1
|
Mao J, Zhou L, Wu Y, Wang K, Ye X, Wang T, Yang J, Tong J, Miao Q, Jiang S, Xiao Y, Zhang K. Discovery of 1,2,4-benzotriazine derivatives as new hematopoietic progenitor kinase 1 (HPK1) inhibitors. Bioorg Chem 2025; 156:108158. [PMID: 39826501 DOI: 10.1016/j.bioorg.2025.108158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/26/2024] [Accepted: 01/08/2025] [Indexed: 01/22/2025]
Abstract
Hematopoietic progenitor kinase 1 (HPK1), which negatively regulates immune signaling, has emerged as an attractive small-molecule drug target for tumor immunotherapy. Herein, we report the discovery of the 1,2,4-benzotriazine derivatives as new potent HPK1 inhibitors. Notably, compound A29 exhibited improved HPK1 inhibitory activity relative to compound 1 in the ADP-Glo kinase assay (IC50 = 2.70 and 13.6 nM, respectively). The pronounced inhibitory activity of A29 against downstream p-SLP76 in Jurkat T cells (IC50 = 8.1 nM) as well as the ability to induce the production of interleukin 2 (IL-2) in human peripheral blood mononuclear cells (PBMCs) confirmed its cellular target engagement and immune stimulatory effect. Consistently, this lead compound significantly enhanced T-cell killing ability against murine colon cancer cells CT26 or MC38 in a co-culture system. Furthermore, A29 was efficacious in a CT26 xenograft mouse model alone, and significantly enhanced the antitumor efficacy of an anti-PD-1 antibody. This work provides a promising lead for the development of effective HPK1 inhibitors for tumor immunotherapy.
Collapse
Affiliation(s)
- Jie Mao
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Lixin Zhou
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; Department of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yuxing Wu
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Kaizhen Wang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiuquan Ye
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Tianyu Wang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jiamei Yang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jun Tong
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qi Miao
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Sheng Jiang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Yibei Xiao
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Kuojun Zhang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
2
|
Wang Q, Zhu X, Li J, Xu S, Wang A, Zhang X, Wang X, Cai X, Xing H, Liu Y, Liu X, Wang Z, Wang L, Yuan X. HPK1 kinase inhibitor: a sufficient approach to target HPK1 to modulate T cell activation in cancer immunotherapy compared with degraders. Front Immunol 2025; 16:1449106. [PMID: 39981246 PMCID: PMC11839646 DOI: 10.3389/fimmu.2025.1449106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 01/17/2025] [Indexed: 02/22/2025] Open
Abstract
Background Hematopoietic progenitor kinase 1 (HPK1) is a member of the mitogen-activated protein kinase kinase kinase kinase (MAP4K) family. It has been reported that HPK1 negatively regulates the activation of T cells. Several compounds have been developed and tested in clinical trials to target HPK1 for cancer immunotherapy. However, whether kinase inhibition is sufficient to eliminate the immunosuppressive function of HPK1, particularly in T cells, remains elusive. Methods In this study, genetic tools were used to edit the human T lymphocyte cell line Jurkat. The activation of HPK1-null cells, HPK1-wildtype cells and HPK1-kinase-inactive cells was compared through ectopic expression of HPK1 in HPK1 knockout cells or direct HPK1 mutation. Besides genetic validation, a series of compounds that selectively target HPK1 (with or without HPK1-degradation activity) were used to assess the potential scaffold function of HPK1 in regulation of human primary T cell activation and cytotoxic activity. Results and conclusion Augmented T-cell receptor (TCR)-induced activation in HPK1-knockout Jurkat cells was inhibited by complementation of wildtype, but not kinase-dead HPK1. HPK1 K46E-knockin and K46*-knockin Jurkat cells showed comparable levels of enhanced TCR-induced activation compared with control HPK1-wildtype Jurkat cells. Similarly, HPK1 kinase inhibitor (Compound 1) and cereblon-based (CRBN-based) HPK1 degrader (Compound 2) elicited similar degrees of maximum TCR-induced activation in primary human peripheral blood T cells. In summary, the results of this study suggested that HPK1 kinase inhibitor may be sufficient for HPK1 targeting in T cell mediated cancer immunotherapy.
