1
|
Jing H, Xue X, Zhang X, Xu X, Tang Y, Wang H, Zheng J, Yang H, Han Y. Metabolomics and microbiome analysis elucidate the detoxification mechanisms of Hemarthria compressa, a low cadmium accumulating plant, in response to cadmium stress. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137226. [PMID: 39827800 DOI: 10.1016/j.jhazmat.2025.137226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 01/12/2025] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
Cadmium (Cd) is recognized as one of the most toxic heavy metal in the environment that causes pronounced phytotoxicity. This study investigated the physiological and biochemical responses and detoxification mechanisms of Hemarthria compressa under various concentrations of Cd stress (0, 30, 60, 90, and 270 mg·kg-1). Our research findings indicate that the growth and photosynthetic capacity of H. compressa reach their peak at a Cd concentration of 60 mg·kg-1. At this concentration, the Cd concentration in the shoots of H. compressa is 0.67 mg·kg-1, the total Cd accumulation is 0.25 μg, and the MDA content is 6.25 nmol·g-1, which represents the lowest values among all treatments.Metabolomics analysis reveals that sugar is related to Cd stress resistance, and the levels of organic acids involved in metabolic processes show only minor changes. H. compressa alters the composition of its root exudates by secreting substantial quantities of organic acids (such as citric acid, fumaric acid, and malic acid), sugars (such as trehalose, maltose, and glucose), and fatty acids (such as citraconic acid). These organic acids modulate the pH of the rhizosphere soil and recruit beneficial microorganisms, including Gp6, Sphingoaurantiacus, Devosia, and Neobacillus species, thereby enhancing plant growth and mitigating Cd accumulation.
Collapse
Affiliation(s)
- Hao Jing
- College of Animal Science and Technology, Southwest University, Chongqing 402460, China; Chongqing Key Laboratory of Herbivore Science, Chongqing 402460, China
| | - Xiaoliang Xue
- College of Animal Science and Technology, Southwest University, Chongqing 402460, China
| | - Xin Zhang
- College of Animal Science and Technology, Southwest University, Chongqing 402460, China
| | - Xianji Xu
- College of Animal Science and Technology, Southwest University, Chongqing 402460, China
| | - Yuzhou Tang
- College of Animal Science and Technology, Southwest University, Chongqing 402460, China
| | - Hongji Wang
- College of Animal Science and Technology, Southwest University, Chongqing 402460, China; Chongqing Key Laboratory of Herbivore Science, Chongqing 402460, China
| | - Jiaqi Zheng
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Hongyuan Yang
- College of Animal Science and Technology, Southwest University, Chongqing 402460, China
| | - Yuzhu Han
- College of Animal Science and Technology, Southwest University, Chongqing 402460, China; Chongqing Key Laboratory of Herbivore Science, Chongqing 402460, China.
| |
Collapse
|
2
|
Lakhneko O, Fialová I, Fiala R, Kopáčová M, Kováč A, Danchenko M. Silicon might mitigate nickel toxicity in maize roots via chelation, detoxification, and membrane transport. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117334. [PMID: 39549574 DOI: 10.1016/j.ecoenv.2024.117334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/23/2024] [Accepted: 11/10/2024] [Indexed: 11/18/2024]
Abstract
Nickel is an essential micronutrient for plant growth and development. However, in excessive amounts caused by accidental pollution of soils, this heavy metal is toxic to plants. Although silicon is a non-essential nutrient, it accumulates in most monocots, particularly the vital crop maize (corn, Zea mays). In fact, this metalloid mineral can alleviate the toxicity of heavy metals, though the mechanism is not entirely clear yet. Herein, we measured proteome, gene expression, enzyme activities, and selected sugars to investigate such effect thoroughly. Deep proteomic analysis revealed a minor impact of 100 µM Ni, 2.5 mM Si, or their combination on roots in 12-day-old hydroponically grown maize seedlings upon 9 days of exposure. Nonetheless, we suggested plausible mechanisms of Si mitigation of excessive Ni: Chelation by metallothioneins and phytochelatins, detoxification by glycine betaine pathway, and restructuring of plasma membrane transporters. Higher activity of glutathione S-transferase confirmed its plausible involvement in reducing Ni toxicity in combined treatment. Accumulation of sucrose synthase and corresponding soluble sugars in Ni and combined treatment implied high energy requirements both during heavy metal stress and its mitigation. Expression analysis of genes coding a few differentially accumulated proteins failed to reveal concordant changes, indicating posttranscriptional regulation. Proposed mitigation mechanisms should be functionally validated in follow-up studies.
Collapse
Affiliation(s)
- Olha Lakhneko
- Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava 84523, Slovakia
| | - Ivana Fialová
- Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava 84523, Slovakia
| | - Roderik Fiala
- Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava 84523, Slovakia
| | - Mária Kopáčová
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava 84538, Slovakia
| | - Andrej Kováč
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava 84510, Slovakia
| | - Maksym Danchenko
- Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava 84523, Slovakia.
| |
Collapse
|
3
|
Li AM, Liao F, Qin CX, Wang M, Chen ZL, Zhang BQ, Gao YJ, Pan YQ, Huang DL. Sucrose Phosphate Synthase Genes in Plants: Its Role and Practice for Crop Improvement. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18335-18346. [PMID: 39134474 DOI: 10.1021/acs.jafc.4c05068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Plants convert solar energy and carbon dioxide into organic compounds through photosynthesis. Sucrose is the primary carbonate produced during photosynthesis. Sucrose phosphate synthase (SPS) is the key enzyme controlling sucrose biosynthesis in plants. There are at least three SPS gene families in higher plants, named A, B, and C. However, in monocotyledonous plants from Poaceae, there are at least five SPS gene families, named A, B, C, DIII, and DIV. Each family of SPS genes in different plants shows a divergent expression pattern. So different families of SPS genes participate in diverse biological functions, including sucrose accumulation, plant growth and production, and abiotic stress tolerance. SPS activity in plants is regulated by exogenous factors through gene expression and reversible protein phosphorylation. It is a practicable way to improve crop traits through SPS gene transformation. This work analyzes the cloning, phylogeny, and regulatory mechanism of the SPS gene in plants, reviews its biological function as well as its role in crop improvement, and discusses the challenges and future perspectives. This paper can serve as a reference for further study on plant SPS genes and eventually for crop improvement.
