1
|
Parker AT, Murray BA, Miller AL. MOSQUITO SPECIES DISTRIBUTION IN TIRES IN RURAL AND URBAN LANDSCAPES ACROSS NORTHERN KENTUCKY. JOURNAL OF THE AMERICAN MOSQUITO CONTROL ASSOCIATION 2024; 40:182-185. [PMID: 39527708 DOI: 10.2987/24-7189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Discarded vehicle tires can be found in habitats spanning a human land-use gradient from rural to urban and create an ideal artificial container habitat for mosquito larval development. The purpose of this study was to examine mosquito species composition in discarded vehicle tires in rural and urban habitats. Discarded tires were placed at 6 rural and 6 urban forested sites and sampled weekly for juvenile mosquitoes. Adult traps were also placed at these sites and were sampled weekly. There was no significant difference between the total number of juvenile mosquitoes collected from tires in urban sites compared to rural sites, but significantly more Aedes triseriatus and Ae. albopictus juveniles were found in urban sites compared to rural sites. This study also found that significantly more adult mosquitoes were collected in urban sites compared to rural, but there were no significant differences found between sites when comparing individual species. The results of this study suggest discarded vehicle tires are important mosquito larval habitats across human-land-use gradients and that Ae. triseriatus may be more common in urban areas than previously thought.
Collapse
Affiliation(s)
- Allison T Parker
- Department of Biological Sciences, Northern Kentucky University, 1 Nunn Drive, Highland Heights, KY 41099
| | - Bridget A Murray
- Department of Biological Sciences, Northern Kentucky University, 1 Nunn Drive, Highland Heights, KY 41099
| | - Amber L Miller
- Department of Biological Sciences, Northern Kentucky University, 1 Nunn Drive, Highland Heights, KY 41099
| |
Collapse
|
2
|
Butler CD, Lloyd AL. How population control of pests is modulated by density dependence: The perspective of genetic biocontrol. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.08.622719. [PMID: 39605380 PMCID: PMC11601221 DOI: 10.1101/2024.11.08.622719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Managing pest species relies critically on mechanisms that regulate population dynamics, particularly those factors that change with population size. These density-dependent factors can help or hinder control efforts and are especially relevant considering recent advances in genetic techniques that allow for precise manipulation of the timing and sex-specificity of a control. Despite this importance, density dependence is often poorly characterized owing to limited data and an incomplete understanding of developmental ecology. To address this issue, we construct and analyze a mathematical model of a pest population with a general control under a wide range of density dependence scenarios. Using this model, we investigate how control performance is affected by the strength of density dependence. By modifying the timing and sex-specificity of the control, we tailor our analysis to simulate different pest control strategies, including conventional and genetic biocontrol methods. We pay particular attention to the latter as case studies by extending the baseline model to include genetic dynamics. Finally, we clarify past work on the dynamics of mechanistic models with density dependence. As expected, we find substantial differences in control performance for differing strengths of density dependence, with populations exhibiting strong density dependence being most resilient to suppression. However, these results change with the size and timing of the control load, as well as the target sex. Interestingly, we also find that population invasion by certain genetic biocontrol strategies is affected by the strength of density dependence. While the model is parameterized using the life history traits of the yellow fever mosquito, Aedes aegypti, the principles developed here apply to many pest species. We conclude by discussing what this means for pest population suppression moving forward.