Collapse
Affiliation(s)
- Qin Wang
- Department of Biology, BeiGene (Beijing) Co., Ltd., Beijing, China
| | - Xinyi Zhu
- Department of Biology, BeiGene (Beijing) Co., Ltd., Beijing, China
| | - Jing Li
- Department of Medicinal Chemistry, BeiGene (Beijing) Co., Ltd., Beijing, China
| | - Sanjia Xu
- Department of Medicinal Chemistry, BeiGene (Beijing) Co., Ltd., Beijing, China
| | - Ali Wang
- Department of Biology, BeiGene (Beijing) Co., Ltd., Beijing, China
| | - Xinwen Zhang
- Department of Biology, BeiGene (Beijing) Co., Ltd., Beijing, China
| | - Xingxing Wang
- Department of Medicinal Chemistry, BeiGene (Beijing) Co., Ltd., Beijing, China
| | - Xiaopeng Cai
- Department of Medicinal Chemistry, BeiGene (Beijing) Co., Ltd., Beijing, China
| | - Haimei Xing
- Department of Biology, BeiGene (Beijing) Co., Ltd., Beijing, China
| | - Ye Liu
- Department of Biology, BeiGene (Beijing) Co., Ltd., Beijing, China
| | - Xuesong Liu
- Department of Biology, BeiGene (Beijing) Co., Ltd., Beijing, China
| | - Zhiwei Wang
- Department of Medicinal Chemistry, BeiGene (Beijing) Co., Ltd., Beijing, China
| | - Lai Wang
- Department of Biology, BeiGene (Beijing) Co., Ltd., Beijing, China
- Research & Clinical Development, BeiGene (Beijing) Co., Ltd., Beijing, China
| | - Xi Yuan
- Department of Biology, BeiGene (Beijing) Co., Ltd., Beijing, China
| |
Collapse
|
3
|
Peng J, Ding X, Chen CX, Zhao P, Ding X, Zhang M, Aliper A, Ren F, Lu H, Zhavoronkov A. Discovery of Pyridine-2-Carboxamides Derivatives as Potent and Selective HPK1 Inhibitors for the Treatment of Cancer. J Med Chem 2024; 67:21520-21544. [PMID: 39585942 DOI: 10.1021/acs.jmedchem.4c02421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Hematopoietic progenitor kinase 1 (HPK1) has emerged as an attractive target for immunotherapy due to its critical role in T cell activation and proliferation. The major challenge in developing HPK1 inhibitors lies in balancing kinase selectivity, pharmacokinetic (PK) properties, and therapeutic efficacy. In this study, we report a series of pyridine-2-carboxamide analogues demonstrating strong HPK1 inhibitory activity in enzymatic and cellular assays, along with good kinase selectivity. Among these analogues, compound 19 showed good in vitro HPK1 inhibitory activity, excellent kinase selectivity (>637-fold vs GCK-like kinase and >1022-fold vs LCK), and robust in vivo efficacy in the CT26 (tumor growth inhibition (TGI) = 94.3%, 2/6 CRs) and MC38 murine colorectal cancer models (TGI = 83.3%, 1/6 complete response) when administered in combination with anti-PD-1. Compound 19 also demonstrated adequate in vitro ADME and in vivo PK properties, displaying good oral bioavailability across multiple species (F % = 35-63). These findings summarize our compound's favorable safety and efficacy profiles, justifying its testing in future translational studies.
Collapse
Affiliation(s)
- Jingjing Peng
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Xiaoyu Ding
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Celia Xiaojing Chen
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Pei Zhao
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Xiao Ding
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Man Zhang
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Alex Aliper
- Insilico Medicine AI Limited, Masdar City, Abu Dhabi 145748, UAE
| | - Feng Ren
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Hongfu Lu
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Alex Zhavoronkov
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
- Insilico Medicine AI Limited, Masdar City, Abu Dhabi 145748, UAE
| |
Collapse
|
4
|
Duan Y, Guo Z, Zhong W, Chen J, Xu S, Liu J, Xu J. An updated review of small-molecule HPK1 kinase inhibitors (2016-present). Future Med Chem 2024; 16:2431-2450. [PMID: 39582317 PMCID: PMC11622775 DOI: 10.1080/17568919.2024.2420630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 10/18/2024] [Indexed: 11/26/2024] Open
Abstract
Hematopoietic progenitor kinase 1 (HPK1) is a serine-threonine kinase specific to hematopoiesis and a member of the MAP4K family of Ste20-related protein kinases. Targeting HPK1 to ameliorate T cell exhaustion and enhance T cell functions is a promising strategy for clinical immunotherapies. Numerous studies have reported the progress in developing effective HPK1 inhibitors and elucidating their mechanisms of action. However, most inhibitors affect multiple signaling pathways, resulting in unintended side effects that limit their clinical development and application. Herein, we reviewed HPK1-related signaling pathways, clinical candidates and recent advances in small-molecule inhibitors targeting HPK1. Additionally, we present our perspectives on current challenges and potential future research field, hoping to provide inspiration for the development of novel HPK1 inhibitors.
