1
|
Crowder J, Rochlin I, Bibbs CS, Pennock E, Browning M, Lott C, Barth A, White GS, Faraji A. Managed honey bees, Apis mellifera (Hymenoptera: Apidae), face greater risk from parasites and pathogens than mosquito control insecticide applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 964:178638. [PMID: 39864250 DOI: 10.1016/j.scitotenv.2025.178638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 01/28/2025]
Abstract
As the primary pollinator for many crops, honey bees (Apis mellifera) are critically important to food production and the agricultural economy. Adult mosquito control is often suspected by the public and commercial beekeepers to harm honey bees, creating conflicts between industries. To investigate this matter, a two-year field study was conducted on vegetated wetlands in Salt Lake City, Utah, U.S.A. where honey bee colonies were placed in areas subjected to aerial adult mosquito control applications using the organophosphate naled. Comparison colonies were placed in areas not exposed to insecticides. Colony conditions were documented over the two-year period to capture both immediate and cumulative season-long effects of naled to honey bee health. A Before-After-Control-Impact (BACI) analysis of mortality data from treated and non-treated colonies using mixed effects models revealed no statistically significant differences, indicating that aerial applications of naled for mosquito control did not adversely affect these honey bee colonies. A Random Forest machine-learning model identified that Nosema infection, maximum temperatures, and seasonal progression were more significant contributors to bee mortality during the study period, whereas cumulative naled applications were among the least significant predictors. Non-parametric statistical tests (NMDS and PERMANOVA) indicated no differences in colony resources (pollen/honey/nectar; open/capped brood) and parasite (Varroa mites; Vairimorpha microsporidians) loads between exposed colonies and non-treatment colonies. These findings were consistent across different seasons and varying environmental conditions. Our results suggest that naled, when used as intended for mosquito control, does not pose a significant risk to managed honey bee populations in rural settings.
Collapse
Affiliation(s)
- Jenna Crowder
- Salt Lake City Mosquito Abatement District, 2215 North 2200 West, Salt Lake City, UT 84116, United States
| | - Ilia Rochlin
- Salt Lake City Mosquito Abatement District, 2215 North 2200 West, Salt Lake City, UT 84116, United States
| | - Christopher S Bibbs
- Salt Lake City Mosquito Abatement District, 2215 North 2200 West, Salt Lake City, UT 84116, United States.
| | - Emily Pennock
- Salt Lake City Mosquito Abatement District, 2215 North 2200 West, Salt Lake City, UT 84116, United States
| | - Mike Browning
- Honey Bear Hives, 416 South 975 East, Layton, UT 84041, United States
| | - Cody Lott
- Honey Bear Hives, 416 South 975 East, Layton, UT 84041, United States
| | - Amanda Barth
- Salt Lake City Mosquito Abatement District, 2215 North 2200 West, Salt Lake City, UT 84116, United States; Rare Insect Conservation Program, Utah State University, 5200 Old Main Hill Rd, Logan, UT 84322, United States
| | - Gregory S White
- Salt Lake City Mosquito Abatement District, 2215 North 2200 West, Salt Lake City, UT 84116, United States
| | - Ary Faraji
- Salt Lake City Mosquito Abatement District, 2215 North 2200 West, Salt Lake City, UT 84116, United States
| |
Collapse
|
2
|
O'Connell DP, Healy K, Wilton J, Botías C, Jones JC. A systematic meta-analysis of the efficacy of treatments for a global honey bee pathogen - the Varroa mite. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 963:178228. [PMID: 39837751 DOI: 10.1016/j.scitotenv.2024.178228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/23/2025]
Abstract
The western honey bee Apis mellifera is the world's most important managed pollinator. However, globally honey bees have been facing increasing colony losses due to a combination of stress factors. Foremost among these is the invasive mite Varroa destructor, which is the pathogen most commonly linked to colony losses. Despite intensive research focus on this problem, V. destructor management remains extremely challenging, with no definitive treatment approach. A variety of synthetic chemical, agriculturally organic chemical, biological, and physical treatments have been trialled and used in V. destructor management, each with benefits and drawbacks. Here, we carried out a first systematic meta-analysis of the comparative effectiveness of V. destructor treatment methods. We incorporated data from 138 studies from 30 countries, across five continents and found that overall, synthetic chemicals show high effectiveness as a treatment due to their ability to suppress the V. destructor mite. In our analyses of honey bee responses, there was some evidence that synthetic chemicals may have an overall negative impact on them, even while suppressing V. destructor. For improving honey bee health measures, biological treatment methods showed the most positive effect, but with a relatively low sample size. Our study highlights that there is a relative lack of studies on biological management methods, with far more focus in the literature on chemical treatments. We show that, until biological methods receive greater research attention, agriculturally organic methods likely provide the best current treatment option, because they are well studied, nearly as effective at suppressing V. destructor as synthetic chemicals, and less associated with negative impacts on honey bees. Varroa destructor remains a major threat to honey bees globally, with the last large V. destructor free zone (Australia) having now been invaded, emphasising the need to fill these knowledge gaps.
Collapse
Affiliation(s)
- Darren P O'Connell
- School of Biology and Environmental Science, University College Dublin, Dublin D04 N2E5, Ireland.
| | - Kevin Healy
- School of Natural Sciences, Ryan Institute, University of Galway, Galway, Ireland
| | - Jack Wilton
- School of Biology and Environmental Science, University College Dublin, Dublin D04 N2E5, Ireland
| | - Cristina Botías
- Department of Life Sciences, University of Alcalá, Alcalá de Henares, Spain
| | - Julia C Jones
- School of Biology and Environmental Science, University College Dublin, Dublin D04 N2E5, Ireland
| |
Collapse
|
3
|
Piou V, Arafah K, Bocquet M, Bulet P, Vétillard A. The proteomic content of Varroa destructor gut varies according to the developmental stage of its host. PLoS Pathog 2024; 20:e1012802. [PMID: 39774526 PMCID: PMC11723617 DOI: 10.1371/journal.ppat.1012802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 01/10/2025] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
The nutritional physiology of parasites is often overlooked although it is at the basis of host-parasite interactions. In the case of Varroa destructor, one of the major pests of the Western honey bee Apis mellifera, the nature of molecules and tissues ingested by the parasite is still not completely understood. Here, the V. destructor feeding biology was explored through artificial feeding, dissection of the mite's gut and proteomic analyses. More specifically, the proteome of guts extracted from starved mites and honey bee-fed mites was compared to highlight both the parasite proteins likely involved in food processing and the honey bee proteins actually ingested by the mite. We could identify 25 V. destructor candidate proteins likely involved in the parasite digestion. As the host developmental stages infested by the mite are diverse, we also focused on the identity and on the origin of honey bee proteins ingested by the mite when it feeds on larvae, pupae or adults. We highlighted profiles of consumed honey bee proteins and their variations throughout the V. destructor life cycle. These variations matched the ones observed in the honey bee hemolymph, showing that this tissue is an important part of the mite's diet. Based on the variations of abundance of the most consumed honey bee proteins and on their functions, the potential implication of these key candidate nutrients in V. destructor reproduction is also discussed.
