1
|
Gumusoglu SB, Schickling BM, Santillan DA, Teesch LM, Santillan MK. Disrupted fetal carbohydrate metabolism in children with autism spectrum disorder. J Neurodev Disord 2025; 17:16. [PMID: 40158086 PMCID: PMC11954230 DOI: 10.1186/s11689-025-09601-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 03/05/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND Despite the power and promise of early detection and treatment in autism spectrum disorder (ASD), early-life biomarkers are limited. An early-life risk biosignature would advance the field's understanding of ASD pathogenies and targets for early diagnosis and intervention. We therefore sought to add to the growing ASD biomarker literature and evaluate whether fetal metabolomics are altered in idiopathic ASD. METHODS Banked cord blood plasma samples (N = 36 control, 16 ASD) were analyzed via gas chromatography and mass spectrometry (GC-MS). Samples were from babies later diagnosed with idiopathic ASD (non-familial, non-syndromic) or matched, neurotypical controls. Metabolite set enrichment analysis (MSEA) and biomarker prediction were performed (MetaboAnalyst). RESULTS We detected 76 metabolites in all samples. Of these, 20 metabolites differed significantly between groups: 10 increased and 10 decreased in ASD samples relative to neurotypical controls (p < 0.05). MSEA revealed significant changes in metabolic pathways related to carbohydrate metabolism and glycemic control. Untargeted principle components analysis of all metabolites did not reveal group differences, while targeted biomarker assessment (using only Fructose 6-phosphate, D-Mannose, and D-Fructose) by a Random Forest algorithm generated an area under the curve (AUC) = 0.766 (95% CI: 0.612-0.896) for ASD prediction. CONCLUSIONS Despite a high and increasing prevalence, ASD has no definitive biomarkers or available treatments for its core symptoms. ASD's earliest developmental antecedents remain unclear. We find that fetal plasma metabolomics differ with child ASD status, in particular invoking altered carbohydrate metabolism. While prior clinical and preclinical work has linked carbohydrate metabolism to ASD, no prior fetal studies have reported these disruptions in neonates or fetuses who go on to be diagnosed with ASD. Future work will investigate concordance with maternal metabolomics to determine maternal-fetal mechanisms.
Collapse
Affiliation(s)
- Serena B Gumusoglu
- Department of Obstetrics and Gynecology, University of Iowa, Iowa City, USA
- Iowa's Hawkeye Intellectual and Developmental Disabilities Research Center (Hawk-IDDRC), Iowa City, USA
| | | | - Donna A Santillan
- Department of Obstetrics and Gynecology, University of Iowa, Iowa City, USA
- Iowa's Hawkeye Intellectual and Developmental Disabilities Research Center (Hawk-IDDRC), Iowa City, USA
| | - Lynn M Teesch
- Department of Chemistry, University of Iowa, Iowa City, USA
| | - Mark K Santillan
- Department of Obstetrics and Gynecology, University of Iowa, Iowa City, USA.
- Iowa's Hawkeye Intellectual and Developmental Disabilities Research Center (Hawk-IDDRC), Iowa City, USA.