Collapse
Affiliation(s)
- Yiping Duan
- Department of Medicinal Chemistry, China Pharmaceutical University, School of Pharmacy, Nanjing, Jiangsu, 211198, Peoples Republic China
| | - Zhichao Guo
- Department of Medicinal Chemistry, China Pharmaceutical University, School of Pharmacy, Nanjing, Jiangsu, 211198, Peoples Republic China
| | - Wenyi Zhong
- Department of Organic Chemistry, China Pharmaceutical University, School of Science, Nanjing, Jiangsu, 211198, Peoples Republic China
| | - Jichao Chen
- Nanjing University Chinese Medicine, School of Pharmacy, Nanjing, Jiangsu, 210023, Peoples Republic China
| | - Shengtao Xu
- Department of Medicinal Chemistry, China Pharmaceutical University, School of Pharmacy, Nanjing, Jiangsu, 211198, Peoples Republic China
| | - Jie Liu
- Department of Organic Chemistry, China Pharmaceutical University, School of Science, Nanjing, Jiangsu, 211198, Peoples Republic China
| | - Jinyi Xu
- Department of Medicinal Chemistry, China Pharmaceutical University, School of Pharmacy, Nanjing, Jiangsu, 211198, Peoples Republic China
| |
Collapse
|
5
|
Peng J, Ding X, Chen CXJ, Shih PY, Meng Q, Ding X, Zhang M, Aliper A, Ren F, Lu H, Zhavoronkov A. Design, Synthesis, and Biological Evaluation of a Series of Spiro Analogues as Novel HPK1 Inhibitors. ACS Med Chem Lett 2024; 15:2032-2041. [PMID: 39563821 PMCID: PMC11571053 DOI: 10.1021/acsmedchemlett.4c00434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/08/2024] [Accepted: 10/24/2024] [Indexed: 11/21/2024] Open
Abstract
Hematopoietic progenitor kinase 1 (HPK1) negatively affects T cell activation and proliferation and is a promising target for immunotherapy. Although HPK1 inhibitors have shown promising efficacy in preclinical models, none have been approved for clinical use. One significant challenge in developing an HPK1 inhibitor is the difficulty in designing a potent inhibitor with good kinase selectivity and pharmacokinetic properties. Here, we report a series of spiro HPK1 inhibitors with good potency and selectivity. Specifically, compound 16 exhibited potent HPK1 inhibition (IC50 = 2.67 nM), adequate selectivity toward the MAP4K family (>100-fold), and good selectivity against selected kinases (>300-fold). Compound 16 demonstrated moderate in vivo clearance and reasonable oral exposure in mice and rats. Notably, compound 16 possessed good antitumor efficacy in the CT26 murine colon cancer and a synergistic effect when combined with anti-PD-1. These exciting preclinical results support the continued development of this class of HPK1 inhibitors.
Collapse
Affiliation(s)
- Jingjing Peng
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Xiaoyu Ding
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Celia X J Chen
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Pei-Yu Shih
- Insilico Medicine Taiwan Ltd, Taipei 110, Taiwan
| | - Qingyuan Meng
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Xiao Ding
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Man Zhang
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Alex Aliper
- Insilico Medicine AI Limited, Masdar City, Abu Dhabi 145748, UAE
| | - Feng Ren
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Hongfu Lu
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Alex Zhavoronkov
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
- Insilico Medicine AI Limited, Masdar City, Abu Dhabi 145748, UAE
| |
Collapse
|
6
|
Ahn MJ, Kim EH, Choi Y, Chae CH, Kim P, Kim SH. Novel hematopoietic progenitor kinase 1 inhibitor KHK-6 enhances T-cell activation. PLoS One 2024; 19:e0305261. [PMID: 38923962 PMCID: PMC11207149 DOI: 10.1371/journal.pone.0305261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Inhibiting the functional role of negative regulators in immune cells is an effective approach for developing immunotherapies. The serine/threonine kinase hematopoietic progenitor kinase 1 (HPK1) involved in the T-cell receptor signaling pathway attenuates T-cell activation by inducing the degradation of SLP-76 through its phosphorylation at Ser-376, reducing the immune response. Interestingly, several studies have shown that the genetic ablation or pharmacological inhibition of HPK1 kinase activity improves the immune response to cancers by enhancing T-cell activation and cytokine production; therefore, HPK1 could be a promising druggable target for T-cell-based cancer immunotherapy. To increase the immune response against cancer cells, we designed and synthesized KHK-6 and evaluated its cellular activity to inhibit HPK1 and enhance T-cell activation. KHK-6 inhibited HPK1 kinase activity with an IC50 value of 20 nM and CD3/CD28-induced phosphorylation of SLP-76 at Ser-376 Moreover, KHK-6 significantly enhanced CD3/CD28-induced production of cytokines; proportion of CD4+ and CD8+ T cells that expressed CD69, CD25, and HLA-DR markers; and T-cell-mediated killing activity of SKOV3 and A549 cells. In conclusion, KHK-6 is a novel ATP-competitive HPK1 inhibitor that blocks the phosphorylation of HPK1 downstream of SLP-76, enhancing the functional activation of T cells. In summary, our study showed the usefulness of KHK-6 in the drug discovery for the HPK1-inhibiting immunotherapy.
