1
|
Cocksedge E, Stat M, Suzzi AL, Gaston TF, Huggett MJ. Spatial and environmental drivers of temperate estuarine archaeal communities. MARINE ENVIRONMENTAL RESEARCH 2024; 201:106703. [PMID: 39182434 DOI: 10.1016/j.marenvres.2024.106703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/20/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024]
Abstract
Archaea play a crucial role in the global biogeochemical cycling of elements and nutrients, helping to maintain the functional stability of estuarine systems. This study characterised the abundance and diversity of archaeal communities and identified the environmental conditions shaping these microbial communities within six temperate estuaries along approximately 500 km of the New South Wales coastline, Australia. Estuarine sediments were found to exhibit significantly higher species richness than planktonic communities, with representative sequences from the Crenarchaeota phylum characterising each environment. Ordinate analyses revealed catchment characteristics as the strongest drivers of community variability. Our results also provide evidence supporting distance-decay patterns of archaeal biogeography across intermediate scales within and between temperate estuaries, contributing to a growing body of evidence revealing the extent spatial scales play in shaping microbial communities. This study expands our understanding of microbial diversity in temperate estuaries, with a specific focus on archaeal community structure and their role in maintaining ecosystem stability.
Collapse
Affiliation(s)
- Emily Cocksedge
- School of Environmental and Life Sciences, The University of Newcastle, Ourimbah, NSW, 2258, Australia.
| | - Michael Stat
- School of Environmental and Life Sciences, The University of Newcastle, Ourimbah, NSW, 2258, Australia
| | - Alessandra L Suzzi
- School of Environmental and Life Sciences, The University of Newcastle, Ourimbah, NSW, 2258, Australia
| | - Troy F Gaston
- School of Environmental and Life Sciences, The University of Newcastle, Ourimbah, NSW, 2258, Australia
| | - Megan J Huggett
- School of Environmental and Life Sciences, The University of Newcastle, Ourimbah, NSW, 2258, Australia; Centre for Marine Ecosystems Research, School of Science, Edith Cowan University, Joondalup, WA 6027, Australia
| |
Collapse
|
2
|
Reynolds MC, Cadillo-Quiroz H. Microbial DNA sample preservation and possible artifacts for field-based research in remote tropical peatlands. J Microbiol Methods 2024; 224:106997. [PMID: 39009285 DOI: 10.1016/j.mimet.2024.106997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 07/07/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
Surveying bacterial and archaeal microbial communities in host and environmental studies requires the collection and storage of samples. Many studies are conducted in distant locations challenging these prerequisites. The use of preserving buffers is an important alternative when lacking access to cryopreservation, however, its effectivity for samples with challenging chemistry or samples that provide opportunities for fast bacterial or archaeal growth upon exposure to an aerobic environment, like peat samples, requires methodological assessment. Here, in combination with an identified optimal DNA extraction kit for peat soil samples, we test the application of several commercial and a homemade preservation buffer and make recommendations on the method that can most effectively preserve a microbiome reflective of the original state. In treatments with a non-optimal buffer or in the absence, we observed notable community shifts beginning as early as three days post-preservation lowering diversity and community evenness, with growth-driven artifacts from a few specific phyla. However other buffers retain a very close composition relative to the original state, and we described several metrics to understand some variation across them. Due to the chemical effects of preservation buffers, it is critical to test their compatibility and reliability to preserve the original bacterial and archaeal community in different environments.
Collapse
Affiliation(s)
- Mark C Reynolds
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, United States; Biodesign Institute, Arizona State University, Tempe, AZ 85287, United States
| | - Hinsby Cadillo-Quiroz
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, United States; Biodesign Institute, Arizona State University, Tempe, AZ 85287, United States.
| |
Collapse
|
3
|
Li X, Ye F, Xiang H, Hong Y, Wu J, Deng M, Wang Y. Stochastic processes drive the diversity and composition of methanogenic community in a natural mangrove ecosystem. MARINE ENVIRONMENTAL RESEARCH 2024; 195:106373. [PMID: 38266547 DOI: 10.1016/j.marenvres.2024.106373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/08/2024] [Accepted: 01/19/2024] [Indexed: 01/26/2024]
Abstract
Methanogens are considered to be crucial components of mangrove ecosystems with ecological significance. However, understanding the assembly processes of methanogenic communities in mangrove ecosystems is relatively insufficient. In the current study, a natural mangrove in a protection zone was employed to investigate the diversity and assembly processes of methanogenic community by using amplicon high-throughput sequencing, a null model as well as a neutral community model. The results showed that methanogenic community in mangrove sediments were highly diverse, with the predominance of methylotrophic Methanolobus, and hydrogenotrophic Methanogenium, Methanospirillum. The diversity, composition, and gene abundance varied obviously across the mangrove sampling sites, whereas the measured environmental variables exhibited a negligible effect. Null model showed that the values of beta nearest-taxon index were mostly between -2 and 2, indicating that stochastic processes contributed more than deterministic processes driving the methanogenic community assembly in mangrove sediments. Neutral community model revealed a high estimated migration rate of methanogenic community, further substantiating the significance of stochastic processes. Among the keystone species identified in network analysis, methanogens affiliated to hydrogenotrophic Methanospirillum may have a crucial role in maintaining the structure and function of methanogenic community. Notably, these keystone species were almost unaffected by measured environmental factors, indicating that the methanogenic community in mangrove sediments is more likely to be affected by stochastic processes. This study deepens the understanding of the diversity and assembly of methanogenic community in mangrove sediments, and provides clues to maintain mangrove ecosystem functioning.
