1
|
Hanvoravongchai J, Laochindawat M, Kimura Y, Mise N, Ichihara S. Clinical, histological, molecular, and toxicokinetic renal outcomes of per-/polyfluoroalkyl substances (PFAS) exposure: Systematic review and meta-analysis. CHEMOSPHERE 2024; 368:143745. [PMID: 39542374 DOI: 10.1016/j.chemosphere.2024.143745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/10/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) are synthetic chemicals present in the environment that can negatively affect health. Kidney is the major target organ of PFAS exposure, yet the renal impact of PFAS is not completely understood. Here we review the effects of PFAS exposure on kidney health to identify gaps in our understanding and mark potential avenues for future research. METHODS PubMed and SCOPUS databases were searched for studies that examined the association between PFAS exposure and kidney-related outcomes. We included all epidemiological, animal, and cell studies and categorized outcomes into four categories: clinical, histological, molecular and toxicokinetic. RESULTS We identified 169 studies, including 51 on clinical outcomes, 28 on histological changes, 42 on molecular mechanisms, and 68 on toxicokinetics. Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) exposure were associated with kidney dysfunction, chronic kidney diseases, and increased risk of kidney cancer. Various histological changes were reported, especially in tubular epithelial cells, and the etiology of PFAS-induced kidney injury included various molecular mechanisms. Although PFOA and PFOS are not considered genotoxic, they exhibit several characteristics of carcinogens. Toxicokinetics of PFOA and PFOS differed significantly between species, with renal elimination influenced by various factors such as sex, age, and structure of the compound. CONCLUSION Evidence suggests that PFAS, especially PFOA and PFOS, negatively affects kidney health, though gaps in our understanding of such effects call for further research.
Collapse
Affiliation(s)
- Jidapa Hanvoravongchai
- Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, Shimotsuke, Japan
| | - Methasit Laochindawat
- Department of Preventive and Social Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Yusuke Kimura
- Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, Shimotsuke, Japan
| | - Nathan Mise
- Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, Shimotsuke, Japan
| | - Sahoko Ichihara
- Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, Shimotsuke, Japan.
| |
Collapse
|
2
|
Pesonen M, Vähäkangas K. Involvement of per- and polyfluoroalkyl compounds in tumor development. Arch Toxicol 2024; 98:1241-1252. [PMID: 38478087 PMCID: PMC10965717 DOI: 10.1007/s00204-024-03685-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 01/22/2024] [Indexed: 03/27/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a large group of synthetic persistent chemicals, which are used in many industrial and commercial applications. Hundreds of different PFAS have been identified in the environment and they are commonly found also in human blood. Due to the chemical stability and extensive use, PFAS pose a risk for human health and wildlife. Mounting evidence indicates that PFAS-exposure adversely affects many organs including liver, kidney, and reproductive tissues and induces tumors in laboratory rodents. Epidemiological studies show association between PFAS-exposure and some tumors also in humans. Effects of PFAS-exposure are complex and obviously do not depend only on the concentration and the structure of PFAS, but also on age and sex of the exposed individuals. It has been difficult to show a causal link between PFAS-exposure and tumors. Moreover, molecular mechanisms of the PFAS effects in different tissues are poorly understood. PFAS are not directly mutagenic and they do not induce formation of DNA binding metabolites, and thus are assumed to act more through non-genotoxic mechanisms. In this review, we discuss the involvement of PFAS-compounds in tumor development in tissues where PFAS exposure has been associated with cancer in epidemiological and animal studies (liver, kidney, testicle and breast). We will focus on molecular pathways and mechanisms related to tumor formation following PFAS-exposure.