Collapse
Affiliation(s)
- Min Jeong Ahn
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon, Republic of Korea
| | - Eun Hye Kim
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Yunha Choi
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
- Medicinal Chemistry & Pharmacology, University of Science and Technology, Daejeon, Republic of Korea
| | - Chong Hak Chae
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Pilho Kim
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
- Medicinal Chemistry & Pharmacology, University of Science and Technology, Daejeon, Republic of Korea
| | - Seong Hwan Kim
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
7
|
Chen H, Guan X, He C, Lu T, Lin X, Liao X. Current strategies for targeting HPK1 in cancer and the barriers to preclinical progress. Expert Opin Ther Targets 2024; 28:237-250. [PMID: 38650383 DOI: 10.1080/14728222.2024.2344697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
INTRODUCTION Hematopoietic progenitor kinase 1 (HPK1), a 97-kDa serine/threonine Ste20-related protein kinase, functions as an intracellular negative regulator, primarily in hematopoietic lineage cells, where it regulates T cells, B cells, dendritic cells, and other immune cells. Loss of HPK1 kinase activity results in exacerbated cytokine secretion, enhanced T cell signaling, improved viral clearance, and thus increased restraint of tumor growth. These findings highlight HPK1 as a promising target for immuno-oncology treatments, culminating in the advancement of candidate compounds targeting HPK1 to clinical trials by several biotech enterprises. AREAS COVERED Through searching PubMed, Espacenet-patent search, and clinicaltrials.gov, this review provides a comprehensive analysis of HPK1, encompassing its structure and roles in various downstream signaling pathways, the consequences of constitutive activation of HPK1, and potential therapeutic strategies to treat HPK1-driven malignancies. Moreover, the review outlines the patents issued for small molecule inhibitors and clinical investigations of HPK1. EXPERT OPINION To enhance the success of tumor immunotherapy in clinical trials, it is important to develop protein degraders, allosteric inhibitors, and antibody-drug conjugates based on the crystal structure of HPK1, and to explore combination therapy approaches. Although several challenges remain, the development of HPK1 inhibitors display promising in preclinical and clinical studies.
Collapse
Affiliation(s)
- Hui Chen
- State Key Laboratory of Molecular Oncology, School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Science, Tsinghua University, Beijing, China
| | - Xiangna Guan
- State Key Laboratory of Molecular Oncology, School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Science, Tsinghua University, Beijing, China
| | - Chi He
- State Key Laboratory of Molecular Oncology, School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Science, Tsinghua University, Beijing, China
| | - Tingting Lu
- Zhuhai Yufan Biotechnologies Co., Ltd, Zhuhai, Guangdong, China
| | - Xingyu Lin
- Zhuhai Yufan Biotechnologies Co., Ltd, Zhuhai, Guangdong, China
| | - Xuebin Liao
- State Key Laboratory of Molecular Oncology, School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Science, Tsinghua University, Beijing, China
| |
Collapse
|
8
|
Ullas S, Sinclair C. Applications of Flow Cytometry in Drug Discovery and Translational Research. Int J Mol Sci 2024; 25:3851. [PMID: 38612661 PMCID: PMC11011675 DOI: 10.3390/ijms25073851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/23/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Flow cytometry is a mainstay technique in cell biology research, where it is used for phenotypic analysis of mixed cell populations. Quantitative approaches have unlocked a deeper value of flow cytometry in drug discovery research. As the number of drug modalities and druggable mechanisms increases, there is an increasing drive to identify meaningful biomarkers, evaluate the relationship between pharmacokinetics and pharmacodynamics (PK/PD), and translate these insights into the evaluation of patients enrolled in early clinical trials. In this review, we discuss emerging roles for flow cytometry in the translational setting that supports the transition and evaluation of novel compounds in the clinic.