Collapse
Affiliation(s)
- Ao-Mei Li
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Fen Liao
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Cui-Xian Qin
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Miao Wang
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Zhong-Liang Chen
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Bao-Qing Zhang
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Yi-Jing Gao
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - You-Qiang Pan
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Dong-Liang Huang
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| |
Collapse
|
4
|
Gu Q, Xie C, Zhang S, Zhou T, Li N, Xu C, Zhou Z, Wang C, Chen Z. Transcriptomic analysis provides insights into the molecular mechanism of melatonin-mediated cadmium tolerance in Medicago sativa L. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116411. [PMID: 38714085 DOI: 10.1016/j.ecoenv.2024.116411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/26/2024] [Accepted: 04/27/2024] [Indexed: 05/09/2024]
Abstract
Cadmium (Cd), a toxic element, often makes a serious threat to plant growth and development. Previous studies found that melatonin (Mel) reduced Cd accumulation and reestablished the redox balance to alleviate Cd stress in Medicago sativa L., however, the complex molecular mechanisms are still elusive. Here, comparative transcriptome analysis and biochemical experiments were conducted to explore the molecular mechanisms of Mel in enhancing Cd tolerance. Results showed that 7237 differentially expressed genes (DEGs) were regulated by Mel pretreatment to Cd stress compared to the control condition in roots of Medicago sativa L. Besides, in comparison with Cd stress alone, Mel upregulated 1081 DEGs, and downregulated 1085 DEGs. These DEGs were mainly involved in the transcription and translation of genes and folding, sorting and degradation of proteins, carbohydrate metabolism, and hormone signal network. Application of Mel regulated the expression of several genes encoding ribosomal protein and E3 ubiquitin-protein ligase involved in folding, sorting and degradation of proteins. Moreover, transcriptomic analyse suggested that Mel might regulate the expression of genes encoding pectin lyase, UDP-glucose dehydrogenase, sucrose-phosphate synthase, hexokinase-1, and protein phosphorylation in the sugar metabolism. Therefore, these could promote sucrose accumulation and subsequently alleviate the Cd damage. In conclusion, above findings provided the mining of important genes and molecular basis of Mel in mitigating Cd tolerance and genetic cultivation of Medicago sativa L.
Collapse
Affiliation(s)
- Quan Gu
- School of Biology, Food and Environment, Hefei University, Hefei 230601, China; School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Promotion Center for Technology Achievements Transfer, Anhui Academy of Science and Technology, Hefei 230031, China
| | - Chenyang Xie
- School of Biology, Food and Environment, Hefei University, Hefei 230601, China
| | - Song Zhang
- School of Biology, Food and Environment, Hefei University, Hefei 230601, China
| | - Tingyan Zhou
- School of Biology, Food and Environment, Hefei University, Hefei 230601, China
| | - Na Li
- Anhui Promotion Center for Technology Achievements Transfer, Anhui Academy of Science and Technology, Hefei 230031, China; School of Biological and Food Engineering, Suzhou University, Suzhou 234000, China
| | - Congshan Xu
- Anhui Promotion Center for Technology Achievements Transfer, Anhui Academy of Science and Technology, Hefei 230031, China
| | - Zhou Zhou
- Anhui Promotion Center for Technology Achievements Transfer, Anhui Academy of Science and Technology, Hefei 230031, China
| | - Chuyan Wang
- School of Biology, Food and Environment, Hefei University, Hefei 230601, China.
| | - Ziping Chen
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Promotion Center for Technology Achievements Transfer, Anhui Academy of Science and Technology, Hefei 230031, China; Anhui Province Product Quality Supervision and Inspection Institute, Hefei 230000, China.
| |
Collapse
|
5
|
Yuce M, Yildirim E, Ekinci M, Turan M, Ilhan E, Aydin M, Agar G, Ucar S. N-acetyl-cysteine mitigates arsenic stress in lettuce: Molecular, biochemical, and physiological perspective. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108390. [PMID: 38373369 DOI: 10.1016/j.plaphy.2024.108390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/21/2024]
Abstract
Agricultural land contaminated with heavy metals such as non-biodegradable arsenic (As) has become a serious global problem as it adversely affects agricultural productivity, food security and human health. Therefore, in this study, we investigated how the administration of N-acetyl-cysteine (NAC), regulates the physio-biochemical and gene expression level to reduce As toxicity in lettuce. According to our results, different NAC levels (125, 250 and 500 μM) significantly alleviated the growth inhibition and toxicity induced by As stress (20 mg/L). Shoot fresh weight, root fresh weight, shoot dry weight and root dry weight (33.05%, 55.34%, 17.97% and 46.20%, respectively) were decreased in plants grown in As-contaminated soils compared to lettuce plants grown in soils without the addition of As. However, NAC applications together with As stress increased these growth parameters. While the highest increase in shoot fresh and dry weight (58.31% and 37.85%, respectively) was observed in 250 μM NAC application, the highest increase in root fresh and dry weight (75.97% and 63.07%, respectively) was observed in 125 μM NAC application in plants grown in As-polluted soils. NAC application decreased the amount of ROS, MDA and H2O2 that increased with As stress, and decreased oxidative damage by regulating hormone levels, antioxidant and enzymes involved in nitrogen metabolism. According to gene expression profiles, LsHIPP28 and LsABC3 genes have shown important roles in reducing As toxicity in leaves. This study will provide insight for future studies on how NAC applications develop resistance to As stress in lettuce.
Collapse
Affiliation(s)
- Merve Yuce
- Atatürk University, Faculty of Agriculture, Department of Horticulture, Erzurum, Turkey.
| | - Ertan Yildirim
- Atatürk University, Faculty of Agriculture, Department of Horticulture, Erzurum, Turkey
| | - Melek Ekinci
- Atatürk University, Faculty of Agriculture, Department of Horticulture, Erzurum, Turkey
| | - Metin Turan
- Yeditepe University, Faculty of Economy and Administrative Sciences, Department of Agricultural Trade and Management, Istanbul, Turkey
| | - Emre Ilhan
- Erzurum Technical University, Faculty of Science, Department of Molecular Biology and Genetics, 25050, Erzurum, Turkey
| | - Murat Aydin
- Atatürk University, Faculty of Agriculture, Department of Agricultural Biotechnology, Erzurum, Turkey
| | - Guleray Agar
- Atatürk University, Faculty of Science, Department of Biology, Erzurum, Turkey
| | - Sumeyra Ucar
- Erzurum Technical University, Faculty of Science, Department of Molecular Biology and Genetics, 25050, Erzurum, Turkey
| |
Collapse
|
6
|
Miricioiu MG, Ionete RE, Simova S, Gerginova D, Botoran OR. Metabolite Profiling of Conifer Needles: Tracing Pollution and Climate Effects. Int J Mol Sci 2023; 24:14986. [PMID: 37834434 PMCID: PMC10573700 DOI: 10.3390/ijms241914986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023] Open
Abstract
In the face of escalating environmental challenges, understanding the intricate relationship between plant metabolites, pollution stress, and climatic conditions is of paramount importance. This study aimed to conduct a comprehensive analysis of metabolic variations generated through 1H and 13C NMR measurements in evergreen needles collected from different regions with varying pollution levels. Multivariate analyses were employed to identify specific metabolites responsive to pollution stress and climatic factors. Air pollution indicators were assessed through ANOVA and Pearson correlation analyses. Our results revealed significant metabolic changes attributed to geographical origin, establishing these conifer species as potential indicators for both air pollution and climatic conditions. High levels of air pollution correlated with increased glucose and decreased levels of formic acid and choline. Principal component analysis (PCA) unveiled a clear species separation, largely influenced by succinic acid and threonine. Discriminant analysis (DA) confirmed these findings, highlighting the positive correlation of glucose with pollution grade. Beyond pollution assessment, these metabolic variations could have ecological implications, impacting interactions and ecological functions. Our study underscores the dynamic interplay between conifer metabolism, environmental stressors, and ecological systems. These findings not only advance environmental monitoring practices but also pave the way for holistic research encompassing ecological and physiological dimensions, shedding light on the multifaceted roles of metabolites in conifer responses to environmental challenges.