Collapse
Affiliation(s)
- Vincent Piou
- Centre de Recherche sur la Biodiversité et l’Environnement (CRBE), UMR5174, CNRS-Université de Toulouse III-IRD, Université Paul Sabatier, Toulouse, France
| | - Karim Arafah
- Plateforme BioPark d’Archamps, Archparc, Archamps, France
| | | | - Philippe Bulet
- Plateforme BioPark d’Archamps, Archparc, Archamps, France
- CR Université Grenoble Alpes, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Grenoble, France
| | - Angélique Vétillard
- Centre de Recherche sur la Biodiversité et l’Environnement (CRBE), UMR5174, CNRS-Université de Toulouse III-IRD, Université Paul Sabatier, Toulouse, France
- Conservatoire National des Arts et Métiers (CNAM Paris), Unité Métabiot, Ploufragan, France
| |
Collapse
|
4
|
Ellis JT, Rangel J. Stress drives premature hive exiting behavior that leads to death in young honey bee (Apis mellifera) workers. Biol Res 2024; 57:92. [PMID: 39593109 PMCID: PMC11600856 DOI: 10.1186/s40659-024-00569-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND The Western honey bee, Apis mellifera, is an economically important pollinator, as well as a tractable species for studying the behavioral intricacies of eusociality. Honey bees are currently being challenged by multiple biotic and environmental stressors, many of which act concomitantly to affect colony health and productivity. For instance, developmental stress can lead workers to become precocious foragers and to leave the hive prematurely. Precocious foragers have decreased flight time and lower foraging efficiency, which can ultimately lower colony productivity and even lead to colony collapse. MATERIALS AND METHODS In this study, we tested the hypothesis that stress during pupal development can cause young workers to exit the hive prematurely before they are physically able to fly. This premature exiting behavior results in death outside the hive soon thereafter. To determine how various stressors may lead bees to perform this behavior, we subjected workers during the last pupal stage to either cold stress (26 °C for 24 h), heat stress (39 °C for 24 h), or Varroa destructor mite parasitization, and compared the rate of premature hive exits between stressed bees and their respective control counterparts. Upon emergence, we individually tagged focal bees in all treatment groups and introduced them to a common observation hive. We then followed tagged bees over time and monitored their survivorship, as well as their likelihood of performing the premature hive exiting behavior. We also dissected the hypopharyngeal glands of all treatment and control bees sampled. RESULTS We found that significantly more bees in all three treatment groups exited the hive prematurely compared to their control counterparts. Bees in all treatment groups also had significantly smaller hypopharyngeal glands than control bees. CONCLUSIONS Our results suggest that premature hive exiting behavior is driven by stress and is potentially a form of accelerated age polyethism that leads to premature death.
Collapse
Affiliation(s)
- Jordan Twombly Ellis
- Department of Entomology, Texas A&M University, 2475 TAMU, College Station, TX, 77843-2475, USA
| | - Juliana Rangel
- Department of Entomology, Texas A&M University, 2475 TAMU, College Station, TX, 77843-2475, USA.
| |
Collapse
|
5
|
Divasón J, Romero A, Martinez-de-Pison FJ, Casalongue M, Silvestre MA, Santolaria P, Yániz JL. Analysis of Varroa Mite Colony Infestation Level Using New Open Software Based on Deep Learning Techniques. SENSORS (BASEL, SWITZERLAND) 2024; 24:3828. [PMID: 38931612 PMCID: PMC11207890 DOI: 10.3390/s24123828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024]
Abstract
Varroa mites, scientifically identified as Varroa destructor, pose a significant threat to beekeeping and cause one of the most destructive diseases affecting honey bee populations. These parasites attach to bees, feeding on their fat tissue, weakening their immune systems, reducing their lifespans, and even causing colony collapse. They also feed during the pre-imaginal stages of the honey bee in brood cells. Given the critical role of honey bees in pollination and the global food supply, controlling Varroa mites is imperative. One of the most common methods used to evaluate the level of Varroa mite infestation in a bee colony is to count all the mites that fall onto sticky boards placed at the bottom of a colony. However, this is usually a manual process that takes a considerable amount of time. This work proposes a deep learning approach for locating and counting Varroa mites using images of the sticky boards taken by smartphone cameras. To this end, a new realistic dataset has been built: it includes images containing numerous artifacts and blurred parts, which makes the task challenging. After testing various architectures (mainly based on two-stage detectors with feature pyramid networks), combination of hyperparameters and some image enhancement techniques, we have obtained a system that achieves a mean average precision (mAP) metric of 0.9073 on the validation set.
Collapse
Affiliation(s)
- Jose Divasón
- Departament of Mathematics and Computer Science, University of La Rioja, 26006 Logroño, Spain;
| | - Ana Romero
- Departament of Mathematics and Computer Science, University of La Rioja, 26006 Logroño, Spain;
| | | | - Matías Casalongue
- BIOFITER Research Group, Environmental Sciences Institute (IUCA), Department of Animal Production and Food Sciences, University of Zaragoza, 22071 Huesca, Spain; (M.C.); (P.S.)
| | - Miguel A. Silvestre
- Department of Cell Biology, Functional Biology and Physical Anthropology, University of Valencia, 46100 Burjassot, Spain;
| | - Pilar Santolaria
- BIOFITER Research Group, Environmental Sciences Institute (IUCA), Department of Animal Production and Food Sciences, University of Zaragoza, 22071 Huesca, Spain; (M.C.); (P.S.)
| | - Jesús L. Yániz
- BIOFITER Research Group, Environmental Sciences Institute (IUCA), Department of Animal Production and Food Sciences, University of Zaragoza, 22071 Huesca, Spain; (M.C.); (P.S.)
| |
Collapse
|
6
|
Copeland DC, Ricigliano VA, Mott BM, Kortenkamp OL, Erickson RJ, Gorrochategui-Ortega J, Anderson KE. A longitudinal study of queen health in honey bees reveals tissue specific response to seasonal changes and pathogen pressure. Sci Rep 2024; 14:8963. [PMID: 38637564 PMCID: PMC11026438 DOI: 10.1038/s41598-024-58883-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/04/2024] [Indexed: 04/20/2024] Open
Abstract
The health of honey bee queens is crucial for colony success, particularly during stressful periods like overwintering. To accompany a previous longitudinal study of colony and worker health, we explored niche-specific gut microbiota, host gene expression, and pathogen prevalence in honey bee queens overwintering in a warm southern climate. We found differential gene expression and bacterial abundance with respect to various pathogens throughout the season. Biologically older queens had larger microbiotas, particularly enriched in Bombella and Bifidobacterium. Both Deformed Wing Virus A and B subtypes were highest in the fat body tissue in January, correlating with colony Varroa levels, and Deformed Wing Virus titers in workers. High viral titers in queens were associated with decreased vitellogenin expression, suggesting a potential trade-off between immune function and reproductive capacity. Additionally, we found a complex and dynamic relationship between these viral loads and immune gene expression, indicating a possible breakdown in the coordinated immune response as the season progressed. Our study also revealed a potential link between Nosema and Melissococcus plutonius infections in queens, demonstrating that seasonal opportunism is not confined to just workers. Overall, our findings highlight the intricate interplay between pathogens, metabolic state, and immune response in honey bee queens. Combined with worker and colony-level metrics from the same colonies, our findings illustrate the social aspect of queen health and resilience over the winter dearth.
Collapse
Affiliation(s)
- Duan C Copeland
- USDA-ARS Carl Hayden Bee Research Center, 2000 E. Allen Rd, Tucson, AZ, 85719, USA.
| | - Vincent A Ricigliano
- USDA-ARS Honey Bee Breeding, Genetics, and Physiology Laboratory, Baton Rouge, LA, 70820, USA
| | - Brendon M Mott
- USDA-ARS Carl Hayden Bee Research Center, 2000 E. Allen Rd, Tucson, AZ, 85719, USA
| | - Oliver L Kortenkamp
- USDA-ARS Carl Hayden Bee Research Center, 2000 E. Allen Rd, Tucson, AZ, 85719, USA
- Department of Entomology and Center for Insect Science, University of Arizona, Tucson, AZ, 85721, USA
| | - Robert J Erickson
- USDA-ARS Carl Hayden Bee Research Center, 2000 E. Allen Rd, Tucson, AZ, 85719, USA
| | - June Gorrochategui-Ortega
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Barrio Sarriena S/N, 48940, Leioa, Spain
| | - Kirk E Anderson
- USDA-ARS Carl Hayden Bee Research Center, 2000 E. Allen Rd, Tucson, AZ, 85719, USA.