Collapse
Affiliation(s)
| | - Charles Sinclair
- Flagship Pioneering, 140 First Street, Cambridge, MA 02141, USA;
| |
Collapse
|
9
|
Wang F, Fu K, Wang Y, Pan C, Wang X, Liu Z, Yang C, Zheng Y, Li X, Lu Y, To KKW, Xia C, Zhang J, Shi Z, Hu Z, Huang M, Fu L. Small-molecule agents for cancer immunotherapy. Acta Pharm Sin B 2024; 14:905-952. [PMID: 38486980 PMCID: PMC10935485 DOI: 10.1016/j.apsb.2023.12.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/28/2023] [Accepted: 12/06/2023] [Indexed: 03/17/2024] Open
Abstract
Cancer immunotherapy, exemplified by the remarkable clinical benefits of the immune checkpoint blockade and chimeric antigen receptor T-cell therapy, is revolutionizing cancer therapy. They induce long-term tumor regression and overall survival benefit in many types of cancer. With the advances in our knowledge about the tumor immune microenvironment, remarkable progress has been made in the development of small-molecule drugs for immunotherapy. Small molecules targeting PRR-associated pathways, immune checkpoints, oncogenic signaling, metabolic pathways, cytokine/chemokine signaling, and immune-related kinases have been extensively investigated. Monotherapy of small-molecule immunotherapeutic drugs and their combinations with other antitumor modalities are under active clinical investigations to overcome immune tolerance and circumvent immune checkpoint inhibitor resistance. Here, we review the latest development of small-molecule agents for cancer immunotherapy by targeting defined pathways and highlighting their progress in recent clinical investigations.
Collapse
Affiliation(s)
- Fang Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Kai Fu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yujue Wang
- School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing 100084, China
| | - Can Pan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xueping Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Zeyu Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Chuan Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Ying Zheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiaopeng Li
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yu Lu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Kenneth Kin Wah To
- School of Pharmacy, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Chenglai Xia
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan 528000, China
| | - Jianye Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Zhi Shi
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Zeping Hu
- School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing 100084, China
| | - Min Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Liwu Fu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| |
Collapse
|
10
|
Yang L, Zhao Q, Chen T, Liu W, Qiu X, Chen J, Huang S, Huang R, Dong L. An HPK1 inhibitor enhanced the tumour response to anti-PD-1 immunotherapy in non-Hodgkin's lymphoma. Clin Exp Med 2023; 23:3767-3780. [PMID: 37106265 DOI: 10.1007/s10238-023-01068-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 04/05/2023] [Indexed: 04/29/2023]
Abstract
Anti-PD-1 immunotherapy has been widely applied in patients with some types of lymphoma. Classical Hodgkin's lymphoma (cHL) is highly sensitive to immunotherapy, but non-Hodgkin's lymphoma (NHL) does not show a good response. Studies have indicated that haematopoietic progenitor kinase 1 (HPK1) suppresses T cells and reduces antitumour immunity. Therefore, HPK1 inhibitors may restore and elicit antitumour immune responses and are promising candidate drug targets for cancer immunotherapy. We first explored the Gene Expression Profile Interactive Analysis (GEPIA) database and predicted that HPK1 expression was increased in diffuse large B-cell lymphoma (DLBCL) and associated with Nod-like receptor protein 3 (NLRP3) expression. We investigated whether an HPK1 inhibitor could enhance the tumour response to anti-PD-1 immunotherapy in NHL and the association between HPK1 and NLRP3 expression. Employing shHPK1 and an inhibitor, we demonstrated that the HPK1 inhibitor increased anti-PD-1-mediated T-cell cytotoxicity in BJAB and WSU-DLCL2 cells cocultured with peripheral blood mononuclear cells (PBMCs). HPK1 inhibitor treatment increased PD-1, PD-L1, Bax, p53 and NK-kB expression but decreased NLRP3 expression, indicating that the HPK1 inhibitor promoted apoptosis and blocked the NLRP3 inflammasome pathway to affect anti-PD-1-mediated T-cell cytotoxicity. Moreover, the HPK1 inhibitor enhanced the efficiency of anti-PD-1 immunotherapy in vivo in a zebrafish xenograft model of NHL. In summary, this study provides evidence that an HPK1 inhibitor enhanced the tumour response to anti-PD-1 immunotherapy in NHL by promoting apoptosis and blocking the NLRP3 pathway. These findings provide a potential therapeutic option for NHL combining HPK1 inhibitor treatment and anti-PD-1 immunotherapy.
Collapse
Affiliation(s)
- Lin Yang
- Department of Pharmacy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuma Road 420#, Fuzhou, Fujian, China.