| |
Collapse
|
2
|
Wu W, Wang K, Liu J, So PK, Leung TF, Wong MS, Zhao D. A High-Throughput Integrated Nontargeted Metabolomics and Lipidomics Workflow Using Microelution Enhanced Matrix Removal-Lipid for Comparative Analysis of Human Maternal and Umbilical Cord Blood Metabolomes. Anal Chem 2025; 97:2629-2638. [PMID: 39883156 PMCID: PMC11822729 DOI: 10.1021/acs.analchem.4c03222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 12/10/2024] [Accepted: 01/15/2025] [Indexed: 01/31/2025]
Abstract
Sample pretreatment for mass spectrometry (MS)-based metabolomics and lipidomics is normally conducted independently with two sample aliquots and separate matrix cleanup procedures, making the two-step process sample-intensive and time-consuming. Herein, we introduce a high-throughput pretreatment workflow for integrated nontargeted metabolomics and lipidomics leveraging the enhanced matrix removal (EMR)-lipid microelution 96-well plates. The EMR-lipid technique was innovatively employed to effectively separate and isolate non-lipid small metabolites and lipids in sequence using significantly reduced sample amounts and organic solvents. Our proposed methodology enables parallel profiling of metabolome and lipidome within a single sample aliquot using ultrahigh-performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS). Following method development and optimization with representative metabolites at levels comparable to those detected in human blood, the optimized workflow was applied to prepare metabolome-lipidome from maternal and umbilical cord-blood sera prior to comprehensive profiling using three different UHPLC columns. Results indicate that, compared with conventional two-step metabolomics-lipidomics sample pretreatment workflow, this new approach substantially reduces sample amount and processing time, while still preserving metabolite profiles and revealing additional MS features. Over 2500 metabolites were annotated in human sera with >1000 shared across maternal and cord blood. The shared metabolites are closely linked to various physiological functions, including nutrient transfer, hormonal regulation, waste product clearance, and metabolic programming, underscoring the significant impact of maternal metabolic activities on neonatal metabolic health. In summary, the proposed workflow enables efficient sample pretreatment for nontargeted metabolomics-lipidomics using one single sample while achieving broad metabolite coverage, highlighting its remarkable applicability in clinical and preclinical research.
Collapse
Affiliation(s)
- Wenjie Wu
- Department
of Food Science and Nutrition, The Hong
Kong Polytechnic University, Hong Kong 999077, China
- Centre for
Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong China
| | - Ke Wang
- Department
of Food Science and Nutrition, The Hong
Kong Polytechnic University, Hong Kong 999077, China
- Centre for
Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong China
- Research
Institute for Future Food, The Hong Kong
Polytechnic University, Hong Kong 999077, China
| | - Jianing Liu
- Department
of Food Science and Nutrition, The Hong
Kong Polytechnic University, Hong Kong 999077, China
- Research
Institute for Future Food, The Hong Kong
Polytechnic University, Hong Kong 999077, China
| | - Pui-Kin So
- University
Research Facility in Life Sciences, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Ting-Fan Leung
- Department
of Paediatrics, The Chinese University of
Hong Kong, Prince of Wales
Hospital, Shatin, Hong Kong SAR
China
- Hong Kong
Hub of Paediatric Excellence, The Chinese
University of Hong Kong, Shatin, Hong Kong SAR China
| | - Man-sau Wong
- Department
of Food Science and Nutrition, The Hong
Kong Polytechnic University, Hong Kong 999077, China
- Centre for
Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong China
- Research
Institute for Future Food, The Hong Kong
Polytechnic University, Hong Kong 999077, China
- Research
Center for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Danyue Zhao
- Department
of Food Science and Nutrition, The Hong
Kong Polytechnic University, Hong Kong 999077, China
- Centre for
Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong China
- Research
Institute for Future Food, The Hong Kong
Polytechnic University, Hong Kong 999077, China
- Research
Center for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hong Kong 999077, China
| |
Collapse
|
3
|
Devonshire A, Gautam Y, Johansson E, Mersha TB. Multi-omics profiling approach in food allergy. World Allergy Organ J 2023; 16:100777. [PMID: 37214173 PMCID: PMC10199264 DOI: 10.1016/j.waojou.2023.100777] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/05/2023] [Accepted: 04/05/2023] [Indexed: 05/24/2023] Open
Abstract
The prevalence of food allergy (FA) among children is increasing, affecting nearly 8% of children, and FA is the most common cause of anaphylaxis and anaphylaxis-related emergency department visits in children. Importantly, FA is a complex, multi-system, multifactorial disease mediated by food-specific immunoglobulin E (IgE) and type 2 immune responses and involving environmental and genetic factors and gene-environment interactions. Early exposure to external and internal environmental factors largely influences the development of immune responses to allergens. Genetic factors and gene-environment interactions have established roles in the FA pathophysiology. To improve diagnosis and identification of FA therapeutic targets, high-throughput omics approaches have emerged and been applied over the past decades to screen for potential FA biomarkers, such as genes, transcripts, proteins, and metabolites. In this article, we provide an overview of the current status of FA omics studies, namely genomic, transcriptomic, epigenomic, proteomic, exposomic, and metabolomic. The current development of multi-omics integration of FA studies is also briefly discussed. As individual omics technologies only provide limited information on the multi-system biological processes of FA, integration of population-based multi-omics data and clinical data may lead to robust biomarker discovery that could translate into advances in disease management and clinical care and ultimately lead to precision medicine approaches.