- Department of Entomology and Center for Insect Science, University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
7
|
Nguyen TT, Yoo MS, Lee JH, Truong AT, Youn SY, Lee SJ, Yoon SS, Cho YS. Identification and pathogen detection of a Neocypholaelaps species (Acari: Mesostigmata: Ameroseiidae) from beehives in the Republic of Korea. PLoS One 2024; 19:e0300025. [PMID: 38603704 PMCID: PMC11008822 DOI: 10.1371/journal.pone.0300025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/21/2024] [Indexed: 04/13/2024] Open
Abstract
In this study, we identified a new strain of the genus Neocypholaelaps from the beehives of Apis mellifera colonies in the Republic of Korea (ROK). The Neocypholaelap sp. KOR23 mites were collected from the hives of honeybee apiaries in Wonju, Gangwon-do, in May 2023. Morphological and molecular analyses based on 18S and 28S rRNA gene regions conclusively identified that these mites belong to the genus Neocypholaelaps, closely resembling Neocypholaelaps sp. APGD-2010 that was first isolated from the United States. The presence of 9 of 25 honeybee pathogens in these mite samples suggests that Neocypholaelaps sp. KOR23 mite may act as an intermediate vector and carrier of honeybee diseases. The identification of various honeybee pathogens within this mite highlights their significance in disease transmission among honeybee colonies. This comprehensive study provides valuable insights into the taxonomy and implications of these mites for bee health management and pathogen dissemination.
Collapse
Affiliation(s)
- Thi-Thu Nguyen
- Laboratory of Parasitic and Honeybee Diseases, Bacterial Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
- Institute of Biotechnology, Vietnam Academy of Science & Technology, Ha Noi, Viet Nam
| | - Mi-Sun Yoo
- Laboratory of Parasitic and Honeybee Diseases, Bacterial Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Jong-Ho Lee
- Plant Pest Control Division, Department of Plant Quarantine, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - A-Tai Truong
- Laboratory of Parasitic and Honeybee Diseases, Bacterial Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
- Faculty of Biotechnology, Thai Nguyen University of Sciences, Thai Nguyen, Viet Nam
| | - So-Youn Youn
- Laboratory of Parasitic and Honeybee Diseases, Bacterial Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Se-Ji Lee
- Laboratory of Parasitic and Honeybee Diseases, Bacterial Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Soon-Seek Yoon
- Laboratory of Parasitic and Honeybee Diseases, Bacterial Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Yun Sang Cho
- Laboratory of Parasitic and Honeybee Diseases, Bacterial Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| |
Collapse
|
8
|
Nguyen TT, Yoo MS, Truong AT, Youn SY, Kim DH, Lee SJ, Yoon SS, Cho YS. Prevalence and genome features of lake sinai virus isolated from Apis mellifera in the Republic of Korea. PLoS One 2024; 19:e0299558. [PMID: 38502683 PMCID: PMC10950237 DOI: 10.1371/journal.pone.0299558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/12/2024] [Indexed: 03/21/2024] Open
Abstract
Lake Sinai Virus (LSV) is an emerging pathogen known to affect the honeybee (Apis mellifera). However, its prevalence and genomic characteristics in the Republic of Korea (ROK) remain unexplored. This study aimed to assess the prevalence of and analyze the LSVs by examining 266 honeybee samples from the ROK. Our findings revealed that LSV exhibited the highest infection rate among the pathogens observed in Korean apiaries, particularly during the reported period of severe winter loss (SWL) in A. mellifera apiaries in 2022. Three LSV genotypes- 2, 3, and 4 -were identified using RNA-dependent RNA polymerase gene analysis. Importantly, the infection rates of LSV2 (65.2%) and LSV3 (73.3%) were significantly higher in colonies experiencing SWL than in those experiencing normal winter loss (NWL) (p < 0.03). Furthermore, this study provides the first near-complete genome sequences of the Korean LSV2, LSV3, and LSV4 strains, comprising 5,759, 6,040, and 5,985 nt, respectively. Phylogenetic analysis based on these near-complete genome sequences demonstrated a close relationship between LSVs in the ROK and China. The high LSV infection rate in colonies experiencing a heightened mortality rate during winter suggests that this pathogen might contribute to SWL in ROK. Moreover, the genomic characteristic information on LSVs in this study holds immense potential for epidemiological information and the selection of specific genes suitable for preventing and treating LSV, including the promising utilization of RNA interference medicine in the future.
Collapse
Affiliation(s)
- Thi-Thu Nguyen
- Department of Animal and Plant Health Research, Laboratory of Parasitic and Honeybee Diseases, Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
- Institute of Biotechnology, Vietnam Academy of Science & Technology, Ha Noi, Viet Nam
| | - Mi-Sun Yoo
- Department of Animal and Plant Health Research, Laboratory of Parasitic and Honeybee Diseases, Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - A-Tai Truong
- Department of Animal and Plant Health Research, Laboratory of Parasitic and Honeybee Diseases, Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
- Faculty of Biotechnology, Thai Nguyen University of Sciences, Thai Nguyen, Viet Nam
| | - So Youn Youn
- Department of Animal and Plant Health Research, Laboratory of Parasitic and Honeybee Diseases, Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Dong-Ho Kim
- Department of Animal and Plant Health Research, Laboratory of Parasitic and Honeybee Diseases, Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Se-Ji Lee
- Department of Animal and Plant Health Research, Laboratory of Parasitic and Honeybee Diseases, Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Soon-Seek Yoon
- Department of Animal and Plant Health Research, Laboratory of Parasitic and Honeybee Diseases, Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Yun Sang Cho
- Department of Animal and Plant Health Research, Laboratory of Parasitic and Honeybee Diseases, Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| |
Collapse
|
9
|
Zhang W, Sun C, Lang H, Wang J, Li X, Guo J, Zhang Z, Zheng H. Toll receptor ligand Spätzle 4 responses to the highly pathogenic Enterococcus faecalis from Varroa mites in honeybees. PLoS Pathog 2023; 19:e1011897. [PMID: 38150483 PMCID: PMC10775982 DOI: 10.1371/journal.ppat.1011897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/09/2024] [Accepted: 12/12/2023] [Indexed: 12/29/2023] Open
Abstract
Honeybees play a major role in crop pollination, which supports the agricultural economy and international food supply. The colony health of honeybees is threatened by the parasitic mite Varroa destructor, which inflicts physical injury on the hosts and serves as the vector for variable viruses. Recently, it shows that V. destructor may also transmit bacteria through the feeding wound, yet it remains unclear whether the invading bacteria can exhibit pathogenicity to the honeybees. Here, we incidentally isolate Enterococcus faecalis, one of the most abundant bacteria in Varroa mites, from dead bees during our routine generation of microbiota-free bees in the lab. In vivo tests show that E. faecalis is only pathogenic in Apis mellifera but not in Apis cerana. The expression of antimicrobial peptide genes is elevated following infection in A. cerana. The gene-based molecular evolution analysis identifies positive selection of genes encoding Späetzle 4 (Spz4) in A. cerana, a signaling protein in the Toll pathway. The amino acid sites under positive selection are related to structural changes in Spz4 protein, suggesting improvement of immunity in A. cerana. The knock-down of Spz4 in A. cerana significantly reduces the survival rates under E. faecalis challenge and the expression of antimicrobial peptide genes. Our results indicate that bacteria associated with Varroa mites are pathogenic to adult bees, and the positively selected gene Spz4 in A. cerana is crucial in response to this mite-related pathogen.
Collapse
Affiliation(s)
- Wenhao Zhang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China
| | - Cheng Sun
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Haoyu Lang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jieni Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xinyu Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China
| | - Jun Guo
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Zijing Zhang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Hao Zheng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
10
|
Piou V, Vilarem C, Blanchard S, Armengaud C, Heeb P, Vétillard A. Varroa destructor relies on physical cues to feed in artificial conditions. Parasite 2023; 30:49. [PMID: 37962478 PMCID: PMC10644891 DOI: 10.1051/parasite/2023049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Olfaction is a major sense in Varroa destructor. In natural conditions, it is known that this honey bee parasite relies on kairomones to detect its host or to reproduce. Yet, in artificial conditions, the parasite is able to feed and survive for a few days even though most honey bee pheromones are lacking. Other key cues are thus probably involved in V. destructor perception of its close environment. Here, we used several artificial feeding designs to explore the feeding behaviour of the parasite when it is deprived of olfactory cues. We found that V. destructor is still able to feed only guided by physical cues. The detection of the food source seems to be shape-related as a 3D membrane triggers arrestment and exploration more than a 2D membrane. The tactile sense of V. destructor could thus be essential to detect a feeding site, although further studies are needed to assess the importance of this sense combined with olfaction in natural conditions.