| | - Qiuling Zhao
- Department of Pharmacy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuma Road 420#, Fuzhou, Fujian, China
| | - Ting Chen
- Department of Pharmacy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuma Road 420#, Fuzhou, Fujian, China
| | - Wenbin Liu
- Department of Pharmacy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuma Road 420#, Fuzhou, Fujian, China
| | - Xiuliang Qiu
- Department of Pharmacy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuma Road 420#, Fuzhou, Fujian, China
| | - Jincan Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian College, University of Chinese Academy of Sciences, Fuzhou, Fujian, China
| | - Shengqiang Huang
- Department of Pharmacy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuma Road 420#, Fuzhou, Fujian, China
| | - Ruyi Huang
- Department of Pharmacy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuma Road 420#, Fuzhou, Fujian, China
| | - Liangliang Dong
- Department of Pharmacy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuma Road 420#, Fuzhou, Fujian, China
| |
Collapse
|
11
|
Reichenbach P, Giordano Attianese GMP, Ouchen K, Cribioli E, Triboulet M, Ash S, Saillard M, Vuillefroy de Silly R, Coukos G, Irving M. A lentiviral vector for the production of T cells with an inducible transgene and a constitutively expressed tumour-targeting receptor. Nat Biomed Eng 2023; 7:1063-1080. [PMID: 37069267 PMCID: PMC10504085 DOI: 10.1038/s41551-023-01013-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 02/20/2023] [Indexed: 04/19/2023]
Abstract
Vectors that facilitate the engineering of T cells that can better harness endogenous immunity and overcome suppressive barriers in the tumour microenvironment would help improve the safety and efficacy of T-cell therapies for more patients. Here we report the design, production and applicability, in T-cell engineering, of a lentiviral vector leveraging an antisense configuration and comprising a promoter driving the constitutive expression of a tumour-directed receptor and a second promoter enabling the efficient activation-inducible expression of a genetic payload. The vector allows for the delivery of a variety of genes to human T cells, as we show for interleukin-2 and a microRNA-based short hairpin RNA for the knockdown of the gene coding for haematopoietic progenitor kinase 1, a negative regulator of T-cell-receptor signalling. We also show that a gene encoded under an activation-inducible promoter is specifically expressed by tumour-redirected T cells on encountering a target antigen in the tumour microenvironment. The single two-gene-encoding vector can be produced at high titres under an optimized protocol adaptable to good manufacturing practices.
Collapse
Affiliation(s)
- Patrick Reichenbach
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Greta Maria Paola Giordano Attianese
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Khaoula Ouchen
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Elisabetta Cribioli
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Melanie Triboulet
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Sarah Ash
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Margaux Saillard
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Romain Vuillefroy de Silly
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - George Coukos
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| | - Melita Irving
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
12
|
Wang H, Moniruzzaman R, Li L, Ji B, Liu Y, Zuo X, Abbasgholizadeh R, Zhao J, Liu G, Wang R, Tang H, Sun R, Su X, Tan TH, Maitra A, Wang H. Hematopoietic progenitor kinase 1 inhibits the development and progression of pancreatic intraepithelial neoplasia. J Clin Invest 2023; 133:e163873. [PMID: 37140994 PMCID: PMC10266776 DOI: 10.1172/jci163873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 05/02/2023] [Indexed: 05/05/2023] Open
Abstract
Ras plays an essential role in the development of acinar-to-ductal metaplasia (ADM) and pancreatic ductal adenocarcinoma (PDAC). However, mutant Kras is an inefficient driver for PDAC development. The mechanisms of the switching from low Ras activity to high Ras activity that are required for development and progression of pancreatic intraepithelial neoplasias (PanINs) are unclear. In this study, we found that hematopoietic progenitor kinase 1 (HPK1) was upregulated during pancreatic injury and ADM. HPK1 interacted with the SH3 domain and phosphorylated Ras GTPase-activating protein (RasGAP) and upregulated RasGAP activity. Using transgenic mouse models of HPK1 or M46, a kinase-dead mutant of HPK1, we showed that HPK1 inhibited Ras activity and its downstream signaling and regulated acinar cell plasticity. M46 promoted the development of ADM and PanINs. Expression of M46 in KrasG12D Bac mice promoted the infiltration of myeloid-derived suppressor cells and macrophages, inhibited the infiltration of T cells, and accelerated the progression of PanINs to invasive and metastatic PDAC, while HPK1 attenuated mutant Kras-driven PanIN progression. Our results showed that HPK1 plays an important role in ADM and the progression of PanINs by regulating Ras signaling. Loss of HPK1 kinase activity promotes an immunosuppressive tumor microenvironment and accelerates the progression of PanINs to PDAC.