Collapse
Affiliation(s)
- Ashley Devonshire
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Yadu Gautam
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Elisabet Johansson
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Tesfaye B. Mersha
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
4
|
Sindher SB, Chin AR, Aghaeepour N, Prince L, Maecker H, Shaw GM, Stevenson DK, Nadeau KC, Snyder M, Khatri P, Boyd SD, Winn VD, Angst MS, Chinthrajah RS. Advances and potential of omics studies for understanding the development of food allergy. FRONTIERS IN ALLERGY 2023; 4:1149008. [PMID: 37034151 PMCID: PMC10080041 DOI: 10.3389/falgy.2023.1149008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
The prevalence of food allergy continues to rise globally, carrying with it substantial safety, economic, and emotional burdens. Although preventative strategies do exist, the heterogeneity of allergy trajectories and clinical phenotypes has made it difficult to identify patients who would benefit from these strategies. Therefore, further studies investigating the molecular mechanisms that differentiate these trajectories are needed. Large-scale omics studies have identified key insights into the molecular mechanisms for many different diseases, however the application of these technologies to uncover the drivers of food allergy development is in its infancy. Here we review the use of omics approaches in food allergy and highlight key gaps in knowledge for applying these technologies for the characterization of food allergy development.
Collapse
Affiliation(s)
- Sayantani B Sindher
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Palo Alto, CA, United States
| | - Andrew R Chin
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Palo Alto, CA, United States
| | - Nima Aghaeepour
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA, United States
- Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, United States
- Department of Biomedical Data Science, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Lawrence Prince
- Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Holden Maecker
- Department of Medicine, Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Gary M Shaw
- Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, United States
| | - David K Stevenson
- Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Kari C Nadeau
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Palo Alto, CA, United States
| | - Michael Snyder
- Department of Genetics, Stanford University, Palo Alto, CA, United States
| | - Purvesh Khatri
- Department of Medicine, Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Scott D Boyd
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Palo Alto, CA, United States
- Department of Pathology, Stanford University, Palo Alto, CA, United States
| | - Virginia D Winn
- Department of Obstetrics and Gynecology, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Martin S Angst
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA, United States
| | - R Sharon Chinthrajah
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Palo Alto, CA, United States
| |
Collapse
|
5
|
Huang Z, Gan H, Huang Y, Zhu H, Liu T, Chen T, Lin R, Xie M, Sun B. Risk Assessment of Allergic Diseases Among Preschool Children in Guangzhou, China: A Cross-Sectional Study. J Asthma Allergy 2023; 16:501-513. [PMID: 37181452 PMCID: PMC10171357 DOI: 10.2147/jaa.s405318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/29/2023] [Indexed: 05/16/2023] Open
Abstract
Purpose To investigate the lifestyle and stress of mothers during pregnancy to analyze the risk factors for the disease in early childhood. Patients and Methods A cross-sectional survey was conducted from January 2022 to June 2022 in a sub-district in Guangzhou, China. A total of 3437 valid questionnaires were eventually collected. The questionnaire consisted of 56 questions in three sections included questions on child's birth conditions and early life environment, questions on mother's lifestyle during pregnancy, and questions about father. Results 49.75% of the children were likely to have allergic diseases (suspected allergy group). There were more boys in the suspected allergy group (58% vs 50%), and the percentage of children born at first birth was also higher in the suspected allergy group (61% vs 51%). 