Collapse
Affiliation(s)
- C D Butler
- Biomathematics Graduate Program and Department of Mathematics, North Carolina State University, Raleigh, NC 27606
| | - A L Lloyd
- Biomathematics Graduate Program and Department of Mathematics, North Carolina State University, Raleigh, NC 27606
| |
Collapse
|
3
|
Bhowmick S, Fritz ML, Smith RL. Host-feeding preferences and temperature shape the dynamics of West Nile virus: A mathematical model to predict the impacts of vector-host interactions and vector management on R 0. Acta Trop 2024; 258:107346. [PMID: 39111645 DOI: 10.1016/j.actatropica.2024.107346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/23/2024] [Accepted: 07/30/2024] [Indexed: 08/22/2024]
Abstract
West Nile virus (WNV) is prevalent across the United States, but its transmission patterns and spatio-temporal intensity vary significantly, particularly in the Eastern United States. For instance, Chicago has long been a hotspot for WNV cases due to its high cumulative incidence of infection, with the number of cases varying considerably from year to year. The abilities of host species to maintain and disseminate WNV, along with eco-epidemiological factors that influence vector-host contact rates underlie WNV transmission potential. There is growing evidence that several vectors exhibit strong feeding preferences towards different host communities. In our research study, we construct a process based weather driven ordinary differential equation (ODE) model to understand the impact of one vector species (Culex pipiens), its preferred avian and non-preferred human hosts on the basic reproduction number (R0). In developing this WNV transmission model, we account for the feeding index, which is defined as the relative preference of the vectors for taking blood meals from a competent avian host versus a non-competent mammalian host. We also include continuous introduction of infected agents into the model during the simulations as the introduction of WNV is not a single event phenomenon. We derive an analytic form of R0 to predict the conditions under which there will be an outbreak of WNV and the relationship between the feeding index and the efficacy of adulticide is highly nonlinear. In our mechanistic model, we also demonstrate that adulticide treatments produced significant reductions in the Culex pipiens population. Sensitivity analysis demonstrates that feeding index and rate of introduction of infected agents are two important factors beside the efficacy of adulticide. We validate our model by comparing simulations to surveillance data collected for the Culex pipiens complex in Cook County, Illinois, USA. Our results reveal that the interaction between the feeding index and mosquito abatement strategy is intricate, especially considering the fluctuating temperature conditions. This induces heterogeneous transmission patterns that need to be incorporated when modelling multi-host, multi-vector transmission models.
Collapse
Affiliation(s)
- Suman Bhowmick
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.
| | - Megan Lindsay Fritz
- Department of Entomology, Institute for Advanced Computer Studies, University of Maryland, USA
| | - Rebecca Lee Smith
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA; Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
4
|
Gouveia AS, Codeço CT, Ferreira FADS, Cortés JJC, Luz SLB. Diflubenzuron larvicide auto-dissemination: A modeling study. Acta Trop 2024; 258:107325. [PMID: 39032848 DOI: 10.1016/j.actatropica.2024.107325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/11/2024] [Accepted: 07/13/2024] [Indexed: 07/23/2024]
Abstract
Proposing substitutes for Pyriproxyfen (PPF) in the auto-dissemination strategy is essential to ensure the continuity of the strategy in the field, especially in the case of the emergence of populations resistant to this larvicide. One possible substitute among the compounds already in use in Brazil is the larvicide Diflubenzuron (DFB). The equation that defines the proportion of oviposition sites (habitats) contaminated by the auto-dissemination strategy was modified to account for the number of visits required to reach the necessary concentration of DFB for contamination, considering scenarios with varying numbers of oviposition sites and mosquito densities. The dissemination was evaluated in oviposition sites of 2 L, 1.5 L, 1 L, 0.5 L, 0.2 L, and 0.1 L. The minimum concentration of active ingredient (a.i) of DFB required for a commercial product to contaminate at least 50% of oviposition sites was also investigated, along with the impact of other vector control methods, such as the removal/destruction of oviposition sites and the use of insecticides to kill adult 'females, on the auto-dissemination approach. The use of pure DFB compounds enabled contamination efficiency of more than 50% in oviposition sites with a volume of less than 2 L in scenarios with fewer oviposition sites. On the other hand, with the use of the commonly used concentration of the product, similar efficacy was only achieved in oviposition sites of 0.1 L and 0.2 L in medium and high infestation scenarios. Strategies that reduce the number of available oviposition sites work synergistically with the auto-dissemination strategy, making it possible to use less concentrated products and contaminated sites of larger volume. The strategy proved to be resilient in situations of insecticide application according to the concentration of DFB used, abundance of females, and low number of oviposition sites. Increasing the number of dissemination traps on the field also contributes to better results, especially for oviposition sites of 0.5 L and 1 L. The results of the model obtained under the stipulated conditions provide further support for the potential use of DFB as a substitute for PPF in the auto-dissemination strategy.