Collapse
Affiliation(s)
- Marius Gheorghe Miricioiu
- ICSI Analytics Group, National Research and Development Institute of Cryogenic and Isotopic Technologies–ICSI Rm. Vâlcea, 4 Uzinei Street, 240050 Râmnicu Vâlcea, Romania; (M.G.M.); (R.E.I.)
| | - Roxana Elena Ionete
- ICSI Analytics Group, National Research and Development Institute of Cryogenic and Isotopic Technologies–ICSI Rm. Vâlcea, 4 Uzinei Street, 240050 Râmnicu Vâlcea, Romania; (M.G.M.); (R.E.I.)
| | - Svetlana Simova
- Bulgarian NMR Centre, Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, “Acad G. Bonchev” Street, Bl. 9, 1113 Sofia, Bulgaria; (S.S.); (D.G.)
| | - Dessislava Gerginova
- Bulgarian NMR Centre, Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, “Acad G. Bonchev” Street, Bl. 9, 1113 Sofia, Bulgaria; (S.S.); (D.G.)
| | - Oana Romina Botoran
- ICSI Analytics Group, National Research and Development Institute of Cryogenic and Isotopic Technologies–ICSI Rm. Vâlcea, 4 Uzinei Street, 240050 Râmnicu Vâlcea, Romania; (M.G.M.); (R.E.I.)
| |
Collapse
|
7
|
Chen J, Wang L, Liang X, Li B, He Y, Zhan F. An arbuscular mycorrhizal fungus differentially regulates root traits and cadmium uptake in two maize varieties. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115458. [PMID: 37690173 DOI: 10.1016/j.ecoenv.2023.115458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/17/2023] [Accepted: 09/06/2023] [Indexed: 09/12/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) are symbiotic fungi that colonize plant roots, and they are more common in Cd-polluted habitats. However, there is limited understanding of the response of root traits and cadmium (Cd) uptake to AMF in different crop varieties. Two maize varieties, Panyu 3 and Ludan 8, with high and low Cd uptake capacities, respectively, were cultivated as host plants in a pot experiment with Cd-polluted soil (17.1 mg/kg Cd). The effects of AMF on the growth, mineral nutrient concentration, root traits, phytohormone concentrations and Cd uptake of the two maize varieties and their comprehensive response to AMF fungal inoculation were investigated. AMF improved growth, mineral nutrient levels and root morphology and increased lignin and phytohormone concentrations in roots and Cd uptake in the two maize varieties. However, the two maize varieties, Panyu 3 and Ludan 8, had different responses to AMF, and their comprehensive response indices were 753.6% and 389.4%, respectively. The root biomass, branch number, abscisic acid concentrations, lignin concentrations and Cd uptake of maize Panyu 3 increased by 151.1%, 28.6%, 139.7%, 99.5% and 84.7%, respectively. The root biomass, average diameter, auxin concentration, lignin concentration and Cd uptake of maize Ludan 8 increased by 168.7%, 31.8%, 31.4%, 41.7% and 136.7%, respectively. Moreover, Cd uptake in roots presented very significant positive correlations with the average root diameter and abscisic acid concentration. A structural equation model indicated that the root abscisic acid concentration and root surface area had positive effects on Cd uptake by the Panyu 3 maize roots; the root abscisic acid concentration and root tip number had positive effects on Cd uptake by the Ludan 8 maize roots. Thus, AMF differentially regulated Cd uptake in the two maize varieties, and the regulatory effect was closely related to root traits and phytohormone concentrations.
Collapse
Affiliation(s)
- Jiaxin Chen
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Lei Wang
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Xinran Liang
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Bo Li
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Yongmei He
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Fangdong Zhan
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, Yunnan, China.
| |
Collapse
|
8
|
Moy A, Czajka K, Michael P, Nkongolo K. Transcriptome Analysis Reveals Changes in Whole Gene Expression, Biological Process, and Molecular Functions Induced by Nickel in Jack Pine ( Pinus banksiana). PLANTS (BASEL, SWITZERLAND) 2023; 12:2889. [PMID: 37571042 PMCID: PMC10421529 DOI: 10.3390/plants12152889] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/27/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023]
Abstract
Understanding the genetic response of plants to nickel stress is a necessary step to improving the utility of plants in environmental remediation and restoration. The main objective of this study was to generate whole genome expression profiles of P. banksiana exposed to nickel ion toxicity compared to reference genotypes. Pinus banksiana seedlings were screened in a growth chamber setting using a high concentration of 1600 mg of nickel per 1 kg of soil. RNA was extracted and sequenced using the Illumina platform, followed by de novo transcriptome assembly. Overall, 25,552 transcripts were assigned gene ontology. The biological processes in water-treated samples were analyzed, and 55% of transcripts were distributed among five categories: DNA metabolic process (19.3%), response to stress (13.3%), response to chemical stimuli (8.7%), signal transduction (7.7%) and response to biotic stimulus (6.0%). For molecular function, the highest percentages of genes were involved in nucleotide binding (27.6%), nuclease activity (27.3%) and kinase activity (10.3%). Sixty-two percent of genes were associated with cellular compartments. Of these genes, 21.7% were found in the plasma membrane, 16.1% in the cytosol, 12.4% with the chloroplast and 11.9% in the extracellular region. Nickel ions induced changes in gene expression, resulting in the emergence of differentially regulated categories. Overall, there were significant changes in gene expression with a total 4128 genes upregulated and 3754 downregulated genes detected in nickel-treated genotypes compared to water-treated control plants. For biological processes, the highest percentage of upregulated genes in plants exposed to nickel were associated with the response to stress (15%), the response to chemicals (11,1%), carbohydrate metabolic processes (7.4%) and catabolic processes (7.4%). The largest proportions of downregulated genes were associated with the biosynthetic process (21%), carbohydrate metabolic process (14.3%), response to biotic stimulus (10.7%) and response to stress (10.7%). For molecular function, genes encoding for enzyme regulatory and hydrolase activities represented the highest proportion (61%) of upregulated gene. The majority of downregulated genes were involved in the biosynthetic processes. Overall, 58% of upregulated genes were located in the extracellular region and the nucleus, while 42% of downregulated genes were localized to the plasma membrane and 33% to the extracellular region. This study represents the first report of a transcriptome from a conifer species treated with nickel.