67% to 69% of children had suspicious allergies when one parent claimed an allergy, and 80.1% when both parents reported an allergy. The results of the multifactorial logistic model showed that male had 1.49 (1.28 to 1.73) times the risk of allergic diseases than female, and preterm births increased the risk of allergic diseases by 1.53 (1.13-2.07) times compared to full-term births. Both unplanned pregnancies and pregnancy complications increased the risk of allergic diseases in children before school age [1.34 (1.15-1.55) and 1.82 (1.46-2.26)]. Among pregnant women who reported regular passive smoking, the risk of the disease was increased 2.43 (1.71 to 3.50) times in preschool children. Reported allergies in all family members were significant risk factors for allergic diseases in children, especially mother [2.88 (2.41~3.46)]. In the prenatal period, maternal negative emotions are more common in children with suspected allergies. Conclusion Nearly half of the children in the region suffer from allergic diseases. Sex, birth order and full-term delivery all contributed to early childhood allergy. Family history of allergy, especially maternal, was the most important risk factor, and the number of family members with allergy was significantly associated with the allergy in children. Maternal effects are also reflected in prenatal conditions such as unplanned pregnancy, smoke exposure, pregnancy complications, and prenatal stress.
Collapse
Affiliation(s)
- Zhifeng Huang
- Department of Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Hui Gan
- Department of Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Yiyun Huang
- Helong Street Community Health Service Center, Guangzhou, Guangdong, People’s Republic of China
| | - Huiqing Zhu
- Department of Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Tingting Liu
- Department of Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Tong Chen
- Department of Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Runpei Lin
- Department of Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Manrong Xie
- Helong Street Community Health Service Center, Guangzhou, Guangdong, People’s Republic of China
| | - Baoqing Sun
- Department of Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People’s Republic of China
- Correspondence: Baoqing Sun; Manrong Xie, Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510180, People’s Republic of China, Tel +86 18816781502, Email ;
| |
Collapse
|
6
|
Alfano R, Plusquin M, Robinson O, Brescianini S, Chatzi L, Keski-Rahkonen P, Handakas E, Maitre L, Nawrot T, Robinot N, Roumeliotaki T, Sassi F, Scalbert A, Vrijheid M, Vineis P, Richiardi L, Zugna D. Cord blood metabolites and rapid postnatal growth as multiple mediators in the prenatal propensity to childhood overweight. Int J Obes (Lond) 2022; 46:1384-1393. [PMID: 35508813 PMCID: PMC9239910 DOI: 10.1038/s41366-022-01108-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND The mechanisms underlying childhood overweight and obesity are poorly known. Here, we investigated the direct and indirect effects of different prenatal exposures on offspring rapid postnatal growth and overweight in childhood, mediated through cord blood metabolites. Additionally, rapid postnatal growth was considered a potential mediator on childhood overweight, alone and sequentially to each metabolite. METHODS Within four European birth-cohorts (N = 375 mother-child dyads), information on seven prenatal exposures (maternal education, pre-pregnancy BMI, weight gain and tobacco smoke during pregnancy, age at delivery, parity, and child gestational age), selected as obesogenic according to a-priori knowledge, was collected. Cord blood levels of 31 metabolites, associated with rapid postnatal growth and/or childhood overweight in a previous study, were measured via liquid-chromatography-quadrupole-time-of-flight-mass-spectrometry. Rapid growth at 12 months and childhood overweight (including obesity) between four and eight years were defined with reference to WHO growth charts. Single mediation analysis was performed using the imputation approach and multiple mediation analysis using the extended-imputation approach. RESULTS Single mediation suggested that the effect of maternal education, pregnancy weight gain, parity, and gestational age on rapid postnatal growth but not on childhood overweight was partly mediated by seven metabolites, including cholestenone, decenoylcarnitine(C10:1), phosphatidylcholine(C34:3), progesterone and three unidentified metabolites; and the effect of gestational age on childhood overweight was mainly mediated by rapid postnatal growth. Multiple mediation suggested that the effect of gestational age on childhood overweight was mainly mediated by rapid postnatal growth and that the mediating role of the metabolites was marginal. CONCLUSION Our findings provide evidence of the involvement of in utero metabolism in the propensity to rapid postnatal growth and of rapid postnatal growth in the propensity to childhood overweight. We did not find evidence supporting a mediating role of the studied metabolites alone between the studied prenatal exposures and the propensity to childhood overweight.