Collapse
Affiliation(s)
- Ayrton Sena Gouveia
- Núcleo PReV Amazônia - Instituto Leônidas e Maria Deane - Fiocruz Amazônia; Programa de Computação Científica da Fiocruz - Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil; Programa de Pós-Graduação em Biologia Parasitária, Instituto Oswaldo Cruz, Rio de Janeiro, RJ, Brazil.
| | - Cláudia Torres Codeço
- Programa de Computação Científica da Fiocruz - Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | | | | | - Sergio Luiz Bessa Luz
- Núcleo PReV Amazônia - Instituto Leônidas e Maria Deane - Fiocruz Amazônia; Programa de Pós-Graduação em Biologia Parasitária, Instituto Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
5
|
Triana MF, Melo N. Dynamics of Aedes aegypti mating behaviour. CURRENT OPINION IN INSECT SCIENCE 2024; 65:101237. [PMID: 39047975 DOI: 10.1016/j.cois.2024.101237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/12/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
The use of pheromones, while common, remains underexplored in mosquito research. Understanding Aedes aegypti's mating behaviour and pheromones is crucial for expanding knowledge and advancing vector control strategies. Unlike other species, Aedes mosquitoes have adaptable mating behaviour, complicating the study of their communication mechanisms. Current literature on Aedes communication is sparse, not due to lack of effort but because of its complexity. Ae. aegypti's mating behaviour is influenced by sensory cues and environmental factors. Swarming, which facilitates mating aggregation, is triggered by host odours, highlighting the role of semiochemicals alongside aggregation pheromones. Cuticular hydrocarbons may act as chemical signals in mating, though their roles are unclear. Acoustic signals significantly contribute to mate attraction and male fitness assessment, showcasing the multidimensional nature of Ae. aegypti sexual communication. Understanding these aspects can enhance targeted control strategies and reduce mosquito populations and disease transmission.
Collapse
Affiliation(s)
- Merybeth F Triana
- Department of Biology, Lund University, Sweden; Max Planck Center next Generation Chemical Ecology, Sweden
| | - Nadia Melo
- Department of Biology, Lund University, Sweden.
| |
Collapse
|
6
|
Pérez-Guerra CL, Rosado-Santiago C, Ramos SA, Marrero-Santos KM, González-Zeno G, Partridge SK, Rivera-Amill V, Paz-Bailey G, Sánchez-González L, Hayden MH. Acceptability of emergent Aedes aegypti vector control methods in Ponce, Puerto Rico: A qualitative assessment. PLOS GLOBAL PUBLIC HEALTH 2024; 4:e0002744. [PMID: 38446807 PMCID: PMC10917327 DOI: 10.1371/journal.pgph.0002744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 02/03/2024] [Indexed: 03/08/2024]
Abstract
Aedes aegypti control has been fraught with challenges in Puerto Rico. The government has implemented commonly used vector control methods, but arboviral epidemics still occur. It is necessary to explore new Ae. aegypti control methods. This study aimed to understand the perceptions of community members in Ponce, Puerto Rico about emergent and traditional Ae. aegypti vector control methods and determine their acceptability and support for these methods. We identified the type of information needed to increase support for emergent vector control methods, and the preferred strategies to disseminate this information. Four group discussions were conducted with a total of 32 participants representing eight of the 14 clusters participating in the Communities Organized for the Prevention of Arboviruses (COPA), a project designed to mobilize communities in Ponce, Puerto Rico to prevent diseases transmitted by mosquitoes. Group discussions began with an overview of different methods used for controlling Ae. aegypti mosquitoes. These overviews facilitated participant understanding of the mosquito control methods presented. Use of source reduction, autocidal gravid ovitraps (AGO), and manual application of larvicide for arboviral mosquito control received support from almost all participants. Vector control methods that use more familiar techniques in Puerto Rico such as truck-mounted larvicide spraying (TMLS) and insecticide residual spraying received support from most participants. More than half of participants supported the use of emergent mosquito control methods including Wolbachia suppression, Wolbachia replacement, or genetically modified mosquitoes (GMM). Participants preferred to receive vector control information through house-to-house visits with the distribution of written materials, followed by dissemination of information through traditional (i.e., radio, television) and social media. The detailed information resulting from this study was used to develop messages for a communications campaign to garner future community support. Community acceptance and support are critical for the success of vector control programs using emergent mosquito control methods.