Collapse
Affiliation(s)
| | | | | | - Kabwe Nkongolo
- Biomolecular Sciences Program and Department of Biology, School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada; (A.M.); (K.C.); (P.M.)
| |
Collapse
|
9
|
Song R, Yan B, Xie J, Zhou L, Xu R, Zhou JM, Ji XH, Yi ZL. Comparative proteome profiles of Polygonatum cyrtonema Hua rhizomes (Rhizoma Ploygonati) in response to different levels of cadmium stress. BMC PLANT BIOLOGY 2023; 23:149. [PMID: 36935490 PMCID: PMC10026435 DOI: 10.1186/s12870-023-04162-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND The Polygonatum cyrtonema Hua rhizomes (also known as Rhizoma Polygonati, RP) are consumed for their health benefits. The main source of the RP is wild P. cyrtonema populations in the Hunan province of China. However, the soil Cadmium (Cd) content in Huanan is increasing, thus increasing the risks of Cd accumulation in RP which may end up in the human food chain. To understand the mechanism of Cd accumulation and resistance in P. cyrtonema, we subjected P. cyrtonema plants to four levels of Cd stress [(D2) 1, (D3) 2, (D4) 4, and (D5) 8 mg/kg)] compared to (D1) 0.5 mg/kg. RESULTS The increase in soil Cd content up to 4 mg/kg resulted in a significant increase in tissue (root hair, rhizome, stem, and leaf) Cd content. The increase in Cd concentration variably affected the antioxidant enzyme activities. We could identify 14,171 and 12,115 protein groups and peptides, respectively. There were 193, 227, 260, and 163 differentially expressed proteins (DEPs) in D2, D3, D4, and D5, respectively, compared to D1. The number of downregulated DEPs increased with an increase in Cd content up to 4 mg/kg. These downregulated proteins belonged to sugar biosynthesis, amino acid biosynthesis-related pathways, and secondary metabolism-related pathways. Our results indicate that Cd stress increases ROS generation, against which, different ROS scavenging proteins are upregulated in P. cyrtonema. Moreover, Cd stress affected the expression of lipid transport and assembly, glycolysis/gluconeogenesis, sugar biosynthesis, and ATP generation. CONCLUSION These results suggest that an increase in soil Cd content may end up in Huangjing. Cadmium stress initiates expression changes in multiple pathways related to energy metabolism, sugar biosynthesis, and secondary metabolite biosynthesis. The proteins involved in these pathways are potential candidates for manipulation and development of Cd stress-tolerant genotypes.
Collapse
Affiliation(s)
- Rong Song
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, Hunan, China
- Institute of Agricultural Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha, 410125, Hunan, China
| | - Bei Yan
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Jin Xie
- Institute of Agricultural Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha, 410125, Hunan, China
| | - Li Zhou
- Institute of Agricultural Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha, 410125, Hunan, China
| | - Rui Xu
- Institute of Agricultural Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha, 410125, Hunan, China
| | - Jia Min Zhou
- Institute of Agricultural Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha, 410125, Hunan, China
| | - Xiong Hui Ji
- Institute of Agricultural Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha, 410125, Hunan, China
| | - Zi Li Yi
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, Hunan, China.
| |
Collapse
|
10
|
Huo D, Hao Y, Zou J, Qin L, Wang C, Du D. Integrated transcriptome and metabonomic analysis of key metabolic pathways in response to cadmium stress in novel buckwheat and cultivated species. FRONTIERS IN PLANT SCIENCE 2023; 14:1142814. [PMID: 37008482 PMCID: PMC10064074 DOI: 10.3389/fpls.2023.1142814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/16/2023] [Indexed: 06/19/2023]
Abstract
INTRODUCTION Buckwheat (Fagopyrum tataricum), an important food crop, also has medicinal uses. It is widely planted in Southwest China, overlapping with planting areas remarkably polluted by cadmium (Cd). Therefore, it is of great significance to study the response mechanism of buckwheat under Cd stress and further develop varieties with excellent Cd tolerance. METHODS In this study, two critical periods of Cd stress treatment (days 7 and 14 after Cd treatment) of cultivated buckwheat (Pinku-1, named K33) and perennial species (F. tatari-cymosum Q.F. Chen) (duoku, named DK19) were analyzed using transcriptome and metabolomics. RESULTS The results showed that Cd stress led to changes in reactive oxygen species (ROS) and the chlorophyll system. Moreover, Cd-response genes related to stress response, amino acid metabolism, and ROS scavenging were enriched or activated in DK19. Transcriptome and metabolomic analyses highlighted the important role of galactose, lipid (glycerophosphatide metabolism and glycerophosphatide metabolism), and glutathione metabolism in response to Cd stress in buckwheat, which are significantly enriched at the gene and metabolic levels in DK19. DISCUSSION The results of the present study provide valuable information for a better understanding of the molecular mechanisms underlying Cd tolerance in buckwheat and useful clues for the genetic improvement of drought tolerance in buckwheat.