Collapse
Affiliation(s)
- Maija Pesonen
- Faculty of Health Sciences, School of Pharmacy/Toxicology, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| | - Kirsi Vähäkangas
- Faculty of Health Sciences, School of Pharmacy/Toxicology, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
| |
Collapse
|
3
|
Gao M, Shen H, Li Q, Gu X, Jia T, Wang Y. Perfluorooctane sulfonate (PFOS) induces apoptosis and autophagy by inhibition of PI3K/AKT/mTOR pathway in human granulosa cell line KGN. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123333. [PMID: 38211877 DOI: 10.1016/j.envpol.2024.123333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/22/2023] [Accepted: 01/07/2024] [Indexed: 01/13/2024]
Abstract
Perfluorooctane sulfonate (PFOS) is recognized as an environmental endocrine disruptor with widespread use in industrial manufacturing and daily life, contributing to various public health concerns. However, the precise impacts of PFOS on the ovary and its regulatory mechanisms remain unclear. This study aims to delineate the ovarian toxicity of PFOS and scrutinize its effects on apoptosis and autophagy through modulation of the PI3K/AKT/mTOR pathway in the human granulosa cell line (KGN). Cell viability, assessed via the Cell Counting Kit-8 (CCK8), revealed a dose-dependent reduction in cell viability upon PFOS exposure. Flow cytometry analysis demonstrated an elevated proportion of apoptotic cells following PFOS treatment. Western blot analyses unveiled increased expression of Bax, Cyt c, cleaved caspase-9, and LC3-II/I, coupled with decreased expression of Bcl-2 and p62. Transmission electron microscopy (TEM) observations illustrated a heightened number of autophagosomes induced by PFOS. Molecular docking investigations, in conjunction with Western blot experiments, substantiated PFOS's significant inhibition of the PI3K/AKT/mTOR signaling pathway. These findings collectively underscore that PFOS induces apoptosis and autophagy in KGN cells through modulation of the PI3K/AKT/mTOR pathway, providing experimental evidence for PFOS-induced ovarian toxicity and elucidating the underlying regulatory mechanisms in KGN cells.
Collapse
Affiliation(s)
- Min Gao
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Haofei Shen
- The First Clinical Medical College, Lanzhou University, Lanzhou, China; The First Hospital of Lanzhou University, Lanzhou, China
| | - Qiuyuan Li
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Xuzhao Gu
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Tianyu Jia
- The First Clinical Medical College, Lanzhou University, Lanzhou, China; The First Hospital of Lanzhou University, Lanzhou, China
| | - Yiqing Wang
- The First School of Clinical Medicine & Research Unit of Peptide Science, Chinese Academy of Medical Science, 2019RU066, Lanzhou University, Lanzhou, China; Gansu International Scientific and Technological Cooperation Base of Reproductive Medicine Transformation Application, Key Laboratory for Reproductive Medicine and Embryo of Gansu Province & Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou, China.
| |
Collapse
|
4
|
Zhou A, Wang L, Pi X, Fan C, Chen W, Wang Z, Rong S, Wang T. Effects of perfluorooctane sulfonate (PFOS) on cognitive behavior and autophagy of male mice. J Toxicol Sci 2023; 48:513-526. [PMID: 37661368 DOI: 10.2131/jts.48.513] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Perfluorooctane sulfonate (PFOS), an emerging environmental pollutant, is reported to cause neurotoxicity in animals and humans, but its underlying mechanisms are still unclear. We used in vivo models to investigate the effects of PFOS on cognition-related behaviors and related mechanisms. After 45 days of intragastric administration of PFOS (2 mg/kg or 8 mg/kg) in 7-week-old C57BL/6 mice, muscle strength, cognitive function and anxiety-like behavior were evaluated by a series of behavioral tests. The underling mechanisms of PFOS on impaired behaviors were evaluated by HE/Nissl staining, electron microscopy observation and western blot analysis. The results indicated that PFOS-exposed mice exhibited significant cognitive impairment, anxiety, neuronal degeneration and the abnormities of synaptic ultrastructure in the cortex and hippocampus. Western blot analysis indicated that PFOS exposure increased microtubule-associated protein light chain 3 (LC3) and decreased p62 protein levels, which may be associated with activation of autophagy leading to neuron damage. In summary, our results suggest that chronic exposure to PFOS adversely affects cognitive-related behavior in mice. These findings provide new mechanistic insights into PFOS-induced neurotoxicity.