Collapse
Affiliation(s)
- Rossella Alfano
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium.
- Μedical Research Council-Health Protection Agency Centre for Environment and Health, Imperial College London, London, UK.
| | - Michelle Plusquin
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Oliver Robinson
- Μedical Research Council-Health Protection Agency Centre for Environment and Health, Imperial College London, London, UK
| | - Sonia Brescianini
- Centre for Behavioural Science and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Lida Chatzi
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Pekka Keski-Rahkonen
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - Evangelos Handakas
- Μedical Research Council-Health Protection Agency Centre for Environment and Health, Imperial College London, London, UK
| | - Lea Maitre
- Barcelona Institute of Global Health (ISGlobal), Barcelona, Spain
| | - Tim Nawrot
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Nivonirina Robinot
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - Theano Roumeliotaki
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Franco Sassi
- Centre for Health Economics & Policy Innovation, Department of Economics & Public Policy, Imperial College Business School, South Kensington Campus, London, UK
| | - Augustin Scalbert
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - Martine Vrijheid
- Barcelona Institute of Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Paolo Vineis
- Μedical Research Council-Health Protection Agency Centre for Environment and Health, Imperial College London, London, UK
| | - Lorenzo Richiardi
- Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin and CPO-Piemonte, Torino, Italy
| | - Daniela Zugna
- Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin and CPO-Piemonte, Torino, Italy
| |
Collapse
|
7
|
Effects of Different Prenatal Nutrition Strategies on the Liver Metabolome of Bulls and Its Correlation with Body and Liver Weight. Metabolites 2022; 12:metabo12050441. [PMID: 35629945 PMCID: PMC9143101 DOI: 10.3390/metabo12050441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/27/2022] [Accepted: 05/12/2022] [Indexed: 12/04/2022] Open
Abstract
This study investigated the effect of prenatal nutrition on liver metabolome and on body (BW) and liver weight (LW) of Nellore bulls at slaughter. Three treatments were applied in 126 cows during pregnancy: NP—control (mineral supplementation); PP—protein-energy supplementation in the third trimester; and FP—protein-energy supplementation during the entire pregnancy. Offspring BW and LW were evaluated, and a targeted metabolomics analysis was performed on their livers (n = 18, 22.5 ± 1 months of age). Data were submitted to principal component analysis (PCA), analysis of variance (ANOVA), enrichment analysis, and Pearson’s correlation analysis. The phenotypes did not show differences between treatments (p > 0.05). Metabolites PCA showed an overlap of treatment clusters in the analysis. We found significant metabolites in ANOVA (p ≤ 0.05; Glycine, Hydroxytetradecadienylcarnitine, Aminoadipic acid and Carnosine). Enrichment analysis revealed some biological processes (Histidine metabolism, beta-Alanine metabolism, and Lysine degradation). Pearson’s correlation analysis showed 29 significant correlated metabolites with BW and 1 metabolite correlated with LW. In summary, prenatal nutrition did not show effects on the phenotypes evaluated, but affected some metabolites and biological pathways, mainly related to oxidative metabolism. In addition, BW seems to influence the hepatic metabolome more than LW, due to the amount and magnitude of correlations found.