Collapse
Affiliation(s)
- Dongao Huo
- Guizhou Normal University, Guiyang, China
- College of Biological Sciences and Technology, Taiyuan Normal University, Taiyuan, China
| | - Ying Hao
- Guizhou Normal University, Guiyang, China
| | - Juan Zou
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Lixia Qin
- College of Agriculture, Shanxi Agricultural University, Taiyuan, China
| | - Chuangyun Wang
- College of Agriculture, Shanxi Agricultural University, Taiyuan, China
| | - Dengxiang Du
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| |
Collapse
|
11
|
Cho YL, Tzou YM, Wang CC, Lee YC, Hsu LC, Liu SL, Assakinah A, Chen YH, Thi Than NA, Liu YT, Rinklebe J. Removal and concurrent reduction of Cr(VI) by thermoacidophilic Cyanidiales: a novel extreme biomaterial enlightened for acidic and neutral conditions. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130334. [PMID: 36462243 DOI: 10.1016/j.jhazmat.2022.130334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/26/2022] [Accepted: 11/04/2022] [Indexed: 06/17/2023]
Abstract
Thermoacidophilic Cyanidiales maintain a competitive edge in inhabiting extreme environments enriched with metals. Here, species of Cyanidioschyzon merolae (Cm), Cyanidium caldarium (Cc), and Galdieria partita (Gp) were exploited to remove hexavalent chromium [Cr(VI)]. Cm and Gp could remove 168.1 and 93.7 mg g-1 of Cr(VI) at pH 2.0 and 7.0, respectively, wherein 89% and 62% of sorbed Cr on Cm and Gp occurred as trivalent chromium [Cr(III)]. Apart from surface-sorbed Cr(VI), the in vitro Cr(III) bound with polysaccharide and in vivo chromium(III) hydroxide [Cr(OH)3] attested to the reduction capability of Cyanidiales. The distribution of Cr species varied as a function of sorbed Cr amount, yet a relatively consistent proportion of Cr(OH)3, irrespective of Cr sorption capacity, was found only on Cm and Cc at pH 2.0. In conjunction with TXM (transmission X-ray microscopy) images that showed less impaired cell integrity and possible intracellular Cr distribution on Cm and Cc at pH 2.0, the in vivo Cr(OH)3 might be the key to promoting the Cr sorption capacity (≥ 152 mg g-1). Cyanidiales are promising candidates for the green and sustainable remediation of Cr(VI) due to their great removal capacity, the spontaneous reduction under oxic conditions, and in vivo accumulation.
Collapse
Affiliation(s)
- Yen-Lin Cho
- Department of Soil and Environmental Sciences, National Chung Hsing University, Taichung 40227, Taiwan
| | - Yu-Min Tzou
- Department of Soil and Environmental Sciences, National Chung Hsing University, Taichung 40227, Taiwan; Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung 40227, Taiwan
| | - Chun-Chieh Wang
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Yao-Chang Lee
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Liang-Ching Hsu
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Shao-Lun Liu
- Department of Life Science, Tunghai University, Taichung 40704, Taiwan
| | - Afifah Assakinah
- Department of Soil and Environmental Sciences, National Chung Hsing University, Taichung 40227, Taiwan
| | - Yu-Hsien Chen
- Department of Soil and Environmental Sciences, National Chung Hsing University, Taichung 40227, Taiwan
| | - Nhu Anh Thi Than
- Department of Soil and Environmental Sciences, National Chung Hsing University, Taichung 40227, Taiwan
| | - Yu-Ting Liu
- Department of Soil and Environmental Sciences, National Chung Hsing University, Taichung 40227, Taiwan; Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung 40227, Taiwan.
| | - Jörg Rinklebe
- Laboratory of Soil, and Groundwater-Management, Institute of Foundation Engineering, Water, and Waste, Management, School of Architecture and Civil Engineering, University of Wuppertal, Wuppertal 42285, Germany
| |
Collapse
|
12
|
Meng F, Feng N, Zheng D, Liu M, Zhang R, Huang X, Huang A, Chen Z. Exogenous Hemin alleviates NaCl stress by promoting photosynthesis and carbon metabolism in rice seedlings. Sci Rep 2023; 13:3497. [PMID: 36859499 PMCID: PMC9977858 DOI: 10.1038/s41598-023-30619-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/27/2023] [Indexed: 03/03/2023] Open
Abstract
It is widely known that salt stress restricts rice growth and productivity severely. However, little information is available regarding the stage of rice seedlings subjected to the Heme oxygenase 1 (HO-1) inducer, Hemin. This study aimed to investigate the effects of salt stress on two rice varieties (Huanghuazhan and Xiangliangyou 900) and the effect of Hemin in promoting photosynthesis, carbohydrate metabolism, and key enzymes under salt-stress conditions. At the stage of three leaves and one heart, Huanghuazhan (HHZ) and Xiangliangyou 900 (XLY900) were sprayed with 5 μmol·L-1 Hemin and then subjected to 50 mM NaCl stress. The results showed that NaCl stress decreased the contents of chlorophyll a, chlorophyll b, and carotenoids. Furthermore, the net photosynthetic rate (Pn) decreased remarkably and the starch content was also lowered. However, NaCl treatment enhanced the concentration of sucrose and soluble sugar, simultaneously enhancing the sucrose metabolism. Nevertheless, the foliar spraying of exogenous Hemin mediated the increase in fructose and starch content, along with the activities of key enzymes' soluble acid invertase (SAInv), basic/neutral invertase (A/N-Inv), and sucrose synthase (SS) in rice leaves under NaCl stress. The sucrose phosphate synthase (SPS) in leaves decreased significantly, and the fructose accumulation in leaves increased. Hemin also mediated the increase of starch content and the α-amylase, total amylase, and starch phosphorylase (SP) activities under NaCl stress. Under stress conditions, the application of the Heme oxygenase 1 (HO-1) inhibitor, ZnPP failed to alleviate the damage to rice seedlings by NaCl stress. The ZnPP treatment showed similar tendency to the NaCl treatment on pigment content, gas exchange parameters and carbon metabolism related products and enzymes. However, ZnPP decreased carotenoids, fructose, starch content and enzyme activities related to starch metabolism. The regulation effect of Hemin on HuangHuaZhan was better than XiangLiangYou 900. These results indicate that Hemin improved the effects of salt stress on the photosynthesis and physiological characteristics of rice leaves as a result of enhanced carbohydrate metabolism. Thus, Hemin could alleviate the damage caused by salt stress to a certain extent.