Collapse
Affiliation(s)
- Hua Wang
- Department of Gastrointestinal Medical Oncology and
| | - Rohan Moniruzzaman
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Lei Li
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Baoan Ji
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, USA
| | - Yi Liu
- Department of Gastrointestinal Medical Oncology and
| | | | - Reza Abbasgholizadeh
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jun Zhao
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Guangchao Liu
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ruiqi Wang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Ryan Sun
- Department of Biostatistics, and
| | - Xiaoping Su
- Advanced Technology Genomics Core
- Department of Bioinformatics & Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Tse-Hua Tan
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan
| | - Anirban Maitra
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Translational Molecular Pathology and
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Huamin Wang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Translational Molecular Pathology and
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
13
|
Ge H, Tang C, Pan Y, Yao X. Theoretical Studies on Selectivity of HPK1/JAK1 Inhibitors by Molecular Dynamics Simulations and Free Energy Calculations. Int J Mol Sci 2023; 24:ijms24032649. [PMID: 36768974 PMCID: PMC9916865 DOI: 10.3390/ijms24032649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/28/2022] [Accepted: 01/03/2023] [Indexed: 02/01/2023] Open
Abstract
Hematopoietic progenitor kinase 1 (HPK1) is a negative regulator of T cell receptor, which has been regarded as a potential target for immunotherapy. Yu et al. observed the off-target effect of the high-throughput screening HPK1 kinase inhibitor hits on JAK1 kinase. The off-target effect is usually due to the lack of specificity of the drug, resulting in toxic side effects. Therefore, exploring the mechanisms to selectively inhibit HPK1 is critical for developing effective and safe inhibitors. In this study, two indazole compounds as HPK1 inhibitors with different selectivity towards JAK1 were used to investigate the selectivity mechanism using multiple computational methods, including conventional molecular dynamics simulations, binding free energy calculations and umbrella sampling simulations. The results indicate that the salt bridge between the inhibitor and residue Asp101 of HPK1 favors their selectivity towards HPK1 over JAK1. Information obtained from this study can be used to discover and design more potent and selective HPK1 inhibitors for immunotherapy.
Collapse
|
14
|
Wang MS, Wang ZZ, Li ZL, Gong Y, Duan CX, Cheng QH, Huang W, Yang GF. Discovery of Macrocycle-Based HPK1 Inhibitors for T-Cell-Based Immunotherapy. J Med Chem 2023; 66:611-626. [PMID: 36542759 DOI: 10.1021/acs.jmedchem.2c01551] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Hematopoietic progenitor kinase 1 (HPK1) is a negative regulator of T-cell activation, and targeting HPK1 is considered a promising strategy for improving responses to antitumor immune therapies. The biggest challenge of HPK1 inhibitor design is to achieve a higher selectivity to GLK, an HPK1 homology protein as a positive regulator of T-cell activation. Herein, we report the design of a series of macrocycle-based HPK1 inhibitors via a conformational constraint strategy. The identified candidate compound 5i exhibited HPK1 inhibition with an IC50 value of 0.8 nM and 101.3-fold selectivity against GLK. Compound 5i also displayed good oral bioavailability (F = 27-49%) in mice and beagles and favorable metabolic stability (T1/2 > 186.4 min) in human liver microsomes. More importantly, compound 5i demonstrated a clear synergistic effect with anti-PD-1 in both MC38 (MSI) and CT26 (MSS) syngeneic tumor mouse models. These results showed that compound 5i has a great potential in immunotherapy.
Collapse
Affiliation(s)
- Ming-Shu Wang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. of China
| | - Zhi-Zheng Wang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. of China
| | - Zi-Long Li
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. of China
| | - Yi Gong
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. of China
| | - Cheng-Xiang Duan
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. of China
| | - Qian-Hui Cheng
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. of China
| | - Wei Huang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. of China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. of China
| |
Collapse
|
15
|
Pang K, Wang W, Qin J, Shi Z, Hao L, Ma Y, Xu H, Wu Z, Pan D, Chen Z, Han C. Role of protein phosphorylation in cell signaling, disease, and the intervention therapy. MedComm (Beijing) 2022; 3:e175. [PMID: 36349142 PMCID: PMC9632491 DOI: 10.1002/mco2.175] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/06/2022] Open
Abstract
Protein phosphorylation is an important post-transcriptional modification involving an extremely wide range of intracellular signaling transduction pathways, making it an important therapeutic target for disease intervention. At present, numerous drugs targeting protein phosphorylation have been developed for the treatment of various diseases including malignant tumors, neurological diseases, infectious diseases, and immune diseases. In this review article, we analyzed 303 small-molecule protein phosphorylation kinase inhibitors (PKIs) registered and participated in clinical research obtained in a database named Protein Kinase Inhibitor Database (PKIDB), including 68 drugs approved by the Food and Drug Administration of the United States. Based on previous classifications of kinases, we divided these human protein phosphorylation kinases into eight groups and nearly 50 families, and delineated their main regulatory pathways, upstream and downstream targets. These groups include: protein kinase A, G, and C (AGC) and receptor guanylate cyclase (RGC) group, calmodulin-dependent protein kinase (CaMK) group, CMGC [Cyclin-dependent kinases (CDKs), Mitogen-activated protein kinases (MAPKs), Glycogen synthase kinases (GSKs), and Cdc2-like kinases (CLKs)] group, sterile (STE)-MAPKs group, tyrosine kinases (TK) group, tyrosine kinase-like (TKL) group, atypical group, and other groups. Different groups and families of inhibitors stimulate or inhibit others, forming an intricate molecular signaling regulatory network. This review takes newly developed new PKIs as breakthrough point, aiming to clarify the regulatory network and relationship of each pathway, as well as their roles in disease intervention, and provide a direction for future drug development.