Collapse
|
8
|
Hartvigsson O, Barman M, Savolainen O, Ross AB, Sandin A, Jacobsson B, Wold AE, Sandberg AS, Brunius C. Differences between Arterial and Venous Umbilical Cord Plasma Metabolome and Association with Parity. Metabolites 2022; 12:metabo12020175. [PMID: 35208249 PMCID: PMC8877791 DOI: 10.3390/metabo12020175] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/01/2022] [Accepted: 02/09/2022] [Indexed: 02/01/2023] Open
Abstract
Umbilical cord blood is frequently used in health monitoring of the neonate. Results may be affected by the proportion of arterial and venous cord blood, the venous blood coming from the mother to supply oxygen and nutrients to the infant, and the arterial carrying waste products from the fetus. Here, we sampled arterial and venous umbilical cords separately from 48 newly delivered infants and examined plasma metabolomes using GC-MS/MS metabolomics. We investigated differences in metabolomes between arterial and venous blood and their associations with gestational length, birth weight, sex, and whether the baby was the first born or not, as well as maternal age and BMI. Using multilevel random forest analysis, a classification rate of 79% was achieved for arteriovenous differences (p = 0.004). Several monosaccharides had higher concentrations in the arterial cord plasma while amino acids were higher in venous plasma, suggesting that the main differences in the measured arterial and venous plasma metabolomes are related to amino acid and energy metabolism. Venous cord plasma metabolites related to energy metabolism were positively associated with parity (77% classification rate, p = 0.004) while arterial cord plasma metabolites were not. This underlines the importance of defining cord blood type for metabolomic studies.
Collapse
Affiliation(s)
- Olle Hartvigsson
- Division of Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden; (M.B.); (A.-S.S.); (C.B.)
- Correspondence:
| | - Malin Barman
- Division of Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden; (M.B.); (A.-S.S.); (C.B.)
- Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Otto Savolainen
- Chalmers Mass Spectrometry Infrastructure, Chalmers University of Technology, 412 96 Göteborg, Sweden;
| | - Alastair B. Ross
- AgResearch, Proteins and Metabolites, Lincoln 7674, New Zealand;
| | - Anna Sandin
- Department of Clinical Science, Pediatrics, Sunderby Research Unit, Umeå University, 901 897 Umeå, Sweden;
| | - Bo Jacobsson
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden;
- Department of Obstetrics and Gynecology, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden
| | - Agnes E. Wold
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, 413 45 Gothenburg, Sweden;
| | - Ann-Sofie Sandberg
- Division of Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden; (M.B.); (A.-S.S.); (C.B.)
| | - Carl Brunius
- Division of Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden; (M.B.); (A.-S.S.); (C.B.)
| |
Collapse
|
9
|
Metabolic Phenotypes in Asthmatic Adults: Relationship with Inflammatory and Clinical Phenotypes and Prognostic Implications. Metabolites 2021; 11:metabo11080534. [PMID: 34436475 PMCID: PMC8400680 DOI: 10.3390/metabo11080534] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 12/26/2022] Open
Abstract
Bronchial asthma is a chronic disease that affects individuals of all ages. It has a high prevalence and is associated with high morbidity and considerable levels of mortality. However, asthma is not a single disease, and multiple subtypes or phenotypes (clinical, inflammatory or combinations thereof) can be detected, namely in aggregated clusters. Most studies have characterised asthma phenotypes and clusters of phenotypes using mainly clinical and inflammatory parameters. These studies are important because they may have clinical and prognostic implications and may also help to tailor personalised treatment approaches. In addition, various metabolomics studies have helped to further define the metabolic features of asthma, using electronic noses or targeted and untargeted approaches. Besides discriminating between asthma and a healthy state, metabolomics can detect the metabolic signatures associated with some asthma subtypes, namely eosinophilic and non-eosinophilic phenotypes or the obese asthma phenotype, and this may prove very useful in point-of-care application. Furthermore, metabolomics also discriminates between asthma and other “phenotypes” of chronic obstructive airway diseases, such as chronic obstructive pulmonary disease (COPD) or Asthma–COPD Overlap (ACO). However, there are still various aspects that need to be more thoroughly investigated in the context of asthma phenotypes in adequately designed, homogeneous, multicentre studies, using adequate tools and integrating metabolomics into a multiple-level approach.