Collapse
Affiliation(s)
- Fengyan Meng
- grid.411846.e0000 0001 0685 868XCollege of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524008 China ,National Saline-tolerant Rice Technology Innovation Center, South China, Zhanjiang, 524008 China
| | - Naijie Feng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524008, China. .,National Saline-tolerant Rice Technology Innovation Center, South China, Zhanjiang, 524008, China. .,Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518108, China.
| | - Dianfeng Zheng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524008, China. .,National Saline-tolerant Rice Technology Innovation Center, South China, Zhanjiang, 524008, China. .,Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518108, China.
| | - Meiling Liu
- grid.411846.e0000 0001 0685 868XCollege of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524008 China ,National Saline-tolerant Rice Technology Innovation Center, South China, Zhanjiang, 524008 China
| | - Rongjun Zhang
- grid.411846.e0000 0001 0685 868XCollege of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524008 China ,National Saline-tolerant Rice Technology Innovation Center, South China, Zhanjiang, 524008 China
| | - Xixin Huang
- grid.411846.e0000 0001 0685 868XCollege of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524008 China ,National Saline-tolerant Rice Technology Innovation Center, South China, Zhanjiang, 524008 China
| | - Anqi Huang
- grid.411846.e0000 0001 0685 868XCollege of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524008 China ,National Saline-tolerant Rice Technology Innovation Center, South China, Zhanjiang, 524008 China
| | - Ziming Chen
- grid.411846.e0000 0001 0685 868XCollege of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524008 China
| |
Collapse
|
13
|
Zhu J, Zhou L, Li T, Ruan Y, Zhang A, Dong X, Zhu Y, Li C, Fan J. Genome-Wide Investigation and Characterization of SWEET Gene Family with Focus on Their Evolution and Expression during Hormone and Abiotic Stress Response in Maize. Genes (Basel) 2022; 13:genes13101682. [PMID: 36292567 PMCID: PMC9601529 DOI: 10.3390/genes13101682] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/16/2022] [Accepted: 09/18/2022] [Indexed: 11/28/2022] Open
Abstract
The sugar will eventually be exported transporters (SWEET) family is an important group of transport carriers for carbon partitioning in plants and has important functions in growth, development, and abiotic stress tolerance. Although the SWEET family is an important sugar transporter, little is known of the functions of the SWEET family in maize (Zea mays), especially in response to abiotic stresses. To further explore the response pattern of maize SWEET to abiotic stress, a bioinformatics-based approach was used to predict and identify the maize SWEET gene (ZmSWEET) family. Twenty-four ZmSWEET genes were identified using the MaizeGDB database. Phylogenetic analysis resolved these twenty-four genes into four clades. One tandem and five segmental duplication events were identified, which played a major role in ZmSWEET family expansion. Synteny analysis provided insight into the evolutionary characteristics of the ZmSWEET genes with those of three graminaceous crop species. A heatmap showed that most ZmSWEET genes responded to at least one type of abiotic stress. By an abscisic acid signaling pathway, among which five genes were significantly induced under NaCl treatment, eight were obviously up-regulated under PEG treatment and five were up-regulated under Cd stress, revealing their potential functions in response to abiotic stress. These findings will help to explain the evolutionary links of the ZmSWEET family and contribute to future studies on the functional characteristics of ZmSWEET genes, and then improve abiotic stress tolerance in maize through molecular breeding.
Collapse
Affiliation(s)
- Jialun Zhu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Lu Zhou
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Tianfeng Li
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Yanye Ruan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Ao Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
- Shenyang Key Laboratory of Maize Genomic Selection Breeding, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiaomei Dong
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
- Shenyang Key Laboratory of Maize Genomic Selection Breeding, Shenyang Agricultural University, Shenyang 110866, China
| | - Yanshu Zhu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
- Shenyang Key Laboratory of Maize Genomic Selection Breeding, Shenyang Agricultural University, Shenyang 110866, China
| | - Cong Li
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
- Correspondence: (C.L.); (J.F.)
| | - Jinjuan Fan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
- Shenyang Key Laboratory of Maize Genomic Selection Breeding, Shenyang Agricultural University, Shenyang 110866, China
- Correspondence: (C.L.); (J.F.)
| |
Collapse
|
14
|
Li C, Cao Y, Li T, Guo M, Ma X, Zhu Y, Fan J. Changes in antioxidant system and sucrose metabolism in maize varieties exposed to Cd. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:64999-65011. [PMID: 35482243 PMCID: PMC9481512 DOI: 10.1007/s11356-022-20422-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
Different maize varieties respond differentially to cadmium (Cd) stress. However, the physiological mechanisms that determine the response are not well defined. Antioxidant systems and sucrose metabolism help plants to cope with abiotic stresses, including Cd stress. The relationship of these two systems in the response to Cd stress is unclear. Seed is sensitive to Cd stress during germination. In this study, we investigated changes in the antioxidant system, sucrose metabolism, and abscisic acid and gibberellin concentrations in two maize varieties with low (FY9) or high (SY33) sensitivities to Cd under exposure to CdCl2 (20 mg L-1) at different stages of germination (3, 6, and 9 days).The seed germination and seedling growth were inhibited under Cd stress. The superoxide, malondialdehyde, and proline concentrations, and the superoxide dismutase, peroxidase, catalase, and lipoxygenase activities increased compared with those of the control (CK; without Cd). The expression levels of three genes (ZmOPR2, ZmOPR5, and ZmPP2C6) responsive to oxidative stress increased differentially in the two varieties under Cd stress. The activity of the antioxidant system and the transcript levels of oxidative stress-responsive genes were higher in the Cd-tolerant variety, FY9, than in the sensitive variety, SY33. Sucrose metabolism was increased under Cd stress compared with that of the CK and was more active in the Cd-sensitive variety, SY33. These results suggest that the antioxidant system is the first response to Cd stress in maize, and that sucrose metabolism is cooperative and complementary under exposure to Cd.
Collapse
Affiliation(s)
- Cong Li
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, China
| | - Yingdi Cao
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, China
| | - Tianfeng Li
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, China
| | - Meiyu Guo
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, China
| | - Xinglin Ma
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Yanshu Zhu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, China
| | - Jinjuan Fan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, China.
| |
Collapse
|
15
|
Zhao M, Meng Y, Wang Y, Sun G, Liu X, Li J, Wei S, Gu W. Exogenous Hemin alleviates cadmium stress in maize by enhancing sucrose and nitrogen metabolism and regulating endogenous hormones. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022; 25:368-380. [PMID: 35732582 DOI: 10.1080/15226514.2022.2086212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cadmium (Cd) stress restricts maize growth and productivity severely. We aimed to investigate the effects of Hemin on the metabolism of sucrose and nitrogen and endogenous hormones in maize under cadmium stress. Maize varieties 'Tiannong 9' (cadmium tolerant) and 'Fenghe 6' (cadmium sensitive) were grown in nutrient solutions to study the effects of Hemin on maize physiological and ecological mechanisms under cadmium stress. The results showed that Hemin mediated the increase of sucrose content and the activities of key enzymes sucrose phosphate synthase (SPS) and sucrose synthase (SS) in maize leaves under cadmium stress. Soluble acid invertase (SAInv) and basic/neutral invertase (A/N-Inv) enzyme activities in leaves were decreased significantly, and sucrose accumulation in leaves was increased. Hemin also mediated the increase of NO3- content in leaves, the decrease of NH4+ content and the increase of nitrate reductase (NR), glutamine synthetase (GS), glutamate synthase activity (GOGAT) and glutamate dehydrogenase (GDH) enzyme activities under cadmium stress. The contents of IAA, ZR, and GA in leaves and roots increased, ABA, MeJA, and SA decreased, and IAA/ABA, ZR/ABA, and GA/ABA increased under cadmium stress. Our study showed Hemin can alleviate cadmium stress in maize by enhancing sucrose and nitrogen metabolism and regulating endogenous hormones.
