of Science were searched using the following keywords: (miRNA or microRNA) AND (cardiovascular diseases); AND (myocardial infarction); AND (heart damage); AND (heart failure), including studies published from 1 January 2018 to 31 December 2022. After an accurate evaluation, 59 articles were included in the present systematic review. While it is clear that miRNAs are powerful gene regulators, all the underlying mechanisms remain unclear. The need for up-to-date data always justifies the enormous amount of scientific work to increasingly highlight their pathways. Given the importance of CVDs, miRNAs could be important both as diagnostic and therapeutic (theranostic) tools. In this context, the discovery of “TheranoMIRNAs” could be decisive in the near future. The definition of well-setout studies is necessary to provide further evidence in this challenging field.
Collapse
|