Collapse
Affiliation(s)
- Aojia Zhou
- Institute of Advanced Pharmaceutical Technology, Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, China
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, China
| | - Li Wang
- Institute of Advanced Pharmaceutical Technology, Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, China
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, China
| | - Xuejiao Pi
- Institute of Advanced Pharmaceutical Technology, Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, China
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, China
| | - Cheng Fan
- Institute of Advanced Pharmaceutical Technology, Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, China
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, China
| | - Wenwen Chen
- Institute of Advanced Pharmaceutical Technology, Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, China
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, China
| | - Ziping Wang
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, China
| | - Shuang Rong
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, China
| | - Ting Wang
- Institute of Advanced Pharmaceutical Technology, Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, China
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, China
| |
Collapse
|
5
|
Lim J. Broad toxicological effects of per-/poly- fluoroalkyl substances (PFAS) on the unicellular eukaryote, Tetrahymena pyriformis. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 95:103954. [PMID: 35948183 DOI: 10.1016/j.etap.2022.103954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/03/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
Per-/Poly- fluoroalkyl substances represent emerging persistent organic pollutants. Their toxic effects can be broad, yet little attention has been given to organisms at the microscale. To address this knowledge shortfall, the unicellular eukaryote Tetrahymena pyriformis was exposed to increasing concentrations (0-5000 μM) of PFOA/PFOS and monitored for cellular motility, division and function (i.e., phagocytosis), reactive oxygen species generation and total protein levels. Both PFOA/PFOS exposure had negative impacts on T. pyriformis, including reduced motility, delayed cell division and oxidative imbalance, with each chemical having distinct toxicological profiles. T. pyriformis represents a promising candidate for assessing the biological effects these emerging anthropogenically-derived contaminants in a freshwater setting.
Collapse
Affiliation(s)
- Jenson Lim
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK.
| |
Collapse
|
6
|
Tang L, Yu J, Zhuge S, Chen H, Zhang L, Jiang G. Oxidative stress and Cx43-mediated apoptosis are involved in PFOS-induced nephrotoxicity. Toxicology 2022; 478:153283. [DOI: 10.1016/j.tox.2022.153283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 01/09/2023]
|
7
|
L-Carnitine reduces reactive oxygen species/endoplasmic reticulum stress and maintains mitochondrial function during autophagy-mediated cell apoptosis in perfluorooctanesulfonate-treated renal tubular cells. Sci Rep 2022; 12:4673. [PMID: 35304586 PMCID: PMC8933466 DOI: 10.1038/s41598-022-08771-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 03/07/2022] [Indexed: 12/31/2022] Open
Abstract
We previously reported that perfluorooctanesulfonate (PFOS) causes autophagy-induced apoptosis in renal tubular cells (RTCs) through a mechanism dependent on reactive oxygen species (ROS)/extracellular signal-regulated kinase. This study extended our findings and determined the therapeutic potency of l-Carnitine in PFOS-treated RTCs. l-Carnitine (10 mM) reversed the effects of PFOS (100 µM) on autophagy induction and impaired autophagy flux. Furthermore, it downregulated the protein level of p47Phox, which is partly related to PFOS-induced increased cytosolic ROS in RTCs. Moreover, l-Carnitine reduced ROS production in mitochondria and restored PFOS-impeded mitochondrial function, leading to sustained normal adenosine triphosphate synthesis and oxygen consumption and reduced proton leakage in a Seahorse XF stress test. The increased inositol-requiring enzyme 1α expression by PFOS, which indicated endoplasmic reticulum (ER) stress activation, was associated with PFOS-mediated autophagy activation that could be attenuated through 4-phenylbutyrate (5 mM, an ER stress inhibitor) and l-Carnitine pretreatment. Therefore, by reducing the level of IRE1α, l-Carnitine reduced the levels of Beclin and LC3BII, consequently reducing the level of apoptotic biomarkers including Bax and cleaving PARP and caspase 3. Collectively, these results indicate that through the elimination of oxidative stress, extracellular signal–regulated kinase activation, and ER stress, l-Carnitine reduced cell autophagy/apoptosis and concomitantly increased cell viability in RTCs. This study clarified the potential mechanism of PFOS-mediated RTC apoptosis and provided a new strategy for using l-Carnitine to prevent and treat PFOS-induced RTC apoptosis.
Collapse
|