Collapse
Affiliation(s)
- Meng Zhao
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Yao Meng
- Heilongjiang Academy of Land Reclamation Sciences, Harbin, China
| | - Yong Wang
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Guangyan Sun
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Xiaoming Liu
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Jing Li
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Shi Wei
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Wanrong Gu
- College of Agriculture, Northeast Agricultural University, Harbin, China
| |
Collapse
|
16
|
Sun L, Deng R, Liu J, Lai M, Wu J, Liu X, Shahid MQ. An overview of sucrose transporter (SUT) genes family in rice. Mol Biol Rep 2022; 49:5685-5695. [PMID: 35699859 DOI: 10.1007/s11033-022-07611-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/17/2022] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Photosynthesis provides the energy basis for the life activities of plants by producing organic compounds, mainly sugar. As the main energy form of photosynthesis, sugar affects the growth and development of plants. During long-distance transportation, sucrose is the main form of transportation. The rate of sugar transport and the allocation of carbohydrates affect the biomass of crops and are closely related to the reproductive growth of crops. MAIN TEXT The transportation of sugar is divided into active transportation and passive transportation. So how does the sucrose transporters (SUT) genes, which are the main carriers of sucrose in active transportation, affect the performance of rice agronomic traits is still to be explored. In this article, we describe the structure of inflorescence and review the transport forms and metabolic processes of sucrose in rice, such as how CO2 is fixed, carbohydrate assimilation, and transport of organic matter. Sucrose transporters exhibited remarkable effects on the development of reproductive organs in rice. CONCLUSIONS Here, the effects of different factors, such as the effects of anthers morphology on starch enrichment of pollen, effects of biotic and abiotic factors on sucrose transporters, effects of changes in trace elements on sucrose transporters, were discussed. Moreover, the regulation of transcription or translation level provides ideas for future research on sucrose transporters.
Collapse
Affiliation(s)
- Lixia Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China.,College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Ruilian Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China.,College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Jingwen Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China.,College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Mingyu Lai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China.,College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Jinwen Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China.,College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Xiangdong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China.,College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Muhammad Qasim Shahid
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China. .,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China. .,Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China. .,College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
17
|
Morin A, Maurousset L, Vriet C, Lemoine R, Doidy J, Pourtau N. Carbon fluxes and environmental interactions during legume development, with a specific focus on Pisum sativum. PHYSIOLOGIA PLANTARUM 2022; 174:e13729. [PMID: 35662039 PMCID: PMC9328368 DOI: 10.1111/ppl.13729] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 05/25/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Grain legumes are major food crops cultivated worldwide for their seeds with high nutritional content. To answer the growing concern about food safety and protein autonomy, legume cultivation must increase in the coming years. In parallel, current agricultural practices are facing environmental challenges, including global temperature increase and more frequent and severe episodes of drought stress. Crop yield directly relies on carbon allocation and is particularly affected by these global changes. We review the current knowledge on source-sink relationships and carbon resource allocation at all developmental stages, from germination to vegetative growth and seed production in grain legumes, focusing on pea (Pisum sativum). We also discuss how these source-sink relationships and carbon fluxes are influenced by biotic and abiotic factors. Major agronomic traits, including seed yield and quality, are particularly impacted by drought, temperatures, salinity, waterlogging, or pathogens and can be improved through the promotion of beneficial soil microorganisms or through optimized plant carbon resource allocation. Altogether, our review highlights the need for a better understanding of the cellular and molecular mechanisms regulating carbon fluxes from source leaves to sink organs, roots, and seeds. These advancements will further improve our understanding of yield stability and stress tolerance and contribute to the selection of climate-resilient crops.
Collapse
Affiliation(s)
- Amélie Morin
- Université de Poitiers, UMR CNRS 7267, EBI "Ecologie et Biologie des Interactions"PoitiersFrance
| | - Laurence Maurousset
- Université de Poitiers, UMR CNRS 7267, EBI "Ecologie et Biologie des Interactions"PoitiersFrance
| | - Cécile Vriet
- Université de Poitiers, UMR CNRS 7267, EBI "Ecologie et Biologie des Interactions"PoitiersFrance
| | - Rémi Lemoine
- Université de Poitiers, UMR CNRS 7267, EBI "Ecologie et Biologie des Interactions"PoitiersFrance
| | - Joan Doidy
- Université de Poitiers, UMR CNRS 7267, EBI "Ecologie et Biologie des Interactions"PoitiersFrance
| | - Nathalie Pourtau
- Université de Poitiers, UMR CNRS 7267, EBI "Ecologie et Biologie des Interactions"PoitiersFrance
| |
Collapse
|
18
|
De Pascali M, Vergine M, Negro C, Greco D, Vita F, Sabella E, De Bellis L, Luvisi A. Xylella fastidiosa and Drought Stress in Olive Trees: A Complex Relationship Mediated by Soluble Sugars. BIOLOGY 2022; 11:biology11010112. [PMID: 35053110 PMCID: PMC8773346 DOI: 10.3390/biology11010112] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/02/2022] [Accepted: 01/07/2022] [Indexed: 12/19/2022]
Abstract
Simple Summary Carbohydrates play important roles in tolerance to both biotic and abiotic stressors. Xylella fastidiosa, the causal agent of “Olive Quick Decline Syndrome”, is a quarantine pathogen that induces drought stress in the host, aggravated by eventual water shortage, which is a frequent environmental condition in Mediterranean olive groves. At present, the resistance mechanisms shown by few resistant olive cultivars (e.g., cv Leccino) are not completely known; therefore, the aim of this research is to understand whether sugar metabolism is involved in the cross-talk mechanisms of biotic and abiotic responses. The results show that drought stress response induces effects beneficial to resistance of Xylella fastidiosa in cv Leccino. In the current context of global climate change, this study supports the importance of investigating the complex drought–disease interaction to detect resistance traits and thus find ways to counter the threat of this pathogen in the future. Abstract Xylella fastidiosa (Xf) subsp. pauca “De Donno” is the etiological agent of “Olive Quick Decline Syndrome” (OQDS) on olive trees (Olea europaea L.); the presence of the bacterium causes xylem vessel occlusions inducing a drought stress and the development of leaf scorch symptoms, which may be worsened by water shortage in summer. In order to evaluate how the two stress factors overlap each other, the carbohydrate content and the expression patterns of genes related to carbohydrate metabolism have been evaluated in two olive cvs trees (Cellina di Nardò, susceptible to Xf, and Leccino, resistant to Xf) reporting transcriptional dynamics elicited by Xf infection, drought, or combined stress (drought/Xf). In the Xf-susceptible Cellina di Nardò plants, Xf and its combination with drought significantly decrease total sugars compared to control (−27.0% and −25.7%, respectively). In contrast, the Xf-resistant Leccino plants show a more limited reduction in sugar content in Xf-positive conditions (−20.1%) and combined stresses (−11.1%). Furthermore, while the amount of glucose decreases significantly in stressed Cellina di Nardò plants (≈18%), an increase was observed in Leccino plants under drought/Xf combined stresses (+11.2%). An opposite behavior among cvs was also observed for sucrose, as an accumulation of the disaccharide was recorded in stressed Leccino plants (≈37%). The different response to combined stress by Xf-resistant plants was confirmed considering genes coding for the sucrose or monosaccharide transporter (OeSUT1, OeMST2), the cell wall or vacuolar invertase (OeINV-CW, OeINV-V), the granule-bound starch synthase I (OeGBSSI) and sucrose synthase (OeSUSY), with a higher expression than at least one single stress (e.g., ≈1-fold higher or more than Xf for OeMST2, OeINV-CW, OeINV-V, OeGBSSI). It is probable that the pathways involved in drought stress response induce positive effects useful for pathogen resistance in cv Leccino, confirming the importance of investigating the mechanisms of cross-talk of biotic and abiotic responses.