Collapse
Affiliation(s)
- Vincent Piou
- Laboratoire Évolution et Diversité Biologique, UMR5174, CNRS-Université de Toulouse III-IRD, Université Paul Sabatier 31077 Toulouse France
| | - Caroline Vilarem
- Laboratoire Évolution et Diversité Biologique, UMR5174, CNRS-Université de Toulouse III-IRD, Université Paul Sabatier 31077 Toulouse France
- M2i Biocontrol–Entreprise SAS 46140 Parnac France
| | - Solène Blanchard
- Laboratoire Évolution et Diversité Biologique, UMR5174, CNRS-Université de Toulouse III-IRD, Université Paul Sabatier 31077 Toulouse France
| | - Catherine Armengaud
- Laboratoire Évolution et Diversité Biologique, UMR5174, CNRS-Université de Toulouse III-IRD, Université Paul Sabatier 31077 Toulouse France
| | - Philipp Heeb
- Laboratoire Évolution et Diversité Biologique, UMR5174, CNRS-Université de Toulouse III-IRD, Université Paul Sabatier 31077 Toulouse France
| | - Angélique Vétillard
- Laboratoire Évolution et Diversité Biologique, UMR5174, CNRS-Université de Toulouse III-IRD, Université Paul Sabatier 31077 Toulouse France
- Conservatoire National des Arts et Métiers (CNAM), Unité Métabiot 22440 Ploufragan France
| |
Collapse
|
11
|
Piou V, Vilarem C, Blanchard S, Strub JM, Bertile F, Bocquet M, Arafah K, Bulet P, Vétillard A. Honey Bee Larval Hemolymph as a Source of Key Nutrients and Proteins Offers a Promising Medium for Varroa destructor Artificial Rearing. Int J Mol Sci 2023; 24:12443. [PMID: 37569818 PMCID: PMC10419257 DOI: 10.3390/ijms241512443] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Varroa destructor, a major ectoparasite of the Western honey bee Apis mellifera, is a widespread pest that damages colonies in the Northern Hemisphere. Throughout their lifecycle, V. destructor females feed on almost every developmental stage of their host, from the last larval instar to the adult. The parasite is thought to feed on hemolymph and fat body, although its exact diet and nutritional requirements are poorly known. Using artificial Parafilm™ dummies, we explored the nutrition of V. destructor females and assessed their survival when fed on hemolymph from bee larvae, pupae, or adults. We compared the results with mites fed on synthetic solutions or filtered larval hemolymph. The results showed that the parasites could survive for several days or weeks on different diets. Bee larval hemolymph yielded the highest survival rates, and filtered larval plasma was sufficient to maintain the mites for 14 days or more. This cell-free solution therefore theoretically contains all the necessary nutrients for mite survival. Because some bee proteins are known to be hijacked without being digested by the parasite, we decided to run a proteomic analysis of larval honey bee plasma to highlight the most common proteins in our samples. A list of 54 proteins was compiled, including several energy metabolism proteins such as Vitellogenin, Hexamerin, or Transferrins. These molecules represent key nutrient candidates that could be crucial for V. destructor survival.
Collapse
Affiliation(s)
- Vincent Piou
- Laboratoire Evolution et Diversité Biologique, UMR5174, CNRS-Université de Toulouse III-IRD—Université Paul Sabatier, 31077 Toulouse, France; (V.P.); (S.B.)
| | - Caroline Vilarem
- Laboratoire Evolution et Diversité Biologique, UMR5174, CNRS-Université de Toulouse III-IRD—Université Paul Sabatier, 31077 Toulouse, France; (V.P.); (S.B.)
- M2i Biocontrol–Entreprise SAS, 46140 Parnac, France
| | - Solène Blanchard
- Laboratoire Evolution et Diversité Biologique, UMR5174, CNRS-Université de Toulouse III-IRD—Université Paul Sabatier, 31077 Toulouse, France; (V.P.); (S.B.)
| | - Jean-Marc Strub
- Laboratoire de Spectrométrie de Masse Bio-Organique, Département des Sciences Analytiques, Institut Pluridisciplinaire Hubert Curien, UMR 7178 (CNRS-UdS), 67037 Strasbourg, France (F.B.)
| | - Fabrice Bertile
- Laboratoire de Spectrométrie de Masse Bio-Organique, Département des Sciences Analytiques, Institut Pluridisciplinaire Hubert Curien, UMR 7178 (CNRS-UdS), 67037 Strasbourg, France (F.B.)
| | | | - Karim Arafah
- Plateforme BioPark d’Archamps, 74160 Archamps, France
| | - Philippe Bulet
- Plateforme BioPark d’Archamps, 74160 Archamps, France
- Institute pour l’Avancée des Biosciences, CR Université Grenoble Alpes, Inserm U1209, CNRS UMR 5309, 38000 Grenoble, France
| | - Angélique Vétillard
- Laboratoire Evolution et Diversité Biologique, UMR5174, CNRS-Université de Toulouse III-IRD—Université Paul Sabatier, 31077 Toulouse, France; (V.P.); (S.B.)
- Conservatoire National des Arts et Métiers (CNAM), Unité Métabiot, 22440 Ploufragan, France
| |
Collapse
|
12
|
Beims H, Janke M, von der Ohe W, Steinert M. Influence of virus abundances in donor colonies and nurse hives on queens of Apis mellifera during the rearing process. Open Vet J 2023; 13:879-893. [PMID: 37614729 PMCID: PMC10443816 DOI: 10.5455/ovj.2023.v13.i7.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/21/2023] [Indexed: 08/25/2023] Open
Abstract
Background Honeybees are one of the three most important animals for mankind. In order to be safe and increase number of bee colonies for pollination, the breeding of queens is necessary. For several decades, bees were selected on economic and behavioral aspects. With the appearance of the neozootic mite Varroa destructor beekeepers were forced to adapt their methods. Varroa destructor can act as a vector for many different bee pathogenic viruses and by this potentiates its devastating impact. Aim Methods of rearing queens were not evaluated since the mites' appearance. Besides scientific approaches, viruses received too little attention in regard to the rearing process of honeybee queens. Herein, we present a detailed analysis of virus abundances [Aparavirus, acute bee paralysis virus (ABPV); Triatovirus, black queen cell virus (BQCV); Cripavirus, chronic bee paralysis virus (CBPV); and Iflaviruses, deformed wings virus (DWV), Sacbrood virus (SBV), VDV-1] in breeding hives, donating first instar larvae, hives that are nursing these larvae until the pupa stage, and on queens of Apis mellifera in a breeding apiary. Methods Nurse and donor colonies of the queen-rearing process were sampled in the year 2020 and analyzed by RT qPCR. Virus quantifications were correlated with queen mortalities and seasonal effects. Results Virus detections increased in reared queens, however, the elevated virus titers did not increase the mortality of the queens until their exclosure. Moreover, we observed a lower interrelation between virus abundance in queens and their original donor colonies, than between nurse hives and their nursed queens. Conclusion The bee pathogenic viruses ABPV, BQCV, CBPV, DWV, SBV, and VDV-1 do not influence the mortality of bee queens during the rearing process. Whether respective virus loads result in sublethal or long-term effects remains to be elucidated.