Collapse
Affiliation(s)
- Xindi Li
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Fei Ye
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China.
| | - Hua Xiang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Yiguo Hong
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Jiapeng Wu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Minshi Deng
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Yu Wang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China.
| |
Collapse
|
4
|
Euler S, Jeffrey LC, Maher DT, Johnston SG, Sugimoto R, Tait DR. Microbiome mediating methane and nitrogen transformations in a subterranean estuary. Environ Microbiol 2024; 26:e16558. [PMID: 38115223 DOI: 10.1111/1462-2920.16558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 12/05/2023] [Indexed: 12/21/2023]
Abstract
Subterranean estuaries (STEs) are important coastal biogeochemical reactors facilitating unique niches for microbial communities. A common approach in determining STE greenhouse gas and nutrient fluxes is to use terrestrial endmembers, not accounting for microbially mediated transformations throughout the STE. As such, the microbial ecology and spatial distribution of specialists that cycle compounds in STEs remain largely underexplored. In this study, we applied 16S rRNA amplicon sequencing with paired biogeochemical characterisations to spatially evaluate microbial communities transforming greenhouse gases and nutrients in an STE. We show that methanogens are most prevalent at the terrestrial end (up to 2.81% relative abundance) concomitant to the highest porewater methane, carbon dioxide and dissolved organic carbon concentrations (0.41 ± 0.02 μM, 273.31 ± 6.05 μM and 0.51 ± 0.02 mM, respectively). Lower ammonium concentrations corresponded with abundant nitrifying and ammonia-oxidising prokaryotes in the mixing zone (up to 11.65% relative abundance). Methane, ammonium and dissolved organic carbon concentrations all decreased by >50% from the terrestrial to the oceanic end of the 15 m transect. This study highlights the STE's hidden microbiome zonation, as well as the importance of accounting for microbial transformations mitigating nutrient and greenhouse gas fluxes to the coastal ecosystems.
Collapse
Affiliation(s)
- Sebastian Euler
- Faculty of Science and Engineering, Southern Cross University, Lismore, Australia
| | - Luke C Jeffrey
- Faculty of Science and Engineering, Southern Cross University, Lismore, Australia
| | - Damien T Maher
- Faculty of Science and Engineering, Southern Cross University, Lismore, Australia
| | - Scott G Johnston
- Faculty of Science and Engineering, Southern Cross University, Lismore, Australia
| | - Ryo Sugimoto
- Faculty of Marine Science and Technology, Fukui Prefectural University, Fukui, Japan
| | - Douglas R Tait
- Faculty of Science and Engineering, Southern Cross University, Lismore, Australia
| |
Collapse
|
5
|
Zhang X, Zhang C, Liu Y, Zhang R, Li M. Non-negligible roles of archaea in coastal carbon biogeochemical cycling. Trends Microbiol 2022; 31:586-600. [PMID: 36567186 DOI: 10.1016/j.tim.2022.11.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 12/25/2022]
Abstract
Coastal zones are among the world's most productive ecosystems. They store vast amounts of organic carbon, as 'blue carbon' reservoirs, and impact global climate change. Archaeal communities are integral components of coastal microbiomes but their ecological roles are often overlooked. However, archaeal diversity, metabolism, evolution, and interactions, revealed by recent studies using rapidly developing cutting-edge technologies, place archaea as important players in coastal carbon biogeochemical cycling. We here summarize the latest advances in the understanding of archaeal carbon cycling processes in coastal ecosystems, specifically, archaeal involvement in CO2 fixation, organic biopolymer transformation, and methane metabolism. We also showcase the potential to use of archaeal communities to increase carbon sequestration and reduce methane production, with implications for mitigating climate change.