Collapse
Affiliation(s)
- Mariarosaria De Pascali
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (M.D.P.); (C.N.); (D.G.); (E.S.); (L.D.B.); (A.L.)
| | - Marzia Vergine
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (M.D.P.); (C.N.); (D.G.); (E.S.); (L.D.B.); (A.L.)
- Correspondence:
| | - Carmine Negro
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (M.D.P.); (C.N.); (D.G.); (E.S.); (L.D.B.); (A.L.)
| | - Davide Greco
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (M.D.P.); (C.N.); (D.G.); (E.S.); (L.D.B.); (A.L.)
| | - Federico Vita
- Department of Biology, University of Bari Aldo Moro, 70121 Bari, Italy;
| | - Erika Sabella
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (M.D.P.); (C.N.); (D.G.); (E.S.); (L.D.B.); (A.L.)
| | - Luigi De Bellis
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (M.D.P.); (C.N.); (D.G.); (E.S.); (L.D.B.); (A.L.)
| | - Andrea Luvisi
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (M.D.P.); (C.N.); (D.G.); (E.S.); (L.D.B.); (A.L.)
| |
Collapse
|
19
|
Luo W, Long Y, Feng Z, Li R, Huang X, Zhong J, Liu D, Zhao H. A γ-glutamylcysteine ligase AcGCL alleviates cadmium-inhibited fructooligosaccharides metabolism by modulating glutathione level in Allium cepa L. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126255. [PMID: 34157465 DOI: 10.1016/j.jhazmat.2021.126255] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 05/12/2021] [Accepted: 05/26/2021] [Indexed: 06/13/2023]
Abstract
Fructooligosaccharides (FOS) are important carbohydrates in plants. Cadmium (Cd) toxicity limits growth and development in several plant species. Whether FOS metabolism is affected by Cd and the molecular mechanisms of tolerance of the effects of Cd toxicity in plants remain enigmatic. In the present study, FOS metabolism was analyzed under Cd stress in onion (Allium cepa L.). Results showed that Cd stress can inhibit FOS accumulation in onion, followed by the upregulation of a putative onion γ-glutamylcysteine ligase gene AcGCL. Heterologous expression of the AcGCL protein in Escherichia coli revealed that this recombinant enzyme has GCL activity. Furthermore, overexpressing AcGCL significantly increased glutathione (GSH) accumulation in young onion roots under Cd treatment, accompanied by increased phytochelatin (PC) amount, and increased transcript expression of GSH synthetase (GS), and phytochelatin synthase (PCS) genes. Notably, compared with control, overexpressing AcGCL ameliorated Cd phytotoxicity on onion FOS metabolism, which correlated with increased FOS synthesis. Taken together, these results suggest that the function of AcGCL as a γ-glutamylcysteine ligase can alleviate Cd inhibited FOS metabolism by modulating GSH levels in onion.
Collapse
Affiliation(s)
- Wei Luo
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou 510642, China; Guangdong Vegetable Engineering and Technology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Yuming Long
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Zili Feng
- School of Bioscience and Engineering, Shaanxi University of Technology, Hanzhong 723001, China
| | - Rui Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Xiaojia Huang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Jiaxin Zhong
- Centre for Organismal Studies Heidelberg, Department of Plant Molecular Physiology, Heidelberg University, Heidelberg 69120, Germany
| | - Dongyun Liu
- The Technology Center for Protein Sciences, Tsinghua University, Beijing 100084, China
| | - Hongbo Zhao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou 510642, China; Guangdong Vegetable Engineering and Technology Research Center, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
20
|
Yeast Synthetic Biology for the Production of Lycium barbarum Polysaccharides. Molecules 2021; 26:molecules26061641. [PMID: 33804230 PMCID: PMC8000229 DOI: 10.3390/molecules26061641] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 12/17/2022] Open
Abstract
The fruit of Lycium barbarum L. (goji berry) is used as traditional Chinese medicine, and has the functions of immune regulation, anti-tumor, neuroprotection, anti-diabetes, and anti-fatigue. One of the main bioactive components is L. barbarum polysaccharide (LBP). Nowadays, LBP is widely used in the health market, and it is extracted from the fruit of L. barbarum. The planting of L. barbarum needs large amounts of fields, and it takes one year to harvest the goji berry. The efficiency of natural LBP production is low, and the LBP quality is not the same at different places. Goji berry-derived LBP cannot satisfy the growing market demands. Engineered Saccharomyces cerevisiae has been used for the biosynthesis of some plant natural products. Recovery of LBP biosynthetic pathway in L. barbarum and expression of them in engineered S. cerevisiae might lead to the yeast LBP production. However, information on LBP biosynthetic pathways and the related key enzymes of L. barbarum is still limited. In this review, we summarized current studies about LBP biosynthetic pathway and proposed the strategies to recover key enzymes for LBP biosynthesis. Moreover, the potential application of synthetic biology strategies to produce LBP using engineered S. cerevisiae was discussed.
Collapse
|