Collapse
Affiliation(s)
- Hannes Beims
- Bezirk Oberbayern, Fachberatung für Imkerei, München, Germany
- Lower Saxony State Office for Consumer Protection and Food Safety, Institute for Apiculture, Celle, Germany
- Institut für Mikrobiologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Martina Janke
- Lower Saxony State Office for Consumer Protection and Food Safety, Institute for Apiculture, Celle, Germany
| | - Werner von der Ohe
- Lower Saxony State Office for Consumer Protection and Food Safety, Institute for Apiculture, Celle, Germany
| | - Michael Steinert
- Institut für Mikrobiologie, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
13
|
Nguyen TT, Yoo MS, Truong AT, Lee JH, Youn SY, Lee SJ, Kim DH, Yoon SS, Cho YS. First identification of Tyrophagus curvipenis (Acari: Acaridae) and pathogen detection in Apis mellifera colonies in the Republic of Korea. Sci Rep 2023; 13:9469. [PMID: 37301922 PMCID: PMC10257717 DOI: 10.1038/s41598-023-36695-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/08/2023] [Indexed: 06/12/2023] Open
Abstract
Mites of the genus Tyrophagus (Acari: Acaridae) are among the most widely distributed mites. The species in this genus cause damage to stored products and crops, and pose a threat to human health. However, the influence of Tyrophagus spp. in apiculture remains unknown. In 2022, a study focusing on the identification of Tyrophagus species within five apiaries was conducted in Chungcheongnam Province, Republic of Korea. Its specific objective was to investigate the presence of Tyrophagus mites in response to the reported high mortality of honey bee colonies in this area. Morphological identification and phylogenetic analysis using the mitochondrial gene cytochrome-c oxidase subunit 1 (CO1) confirmed for the first time the presence of the mite species Tyrophagus curvipenis in a honey bee colony in the Republic of Korea. Two honey bee pathogens were detected in the mite, a viral pathogen (deformed wing virus, DWV) and a protozoal pathogen (Trypanosoma spp.). The presence of the two honey bee pathogens in the mite suggests that this mite could contribute to the spread of related honey bee diseases. However, the direct influence of the mite T. curvipenis on honey bee health remains unknown and should be further investigated.
Collapse
Affiliation(s)
- Thi-Thu Nguyen
- Laboratory of Parasitic and Honey Bee Diseases, Bacterial Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency, Center for Honey Bee Disease Control, 39660, Gimcheon, Republic of Korea
| | - Mi-Sun Yoo
- Laboratory of Parasitic and Honey Bee Diseases, Bacterial Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency, Center for Honey Bee Disease Control, 39660, Gimcheon, Republic of Korea
| | - A-Tai Truong
- Laboratory of Parasitic and Honey Bee Diseases, Bacterial Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency, Center for Honey Bee Disease Control, 39660, Gimcheon, Republic of Korea
- Faculty of Biotechnology, Thai Nguyen University of Sciences, Thai Nguyen, Vietnam
| | - Jong Ho Lee
- Plant Pest Control Division, Department of Plant Quarantine, Animal and Plant Quarantine Agency, Gimcheon, 39660, Republic of Korea
| | - So Youn Youn
- Laboratory of Parasitic and Honey Bee Diseases, Bacterial Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency, Center for Honey Bee Disease Control, 39660, Gimcheon, Republic of Korea
| | - Se-Ji Lee
- Laboratory of Parasitic and Honey Bee Diseases, Bacterial Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency, Center for Honey Bee Disease Control, 39660, Gimcheon, Republic of Korea
| | - Dong-Ho Kim
- Laboratory of Parasitic and Honey Bee Diseases, Bacterial Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency, Center for Honey Bee Disease Control, 39660, Gimcheon, Republic of Korea
| | - Soon-Seek Yoon
- Laboratory of Parasitic and Honey Bee Diseases, Bacterial Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency, Center for Honey Bee Disease Control, 39660, Gimcheon, Republic of Korea
| | - Yun Sang Cho
- Laboratory of Parasitic and Honey Bee Diseases, Bacterial Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency, Center for Honey Bee Disease Control, 39660, Gimcheon, Republic of Korea.
| |
Collapse
|
14
|
Durand T, Bonjour-Dalmon A, Dubois E. Viral Co-Infections and Antiviral Immunity in Honey Bees. Viruses 2023; 15:1217. [PMID: 37243302 PMCID: PMC10220773 DOI: 10.3390/v15051217] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Over the past few decades, honey bees have been facing an increasing number of stressors. Beyond individual stress factors, the synergies between them have been identified as a key factor in the observed increase in colony mortality. However, these interactions are numerous and complex and call for further research. Here, in line with our need for a systemic understanding of the threats that they pose to bee health, we review the interactions between honey bee viruses. As viruses are obligate parasites, the interactions between them not only depend on the viruses themselves but also on the immune responses of honey bees. Thus, we first summarise our current knowledge of the antiviral immunity of honey bees. We then review the interactions between specific pathogenic viruses and their interactions with their host. Finally, we draw hypotheses from the current literature and suggest directions for future research.
Collapse
Affiliation(s)
- Tristan Durand
- National Research Institute for Agriculture Food and Environement, INRAE, UR 406 Abeilles et Environnement, Site Agroparc, 84914 Avignon, France;
- French Agency for Food, Environmental and Occupational Health Safety, ANSES, 06902 Sophia Antipolis, France
| | - Anne Bonjour-Dalmon
- National Research Institute for Agriculture Food and Environement, INRAE, UR 406 Abeilles et Environnement, Site Agroparc, 84914 Avignon, France;
| | - Eric Dubois
- French Agency for Food, Environmental and Occupational Health Safety, ANSES, 06902 Sophia Antipolis, France
| |
Collapse
|
15
|
Arzumanyan H, Avagyan H, Voskanyan H, Simonyan L, Simonyan J, Semirjyan Z, Karalyan Z. First molecular detection of the presence of honey bee viruses in insects, Varroa destructor mites, and pollinated plants in an isolated region of Armenia. Vet World 2023; 16:1029-1034. [PMID: 37576754 PMCID: PMC10420706 DOI: 10.14202/vetworld.2023.1029-1034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/12/2023] [Indexed: 08/15/2023] Open
Abstract
Background and Aim Recently, viral diseases of honey bees (Apis mellifera) have presented an increasing threat to beekeeping. This study aimed to examine the presence of honey bee viruses in Apis and non-Apis bee species, the mite Varroa destructor, and pollinated plants in Armenia. Materials and Methods Sampling was performed in Tavush Province, in the northeast of the Republic of Armenia, from August to November 2019. Overall, 200 A. mellifera bees, 50 V. destructor mites, and 20 wasps were collected (corresponding to three bees, five mites, and 2-11 wasps in each investigated sample) and homogenized for RNA isolation and detection of viruses. Ten pollinated plants were taken from each plant, and 2 g of each sample was used for homogenization. In each investigated case Apis mellifera, Varroa destructor, Vespula germanica and plants received percentages of the virus presence. Results Six important honey bee viruses (acute bee paralysis virus [ABPV], deformed wing virus [DWV], A. mellifera norovirus [ANV], Lake Sinai virus-2 [LSV-2], Big Sioux River virus [BSRV], and A. mellifera filamentous virus [AmFV]) were detected in samples by polymerase chain reaction. Our results showed that DWV, ANV, and ABPV were the most common viruses in honey bees. All viruses were detected in wasps, but LSV-2 and ANV were present in almost all samples. Conclusion Our results showed that almost all viruses were present in V. destructor. Although ANV is very common in honey bees, it did not appear in any mite samples. Our study indicates that viruses typically associated with honey bees were also actively infecting wasps. Our data suggest that the survival of viruses in plants can be an important source of seasonal transmission of viruses to bees. In addition, pollinated plants can potentially serve as reservoirs for honey bee viruses.