Collapse
Affiliation(s)
- Xinxu Zhang
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China
| | - Cuijing Zhang
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China
| | - Yang Liu
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China
| | - Rui Zhang
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China
| | - Meng Li
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China.
| |
Collapse
|
6
|
Lew S, Glińska-Lewczuk K, Burandt P, Kulesza K, Kobus S, Obolewski K. Salinity as a Determinant Structuring Microbial Communities in Coastal Lakes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19084592. [PMID: 35457457 PMCID: PMC9028135 DOI: 10.3390/ijerph19084592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/29/2022] [Accepted: 04/06/2022] [Indexed: 02/06/2023]
Abstract
The response of bacterioplankton structure to salinity level in coastal lakes (n = 9) along the southern Baltic Sea coastline was studied. In terms of mean salinity levels (0.2−5.2 PSU), the lakes represented freshwater, transitional, and brackish types. Results showed that salinity determines the spatial and seasonal distribution patterns of microorganisms in costal lakes. Increased salinity contributed to a significant decline in total bacterial numbers (TBN). The TBN was lowest in brackish lakes in autumn (4 × 106 cells/mL) and highest in freshwater lakes in summer (7.11 × 106 cells/mL). The groups of Proteobacteria are appropriate bioindicators in any classifications of coastal ecosystems, particularly at low-haline stress. Alpha- and Gamma- subclasses of Proteobacteria are identifiers for brackish habitats, while Betaproteobacteria, due to their intolerance to haline stress, prefer freshwater habitats. Counts of euryhaline Actinobacteria, the dominant group of bacterioplankton (31.8%), decreased significantly with increased salinity. Actinobacteria and Deltaproteobacteria were identifiers of transitional lakes. Cytophaga-Flavobacteria showed affinity with freshwater ecosystems, but this relation was not statistically significant (p > 0.05). The bacteria groups correlated with other physico-chemical parameters of water, such as oxygenation (Actinobacteria) or organic carbon (Betaproteobacteria, Deltaproteobacteria). The impact of hydrological connectivity and salt-water interference on the microbiota structure and biogeochemistry of coastal waters should be considered in the assessment of the ecological status of coastal lakes.
Collapse
Affiliation(s)
- Sylwia Lew
- Department of Microbiology and Mycology, University of Warmia and Mazury in Olsztyn, Oczapowskiego Str. 1a, 10-719 Olsztyn, Poland;
- Correspondence:
| | - Katarzyna Glińska-Lewczuk
- Department of Water Management and Climatology, University of Warmia and Mazury in Olsztyn, Łódzki Sq. 2, 10-719 Olsztyn, Poland; (K.G.-L.); (P.B.); (S.K.)
| | - Paweł Burandt
- Department of Water Management and Climatology, University of Warmia and Mazury in Olsztyn, Łódzki Sq. 2, 10-719 Olsztyn, Poland; (K.G.-L.); (P.B.); (S.K.)
| | - Klaudia Kulesza
- Department of Microbiology and Mycology, University of Warmia and Mazury in Olsztyn, Oczapowskiego Str. 1a, 10-719 Olsztyn, Poland;
| | - Szymon Kobus
- Department of Water Management and Climatology, University of Warmia and Mazury in Olsztyn, Łódzki Sq. 2, 10-719 Olsztyn, Poland; (K.G.-L.); (P.B.); (S.K.)
| | - Krystian Obolewski
- Department of Hydrobiology, Kazimierz Wielki University in Bydgoszcz, Powstańców Wielkopolskich Str. 10, 85-090 Bydgoszcz, Poland;
| |
Collapse
|
7
|
Biessy L, Pearman JK, Waters S, Vandergoes MJ, Wood SA. Metagenomic insights to the functional potential of sediment microbial communities in freshwater lakes. METABARCODING AND METAGENOMICS 2022. [DOI: 10.3897/mbmg.6.79265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Molecular-based techniques offer considerable potential to provide new insights into the impact of anthropogenic stressors on lake ecosystems. Microbial communities are involved in many geochemical cycling processes in lakes and a greater understanding of their functions could assist in guiding more targeted remedial actions. Recent advances in metagenomics now make it possible to determine the functional potential of entire microbial communities. The present study investigated microbial communities and their functional potential in surface sediments collected from three lakes with differing trophic states and characteristics. Surface sediments were analysed for their nutrient and elemental contents and metagenomics and metabarcoding analysis undertaken. The nutrients content of the surface sediments did not show as distinct a gradient as water chemistry monitoring data, likely reflecting effects of other lake characteristics, in particular, depth. Metabarcoding and metagenomics revealed differing bacterial community composition and functional potential amongst lakes. Amongst the differentially abundant metabolic pathways, the most prominent were clusters in the energy and xenobiotics pathways. Differences in the energy metabolism paths of photosynthesis and oxidative phosphorylation were observed. These were most likely related to changes in the community composition and especially the presence of cyanobacteria in two of the three lakes. Xenobiotic pathways, such as those involving polycyclic aromatic hydrocarbons, were highest in the lakes with the greatest agricultural land-use in their catchment. These results highlight how microbial metagenomics can be used to gain insights into the causes of differences in trophic status amongst lakes.