Collapse
|
10
|
Hartvigsson O, Barman M, Rabe H, Sandin A, Wold AE, Brunius C, Sandberg AS. Associations of maternal and infant metabolomes with immune maturation and allergy development at 12 months in the Swedish NICE-cohort. Sci Rep 2021; 11:12706. [PMID: 34135462 PMCID: PMC8209090 DOI: 10.1038/s41598-021-92239-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/07/2021] [Indexed: 02/05/2023] Open
Abstract
Allergic diseases are the most common chronic diseases in childrenin the Western world, but little is know about what factors influence immune maturation and allergy development. We therefore aimed to associate infant and maternal metabolomes to T- and B-cell subpopulations and allergy diagnosis. We performed liquid chromatography-mass spectrometry based untargeted metabolomics on blood plasma from mothers (third trimester, n = 605; delivery, n = 558) and from the umbilical cord (n = 366). The measured metabolomes were associated to T- and B-cell subpopulations up to 4 months after delivery and to doctor´s diagnosed eczema, food allergy and asthma at one year of age using random forest analysis. Maternal and cord plasma at delivery could predict the number of CD24+CD38low memory B-cells (p = 0.033, n = 26 and p = 0.009, n = 22), but future allergy status could not be distinguished from any of the three measured metabolomes. Replication of previous literature findings showed hypoxanthine to be upregulated in the umbilical cord of children with subsequent asthma. This exploratory study suggests foetal immune programming occuring during pregnancy as the metabolomic profiles of mothers and infants at delivery related to infants' B-cell maturation.
Collapse
Affiliation(s)
- Olle Hartvigsson
- Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden.
| | - Malin Barman
- Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Hardis Rabe
- Institute of Biomedicine, Department of Infectious Diseases, University of Gothenburg, Gothenburg, Sweden
| | - Anna Sandin
- Department of Clinical Sciences, Unit of Pediatrics, Umeå University, Umeå, Sweden
| | - Agnes E Wold
- Institute of Biomedicine, Department of Infectious Diseases, University of Gothenburg, Gothenburg, Sweden
| | - Carl Brunius
- Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden
| | - Ann-Sofie Sandberg
- Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden
| |
Collapse
|
11
|
Insights into allergic risk factors from birth cohort studies. Ann Allergy Asthma Immunol 2021; 127:312-317. [PMID: 33971362 DOI: 10.1016/j.anai.2021.04.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/15/2021] [Accepted: 04/28/2021] [Indexed: 12/28/2022]
Abstract
OBJECTIVE To present an update of birth cohort study designs and their contributions to allergic risk. DATA SOURCES The PubMed database was used to search for relevant articles. STUDY SELECTIONS Peer-reviewed prospective and retrospective studies involving the assessment of allergy using human birth cohorts between 2014 and 2021 were evaluated. RESULTS Parental history of allergic diseases, especially in cases involving both parents, is associated with increased risk of allergy. Exposure to prenatal and postnatal smoking and limited diet diversity were associated with increased allergic burden. The impact of early-life infections and antibiotics on disease development may be associated with the onset of asthma, though this remains debated. Cohort studies also revealed that the mode of delivery and breastfeeding duration affect the odds ratio of asthma and eczema development. Household exposures, including pets, house dust mites, and scented aeroallergens may confer protective effects, whereas high air pollution exposure and low socioeconomic status may be risk enhancing. Exposure to antibiotics during early life may be associated with increased asthma risk, whereas viral infections may lead to disease protection, though the impact of the coronavirus disease 2019 pandemic on allergic risk is yet to be understood. CONCLUSION Although evaluating the risk of allergic disease development is complex, clinicians can apply these insights on the multifactorial nature of atopy to better understand and potentially mitigate disease development.
Collapse
|