Collapse
Affiliation(s)
- Hranush Arzumanyan
- Laboratory of Cell Biology and Virology, Institute of Molecular Biology of NAS RA, Yerevan, Armenia
| | - Hranush Avagyan
- Laboratory of Cell Biology and Virology, Institute of Molecular Biology of NAS RA, Yerevan, Armenia
- Experimental Laboratory, Yerevan State Medical University, Yerevan, Armenia
| | - Henry Voskanyan
- Laboratory of Cell Biology and Virology, Institute of Molecular Biology of NAS RA, Yerevan, Armenia
- Scientific Center for Risks Assessment and Analysis in Food Safety Area, CJCS, Yerevan, Armenia
| | - Liana Simonyan
- Scientific Center for Risks Assessment and Analysis in Food Safety Area, CJCS, Yerevan, Armenia
| | - Jon Simonyan
- Scientific Center for Risks Assessment and Analysis in Food Safety Area, CJCS, Yerevan, Armenia
| | - Zara Semirjyan
- Laboratory of Cell Biology and Virology, Institute of Molecular Biology of NAS RA, Yerevan, Armenia
- Experimental Laboratory, Yerevan State Medical University, Yerevan, Armenia
| | - Zaven Karalyan
- Laboratory of Cell Biology and Virology, Institute of Molecular Biology of NAS RA, Yerevan, Armenia
- Department of Medical Biology, Yerevan State Medical University, Yerevan, Armenia
| |
Collapse
|
16
|
Lamas ZS, Solmaz S, Ryabov EV, Mowery J, Heermann M, Sonenshine D, Evans JD, Hawthorne DJ. Promiscuous feeding on multiple adult honey bee hosts amplifies the vectorial capacity of Varroa destructor. PLoS Pathog 2023; 19:e1011061. [PMID: 36656843 PMCID: PMC9851535 DOI: 10.1371/journal.ppat.1011061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 12/12/2022] [Indexed: 01/20/2023] Open
Abstract
Varroa destructor is a cosmopolitan pest and leading cause of colony loss of the European honey bee. Historically described as a competent vector of honey bee viruses, this arthropod vector is the cause of a global pandemic of Deformed wing virus, now endemic in honeybee populations in all Varroa-infested regions. Our work shows that viral spread is driven by Varroa actively switching from one adult bee to another as they feed. Assays using fluorescent microspheres were used to indicate the movement of fluids in both directions between host and vector when Varroa feed. Therefore, Varroa could be in either an infectious or naïve state dependent upon the disease status of their host. We tested this and confirmed that the relative risk of a Varroa feeding depended on their previous host's infectiousness. Varroa exhibit remarkable heterogeneity in their host-switching behavior, with some Varroa infrequently switching while others switch at least daily. As a result, relatively few of the most active Varroa parasitize the majority of bees. This multiple-feeding behavior has analogs in vectorial capacity models of other systems, where promiscuous feeding by individual vectors is a leading driver of vectorial capacity. We propose that the honeybee-Varroa relationship offers a unique opportunity to apply principles of vectorial capacity to a social organism, as virus transmission is both vectored and occurs through multiple host-to-host routes common to a crowded society.
Collapse
Affiliation(s)
- Zachary S. Lamas
- Department of Entomology, University of Maryland, College Park, Maryland, United States of America
- United States Department of Agriculture—Agricultural Research Service, Bee Research Laboratory, Beltsville, Maryland, United States of America
- * E-mail:
| | - Serhat Solmaz
- Department of Entomology, University of Maryland, College Park, Maryland, United States of America
- Apiculture Research Institute, Ministry of Agriculture and Forestry, Ordu, Turkey
| | - Eugene V. Ryabov
- Department of Entomology, University of Maryland, College Park, Maryland, United States of America
- United States Department of Agriculture—Agricultural Research Service, Bee Research Laboratory, Beltsville, Maryland, United States of America
| | - Joseph Mowery
- United States Department of Agriculture—Agricultural Research Service, Electron & Confocal Microscopy Unit, Beltsville, Maryland, United States of America
| | - Matthew Heermann
- United States Department of Agriculture—Agricultural Research Service, Bee Research Laboratory, Beltsville, Maryland, United States of America
| | - Daniel Sonenshine
- United States Department of Agriculture—Agricultural Research Service, Bee Research Laboratory, Beltsville, Maryland, United States of America
| | - Jay D. Evans
- United States Department of Agriculture—Agricultural Research Service, Bee Research Laboratory, Beltsville, Maryland, United States of America
| | - David J. Hawthorne
- Department of Entomology, University of Maryland, College Park, Maryland, United States of America
| |
Collapse
|
17
|
Phytochemical Profile of Foeniculum vulgare Subsp. piperitum Essential Oils and Evaluation of Acaricidal Efficacy against Varroa destructor in Apis mellifera by In Vitro and Semi-Field Fumigation Tests. Vet Sci 2022; 9:vetsci9120684. [PMID: 36548845 PMCID: PMC9784571 DOI: 10.3390/vetsci9120684] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/04/2022] [Accepted: 12/08/2022] [Indexed: 12/13/2022] Open
Abstract
Varroatosis is an important parasitic disease of Apis mellifera caused by the mite Varroa destructor (V. destructor). The parasite is able to transmit numerous pathogens to honeybees which can lead to colony collapse. In recent years, the effectiveness of authorized drug products has decreased due to increasing resistance phenomena. Therefore, the search for alternatives to commercially available drugs is mandatory. In this context, essential oils (EOs) prove to be a promising choice to be studied for their known acaricide properties. In this research work, the acaricide activity of EO vapours isolated from the epigeal part (whole plant) of fennel (Foeniculum vulgare sbps. piperitum) and its three fractions (leaves, achenes and flowers) against V. destructor was evaluated. The effectiveness of fumigation was studied using two methods. The first involved prolonged exposure of mites to oil vapour for variable times. After exposure, the five mites in each replicate were placed in a Petri dish with an Apis mellifera larva. Mortality, due to chronic toxicity phenomena, was assessed after 48 h. The second method aimed to translate the results obtained from the in vitro test into a semi-field experiment. Therefore, two-level cages were set up. In the lower compartment of the cage, a material releasing oil vapours was placed; in the upper compartment, Varroa-infested honeybees were set. The results of the first method showed that the increase in mortality was directly proportional to exposure time and concentration. The whole plant returned 68% mortality at the highest concentration (2 mg/mL) and highest exposure time (48 h control), while the leaves, achenes and flowers returned 64%, 52% and 56% mortality, respectively. In the semi-field experiment, a concentration up to 20 times higher than the one used in the in vitro study was required for the whole plant to achieve a similar mite drop of >50%. The results of the study show that in vitro tests should only be used for preliminary screening of EO activity. In vitro tests should be followed by semi-field tests, which are essential to identify the threshold of toxicity to bees and the effective dose to be used in field studies.
Collapse
|
18
|
Huang WF, Li R, Jin L, Huang S. Procedures and potential pitfalls for constructing a bee-infecting RNA virus clone. FRONTIERS IN INSECT SCIENCE 2022; 2:908702. [PMID: 38468785 PMCID: PMC10926416 DOI: 10.3389/finsc.2022.908702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/29/2022] [Indexed: 03/13/2024]
Abstract
Viruses are factors that can fluctuate insect populations, including honey bees. Most honey bee infecting viruses are single positive-stranded RNA viruses that may not specifically infect honey bees and can be hazardous to other pollinator insects. In addition, these viruses could synergize with other stressors to worsen the honey bee population decline. To identify the underlying detailed mechanisms, reversed genetic studies with infectious cDNA clones of the viruses are necessary. Moreover, an infectious cDNA clone can be applied to studies as an ideal virus isolate that consists of a single virus species with a uniform genotype. However, only a few infectious cDNA clones have been reported in honey bee studies since the first infectious cDNA clone was published four decades ago. This article discusses steps, rationales, and potential issues in bee-infecting RNA virus cloning. In addition, failed experiences of cloning a Deformed wing virus isolate that was phylogenetically identical to Kakugo virus were addressed. We hope the information provided in this article can facilitate further developments of reverse-genetic studies of bee-infecting viruses to clarify the roles of virus diseases in the current pollinator declines.