Collapse
|
8
|
Yang X, Zhang Y, Liu Q, Guo J, Zhou Q. Progress in the interaction of dissolved organic matter and microbes (1991-2020): a bibliometric review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:16817-16829. [PMID: 34997929 DOI: 10.1007/s11356-022-18540-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Dissolved organic matter (DOM) and microbes are key in the planetary carbon cycle, and research on them can lead to a better understanding of the global carbon cycle and an improved ability to cope with environmental challenges. Several papers have reviewed one or several aspects of the interaction of DOM and microbes, but no overall review has been performed. Here, we bibliometrically analyzed all publications from the Web of Science on DOM and microbes (1991-2020). The results showed that studies on DOM and microbes grew exponentially during this period; the USA contributed the most to the total publications, and China has had the fastest increasing rate since 2010. Moreover, we used the Latent Dirichlet Allocation model to identify topics and determine their (cold or hot) trends by analyzing the abstracts of 9851 publications related to DOM and microbes. A total of 96 topics were extracted, and these topics that are related to the source, composition, and removal path of DOM and the temporal-spatial patterns of DOM and microbes consistently rose from 1991 to 2020. Most studies have used accurate and rapid methods combined with microbiological genetic approaches to study the interaction of DOM and microbes in terrestrial and aquatic ecosystems. The results also showed that the impacts of climate change and land use on the interaction of DOM and microbes, and topics related to human health have received considerable attention. In the future, the interaction mechanism of DOM and microbes and its response to environmental change should be further elucidated.
Collapse
Affiliation(s)
- Xuan Yang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650500, China
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming, 650500, China
| | - Yun Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650500, China
| | - Qi Liu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650500, China
| | - Jishu Guo
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650500, China
| | - Qichao Zhou
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650500, China.
- Yunnan Key Laboratory of Pollution Process and Management of Plateau Lake-Watershed, Yunnan Research Academy of Eco-Environmental Sciences, Kunming, 650034, China.
| |
Collapse
|
9
|
Zhang C, Liu YP, Du JL, Liu H, Zhu SL, Chen L, Wang XX, Yang XS, Tian S. High-solid digestion from cellulosic ethanol stillage with activated sludge of simultaneous propionate degradation and methanogenesis. BIORESOURCE TECHNOLOGY 2021; 330:124951. [PMID: 33735734 DOI: 10.1016/j.biortech.2021.124951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/03/2021] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
High solid anaerobic digestion (HSAD) was an emerging bioconversion technology which had the advantages of small digester, less digestate and low heating energy. A one-stage anaerobic system in CSTR by inoculating activated sludge of simultaneous propionate degradation and methanogenesis was proposed to improve the high-solid digestion performance and to stabilize the reaction process. Semi-continuous mode was successfully used to perform HSAD from cellulosic ethanol whole stillage at an initial substrate loading of 15.4% (w/w) dry matter content with different OLRs from 1.5 to 5.0 gVS·L-1 d-1 at an HRT of 30 days. The average methane yield during whole digestion reached 349.9 mL⋅gVS-1 with a total VS removal rate of 61.3%. The acclimation mechanism of multifunctional activated sludge was also explored by analyzing the functional property, physiological activity and microbial community structure. The results indicated the feasibility and efficiency of multifunctional activated sludge in a semi-continuous high-solid stirred tank reactor system.
Collapse
Affiliation(s)
- C Zhang
- College of Life Science, Capital Normal University, Beijing 100048, China
| | - Y P Liu
- Department of Environmental Science & Engineering, Beijing 100029, China
| | - J L Du
- College of Life Science, Capital Normal University, Beijing 100048, China
| | - H Liu
- College of Life Science, Capital Normal University, Beijing 100048, China
| | - S L Zhu
- College of Life Science, Capital Normal University, Beijing 100048, China
| | - L Chen
- College of Life Science, Capital Normal University, Beijing 100048, China
| | - X X Wang
- College of Life Science, Capital Normal University, Beijing 100048, China
| | - X S Yang
- College of Life Science, Capital Normal University, Beijing 100048, China
| | - S Tian
- College of Life Science, Capital Normal University, Beijing 100048, China.
| |
Collapse
|