Collapse
Affiliation(s)
- Kun Pang
- Department of Urology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical CollegeThe Affiliated Xuzhou Hospital of Medical College of Southeast UniversityThe Affiliated Xuzhou Center Hospital of Nanjing University of Chinese MedicineXuzhouJiangsuChina
| | - Wei Wang
- Department of Medical CollegeSoutheast UniversityNanjingJiangsuChina
| | - Jia‐Xin Qin
- Department of Urology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical CollegeThe Affiliated Xuzhou Hospital of Medical College of Southeast UniversityThe Affiliated Xuzhou Center Hospital of Nanjing University of Chinese MedicineXuzhouJiangsuChina
| | - Zhen‐Duo Shi
- Department of Urology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical CollegeThe Affiliated Xuzhou Hospital of Medical College of Southeast UniversityThe Affiliated Xuzhou Center Hospital of Nanjing University of Chinese MedicineXuzhouJiangsuChina
| | - Lin Hao
- Department of Urology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical CollegeThe Affiliated Xuzhou Hospital of Medical College of Southeast UniversityThe Affiliated Xuzhou Center Hospital of Nanjing University of Chinese MedicineXuzhouJiangsuChina
| | - Yu‐Yang Ma
- Graduate SchoolBengbu Medical CollegeBengbuAnhuiChina
| | - Hao Xu
- Graduate SchoolBengbu Medical CollegeBengbuAnhuiChina
| | - Zhuo‐Xun Wu
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's University, QueensNew YorkNew YorkUSA
| | - Deng Pan
- Graduate SchoolBengbu Medical CollegeBengbuAnhuiChina
| | - Zhe‐Sheng Chen
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's University, QueensNew YorkNew YorkUSA
| | - Cong‐Hui Han
- Department of Urology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical CollegeThe Affiliated Xuzhou Hospital of Medical College of Southeast UniversityThe Affiliated Xuzhou Center Hospital of Nanjing University of Chinese MedicineXuzhouJiangsuChina
| |
Collapse
|
16
|
Zhu Q, Chen N, Tian X, Zhou Y, You Q, Xu X. Hematopoietic Progenitor Kinase 1 in Tumor Immunology: A Medicinal Chemistry Perspective. J Med Chem 2022; 65:8065-8090. [PMID: 35696642 DOI: 10.1021/acs.jmedchem.2c00172] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hematopoietic progenitor kinase 1 (HPK1), a hematopoietic cell-restricted member of the serine/threonine Ste20-related protein kinases, is a negative regulator of the T cell receptor, B cell receptor, and dendritic cells. Loss of HPK1 kinase function increases cytokine secretion and enhances T cell signaling, virus clearance, and tumor growth inhibition. Therefore, HPK1 is considered a promising target for tumor immunotherapy. Several HPK1 inhibitors have been reported to regulate T cell function. In addition, HPK1-targeting PROTACs, which can induce the degradation of HPK1, have also been developed. Here, we provide an overview of research concerning HPK1 protein structure, function, and inhibitors and propose perspectives and insights for the future development of agents targeting HPK1.
Collapse
Affiliation(s)
- Qiangsheng Zhu
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Nannan Chen
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xinjian Tian
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yeling Zhou
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - QiDong You
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaoli Xu
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
17
|
Linney ID, Kaila N. Inhibitors of immuno-oncology target HPK1 - a patent review (2016 to 2020). Expert Opin Ther Pat 2021; 31:893-910. [PMID: 33956554 DOI: 10.1080/13543776.2021.1924671] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Introduction: Hematopoietic progenitor kinase (HPK1), a serine/threonine kinase, which is primarily expressed in hematopoietic cells is a negative regulator of T-cell receptor and B cell signaling. Studies using genetic disruption of HPK1 function show enhanced T-cell signaling, cytokine production, and in vivo tumor growth inhibition. This profile of enhanced immune response highlights small molecule inhibition of HPK1 as an attractive approach for the immunotherapy of cancer.Areas covered: This article summarizes the biological rationale for the inhibition of HPK1 as a potential adjunct to the current immuno-oncology (IO) therapies. The article primarily discloses the current state of development of HPK1 inhibitors.Expert Opinion: The rapid increase in the identification of small molecule inhibitors of HPK1 should translate into a fuller understanding of the role of HPK1 inhibition in the IO setting. This understanding will be of huge importance in determining whether HPK1 inhibition alone will be sufficient for tumor growth inhibition or if combination with current IO therapies will be required.
Collapse
Affiliation(s)
- Ian D Linney
- Medicinal Chemistry, Charles River, Chesterford Park Research Park, Saffron Walden, United Kingdom
| | - Neelu Kaila
- Medicinal Chemistry, Nimbus Therapeutics, Cambridge, MA, USA
| |
Collapse
|