Collapse
Affiliation(s)
- Wei-Fone Huang
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | | | | | | |
Collapse
|
19
|
Transmission of deformed wing virus between Varroa destructor foundresses, mite offspring and infested honey bees. Parasit Vectors 2022; 15:333. [PMID: 36151583 PMCID: PMC9502634 DOI: 10.1186/s13071-022-05463-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Background Varroa destructor is the major ectoparasite of the western honey bee (Apis mellifera). Through both its parasitic life-cycle and its role as a vector of viral pathogens, it can cause major damage to honey bee colonies. The deformed wing virus (DWV) is the most common virus transmitted by this ectoparasite, and the mite is correlated to increased viral prevalence and viral loads in infested colonies. DWV variants A and B (DWV-A and DWV-B, respectively) are the two major DWV variants, and they differ both in their virulence and transmission dynamics. Methods We studied the transmission of DWV between bees, parasitic mites and their offspring by quantifying DWV loads in bees and mites collected in in vitro and in situ environments. In vitro, we artificially transmitted DWV-A to mites and quantified both DWV-A and DWV-B in mites and bees. In situ, we measured the natural presence of DWV-B in bees, mites and mites’ offspring. Results Bee and mite viral loads were correlated, and mites carrying both variants were associated with higher mortality of the infected host. Mite infestation increased the DWV-B loads and decreased the DWV-A loads in our laboratory conditions. In situ, viral quantification in the mite offspring showed that, after an initially non-infected egg stage, the DWV-B loads were more closely correlated with the foundress (mother) mites than with the bee hosts. Conclusions The association between mites and DWV-B was highlighted in this study. The parasitic history of a mite directly impacts its DWV infection potential during the rest of its life-cycle (in terms of variant and viral loads). Regarding the mite’s progeny, we hypothesize that the route of contamination is likely through the feeding site rather than by vertical transmission, although further studies are needed to confirm this hypothesis. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05463-9.
Collapse
|
20
|
Ryabov EV, Posada-Florez F, Rogers C, Lamas ZS, Evans JD, Chen Y, Cook SC. The vectoring competence of the mite Varroa destructor for deformed wing virus of honey bees is dynamic and affects survival of the mite. FRONTIERS IN INSECT SCIENCE 2022; 2:931352. [PMID: 38468796 PMCID: PMC10926515 DOI: 10.3389/finsc.2022.931352] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 09/12/2022] [Indexed: 03/13/2024]
Abstract
The ectoparasitic mite, Varroa destructor and the viruses it vectors, including types A and B of Deformed wing virus (DWV), pose a major threat to honey bees, Apis mellifera. Analysis of 256 mites collected from the same set of field colonies on five occasions from May to October 2021 showed that less than a half of them, 39.8% (95% confidence interval (CI): 34.0 - 46.0%), were able to induce a high (overt) level DWV infection with more than 109 viral genomes per bee in the pupa after 6 days of feeding, with both DWV-A and DWV-B being vectored at similar rates. To investigate the effect of the phoretic (or dispersal) stage on adult bees on the mites' ability to vector DWV, the mites from two collection events were divided into two groups, one of which was tested immediately for their infectiveness, and the other was kept with adult worker bees in cages for 12 days prior to testing their infectiveness. We found that while 39.2% (95% CI: 30.0 - 49.1%) of the immediately tested mites induced overt-level infections, 12-day passage on adult bees significantly increased the infectiousness to 89.8% (95% CI: 79.2 - 95.6%). It is likely that Varroa mites that survive brood interruptions in field colonies are increasingly infectious. The mite lifespan was affected by the DWV type it transmitted to pupae. The mites, which induced high DWV-B but not DWV-A infection had an average lifespan of 15.5 days (95% CI: 11.8 - 19.2 days), which was significantly shorter than those of the mites which induced high DWV-A but not DWV-B infection, with an average lifespan of 24.3 days (95% CI: 20.2 - 28.5), or the mites which did not induce high levels of DWV-A or DWV-B, with an average survival of 21.2 days (95% CI: 19.0 - 23.5 days). The mites which transmitted high levels of both DWV-A and DWV-B had an intermediate average survival of 20.5 days (95% CI: 15.1 - 25.9 days). The negative impact of DWV-B on mite survival could be a consequence of the ability of DWV-B, but not DWV-A to replicate in Varroa.
Collapse
Affiliation(s)
- Eugene V. Ryabov
- United States Department of Agriculture - Agricultural Research Service, Bee Research Laboratory, Beltsville, MD, United States
- Department of Entomology, University of Maryland, College Park, MD, United States
| | - Francisco Posada-Florez
- United States Department of Agriculture - Agricultural Research Service, Bee Research Laboratory, Beltsville, MD, United States
| | - Curtis Rogers
- United States Department of Agriculture - Agricultural Research Service, Bee Research Laboratory, Beltsville, MD, United States
| | - Zachary S. Lamas
- Department of Entomology, University of Maryland, College Park, MD, United States
| | - Jay D. Evans
- United States Department of Agriculture - Agricultural Research Service, Bee Research Laboratory, Beltsville, MD, United States
| | - Yanping Chen
- United States Department of Agriculture - Agricultural Research Service, Bee Research Laboratory, Beltsville, MD, United States
| | - Steven C. Cook
- United States Department of Agriculture - Agricultural Research Service, Bee Research Laboratory, Beltsville, MD, United States
| |
Collapse
|
21
|
Green Veterinary Pharmacology for Honey Bee Welfare and Health: Origanum heracleoticum L. (Lamiaceae) Essential Oil for the Control of the Apis mellifera Varroatosis. Vet Sci 2022; 9:vetsci9030124. [PMID: 35324852 PMCID: PMC8953610 DOI: 10.3390/vetsci9030124] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 11/24/2022] Open
Abstract
Varroatosis, caused by the Varroa destructor mite, is currently the most dangerous parasitic disease threatening the survival of honey bees worldwide. Its adverse effect on the welfare and health of honey bees requires the regular use of specific acaricides. This condition has led to a growing development of resistance phenomena towards the most frequently used drugs. In addition, another important aspect that should not be understated, is the toxicity and persistence of chemicals in the environment. Therefore, the identification of viable and environmentally friendly alternatives is urgently needed. In this scenario, essential oils are promising candidates. The aim of this study was to assess the contact toxicity, the fumigation efficacy and the repellent effect of Origanum heracleoticum L. essential oil (EO) against V. destructor mite. In the contact tests, each experimental replicate consisted of 15 viable adult female mites divided as follows: 5 treated with EO diluted in HPLC grade acetone, 5 treated with acetone alone (as negative control) and 5 treated with Amitraz diluted in acetone (as positive control). The EO was tested at concentrations of 0.125, 0.25, 0.5, 1 and 2 mg/mL. For each experimental replicate, mortality was manually assessed after one hour. The efficacy of EO fumigation was evaluated through prolonged exposure at different time intervals. After each exposure, the 5 mites constituting an experimental replicate were transferred to a Petri dish containing a honey bee larva and mortality was assessed after 48 h. The repellent action was investigated by implementing a directional choice test in a mandatory route. During the repellency tests the behavior of the mite (90 min after its introduction in the mandatory route) was not influenced by the EO. In contact tests, EO showed the best efficacy at 2 and 1 mg/mL concentrations, neutralizing (dead + inactivated) 90.9% and 80% of the mites, respectively. In fumigation tests, the mean mortality rate of V. destructor at maximum exposure time (90 min) was 60% and 84% at 24 and 48 h, respectively. Overall, these results demonstrate a significant efficacy of O. heracleoticum EO against V. destructor, suggesting a possible alternative use in the control of varroatosis in honey bee farms in order to improve Apis mellifera welfare and health and, consequently, the hive productions.
Collapse
|
22
|
Standard Methods for Dissection of Varroa destructor Females. INSECTS 2021; 13:insects13010037. [PMID: 35055880 PMCID: PMC8781925 DOI: 10.3390/insects13010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/20/2021] [Accepted: 12/25/2021] [Indexed: 11/17/2022]
Abstract
Varroa destructor (Anderson and Trueman) is known as a major pest of Apis mellifera L, especially in the Northern Hemisphere where its effects can be deleterious. As an obligate parasite, this mite relies entirely on its host to reproduce and complete its cycle. Studies focusing on isolated organs are needed to better comprehend this organism. To conduct such targeted molecular or physiological studies, the dissection of V. destructor mites is crucial as it allows the extraction of specific organs. Here, we propose a technical article showing detailed steps of females V. destructor dissection, illustrated with pictures and videos. These illustrated guidelines will represent a helpful tool to go further in V. destructor research.
Collapse
|
23
|
Vilarem C, Piou V, Vogelweith F, Vétillard A. Varroa destructor from the Laboratory to the Field: Control, Biocontrol and IPM Perspectives-A Review. INSECTS 2021; 12:800. [PMID: 34564240 PMCID: PMC8465918 DOI: 10.3390/insects12090800] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/30/2021] [Accepted: 09/02/2021] [Indexed: 12/13/2022]
Abstract
Varroa destructor is a real challenger for beekeepers and scientists: fragile out of the hive, tenacious inside a bee colony. From all the research done on the topic, we have learned that a better understanding of this organism in its relationship with the bee but also for itself is necessary. Its biology relies mostly on semiochemicals for reproduction, nutrition, or orientation. Many treatments have been developed over the years based on hard or soft acaricides or even on biocontrol techniques. To date, no real sustainable solution exists to reduce the pressure of the mite without creating resistances or harming honeybees. Consequently, the development of alternative disruptive tools against the parasitic life cycle remains open. It requires the combination of both laboratory and field results through a holistic approach based on health biomarkers. Here, we advocate for a more integrative vision of V. destructor research, where in vitro and field studies are more systematically compared and compiled. Therefore, after a brief state-of-the-art about the mite's life cycle, we discuss what has been done and what can be done from the laboratory to the field against V. destructor through an integrative approach.
Collapse
Affiliation(s)
- Caroline Vilarem
- Laboratoire Evolution et Diversité Biologique, UMR5174, CNRS-Université de Toulouse III-IRD, INU Jean-François Champollion, Université Paul Sabatier, 31077 Toulouse, France; (C.V.); (V.P.)
- M2i Biocontrol–Entreprise SAS, 46140 Parnac, France;
| | - Vincent Piou
- Laboratoire Evolution et Diversité Biologique, UMR5174, CNRS-Université de Toulouse III-IRD, INU Jean-François Champollion, Université Paul Sabatier, 31077 Toulouse, France; (C.V.); (V.P.)
| | | | - Angélique Vétillard
- Laboratoire Evolution et Diversité Biologique, UMR5174, CNRS-Université de Toulouse III-IRD, INU Jean-François Champollion, Université Paul Sabatier, 31077 Toulouse, France; (C.V.); (V.P.)
| |
Collapse
|
24
|
Sipos T, Donkó T, Jócsák I, Keszthelyi S. Study of Morphological Features in Pre-Imaginal Honey Bee Impaired by Varroa destructor by Means of Computer Tomography. INSECTS 2021; 12:insects12080717. [PMID: 34442283 PMCID: PMC8397189 DOI: 10.3390/insects12080717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/04/2021] [Accepted: 08/04/2021] [Indexed: 11/23/2022]
Abstract
Simple Summary The Varroa mite (Varroa destructor) is the most important natural pest of the honey bee, Apis mellifera, worldwide. The extent to which impairments in honey bees occur concomitantly upon infestation by this parasite greatly varies. Inter alia, the Varroa mite causes developmental disorders mediated by deformed wing virus in this host. Although there is a plethora of information regarding the consequences of this parasitism in the fully developed stage, data concerning the pre-imaginal honey bee stage inside the comb are rather scarce. In this study, morphological differences in the main body parts of the honey bee during the development stages of both intact and parasitized larvae were measured inside the comb by means of computed tomography. The images obtained reveal a visualization of the harmful effects of the Varroa mite on the pre-imaginal host. Our results demonstrate that the deformation of certain body parts was due to the presence of the parasite. Deformity, as the most conspicuous sign of infestation, is coupled with a decrease in the total-body size and abdomen size together with a disproportionate ratio of different body parts. In summary, information on the impairment of honey bee development triggered by the Varroa mite gives the opportunity to assess the damage caused by this serious pest, which occurs latently in honey bees. Abstract The honey bee (Apis mellifera L. 1778) is an essential element in maintaining the diversity of the biosphere and food production. One of its most important parasites is Varroa destructor, Anderson and Trueman, 2000, which plays a role in the vectoring of deformed wing virus (DWV) in honey bee colonies. Our aim was to measure the potential morphometric changes in the pre-imaginal stage of A. mellifera caused by varroosis by means of computed tomography, hence supplying evidence for the presumable role that V. destructor plays as a virus vector. Based on our results, the developmental disorders in honey bees that ensued during the pre-imaginal stages were evident. The total-body length and abdomen length of parasitized specimens were shorter than those of their intact companions. In addition, the calculated quotients of the total-body/abdomen, head/thorax, and head/abdomen in parasitized samples were significantly altered upon infestation. In our view, these phenotypical disorders can also be traced to viral infection mediated by parasitism, which was confirmed by reverse transcriptase polymerase chain reaction (RT-PCR) analysis. Capitalizing on a non-destructive method, our study reveals the deformation of the honey bee due to mite parasitism and the intermediary role this pest plays in viral infection, inside the brood cell.
Collapse
Affiliation(s)
- Tamás Sipos
- Department of Agronomy, Kaposvár Campus, Hungarian University of Agriculture and Life Sciences, S. Guba Str. 40, H-7400 Kaposvár, Hungary; (T.S.); (I.J.)
| | - Tamás Donkó
- Medicopus Nonprofit Ltd., S. Guba Str. 40, H-7400 Kaposvár, Hungary;
| | - Ildikó Jócsák
- Department of Agronomy, Kaposvár Campus, Hungarian University of Agriculture and Life Sciences, S. Guba Str. 40, H-7400 Kaposvár, Hungary; (T.S.); (I.J.)
| | - Sándor Keszthelyi
- Department of Agronomy, Kaposvár Campus, Hungarian University of Agriculture and Life Sciences, S. Guba Str. 40, H-7400 Kaposvár, Hungary; (T.S.); (I.J.)
- Correspondence:
| |
Collapse
|
25
|
McMenamin AJ, Parekh F, Lawrence V, Flenniken ML. Investigating Virus-Host Interactions in Cultured Primary Honey Bee Cells. INSECTS 2021; 12:653. [PMID: 34357313 PMCID: PMC8329929 DOI: 10.3390/insects12070653] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/10/2021] [Accepted: 07/13/2021] [Indexed: 12/23/2022]
Abstract
Honey bee (Apis mellifera) health is impacted by viral infections at the colony, individual bee, and cellular levels. To investigate honey bee antiviral defense mechanisms at the cellular level we further developed the use of cultured primary cells, derived from either larvae or pupae, and demonstrated that these cells could be infected with a panel of viruses, including common honey bee infecting viruses (i.e., sacbrood virus (SBV) and deformed wing virus (DWV)) and an insect model virus, Flock House virus (FHV). Virus abundances were quantified over the course of infection. The production of infectious virions in cultured honey bee pupal cells was demonstrated by determining that naïve cells became infected after the transfer of deformed wing virus or Flock House virus from infected cell cultures. Initial characterization of the honey bee antiviral immune responses at the cellular level indicated that there were virus-specific responses, which included increased expression of bee antiviral protein-1 (GenBank: MF116383) in SBV-infected pupal cells and increased expression of argonaute-2 and dicer-like in FHV-infected hemocytes and pupal cells. Additional studies are required to further elucidate virus-specific honey bee antiviral defense mechanisms. The continued use of cultured primary honey bee cells for studies that involve multiple viruses will address this knowledge gap.
Collapse
Affiliation(s)
- Alexander J. McMenamin
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA; (A.J.M.); (F.P.); (V.L.)
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
- Pollinator Health Center, Montana State University, Bozeman, MT 59717, USA
| | - Fenali Parekh
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA; (A.J.M.); (F.P.); (V.L.)
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
- Pollinator Health Center, Montana State University, Bozeman, MT 59717, USA
| | - Verena Lawrence
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA; (A.J.M.); (F.P.); (V.L.)
- Pollinator Health Center, Montana State University, Bozeman, MT 59717, USA
| | - Michelle L. Flenniken
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA; (A.J.M.); (F.P.); (V.L.)
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
- Pollinator Health Center, Montana State University, Bozeman, MT 59717, USA
| |
Collapse
|