Collapse
Affiliation(s)
- Carmen L. Pérez-Guerra
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Dengue Branch, San Juan, Puerto Rico, United States of America
| | - Coral Rosado-Santiago
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Dengue Branch, San Juan, Puerto Rico, United States of America
| | - Sue Anette Ramos
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Dengue Branch, San Juan, Puerto Rico, United States of America
| | - Karla Michelle Marrero-Santos
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Dengue Branch, San Juan, Puerto Rico, United States of America
| | - Gladys González-Zeno
- Ponce Health Sciences University, Ponce Research Institute, Ponce, Puerto Rico, United States of America
| | - Susanna K. Partridge
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
| | - Vanessa Rivera-Amill
- Ponce Health Sciences University, Ponce Research Institute, Ponce, Puerto Rico, United States of America
| | - Gabriela Paz-Bailey
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Dengue Branch, San Juan, Puerto Rico, United States of America
| | - Liliana Sánchez-González
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Dengue Branch, San Juan, Puerto Rico, United States of America
| | - Mary H. Hayden
- Lyda Hill Institute for Human Resilience, University of Colorado, Colorado Springs, Colorado, United States of America
| |
Collapse
|
7
|
Park D, Bowles J, Norrid K, Dobson FS, Abebe A, Narayanan HV, Prakash M, Blagburn B, Starkey L, Zohdy S. Effect of age on wingbeat frequency of Aedes aegypti and potential application for age estimation of mosquitoes. MEDICAL AND VETERINARY ENTOMOLOGY 2023; 37:491-498. [PMID: 36872598 DOI: 10.1111/mve.12647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
To combat mosquito-borne diseases, a variety of vector control tools have been implemented. Estimating age structure in populations of vector species is important for understanding transmission potential. Age-grading techniques have been used as critical methods for evaluating the efficacy of vector control tools. However, methods like mark-release-recapture and ovarian dissection are laborious and require a high level of training. For decades, scientists have discussed the wide array of acoustic signatures of different mosquito species. These distinguishable wingbeat signatures with spatiotemporal classification allow mosquitoes of the same species to locate one another for mating. In recent years, the use of sensitive acoustic devices like mobile phones have proved effective. Wingbeat signatures can be used to identify mosquito species without the challenge of intensive field collections and morphological and molecular identifications. In this study, laboratory Aedes aegypti (L.) female and male wingbeats were recorded using mobile phones to determine whether sex and age differences with chronological time, and across different physiological stages, can be detected. Our results indicate significantly different wingbeat signatures between male and female Ae. aegypti, and a change of wingbeat frequencies with age and reproduction stage in females.
Collapse
Affiliation(s)
- Doyeon Park
- College of Forestry, Wildlife and Environment, Auburn University, Auburn, Alabama, USA
| | - Joy Bowles
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| | - Kate Norrid
- College of Forestry, Wildlife and Environment, Auburn University, Auburn, Alabama, USA
| | - F Stephen Dobson
- Department of Biological Sciences, Auburn University, Auburn, Alabama, USA
| | - Ash Abebe
- Department of Mathematics and Statistics, Auburn University, Auburn, Alabama, USA
| | - Haripriya Vaidehi Narayanan
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, California, USA
| | - Manu Prakash
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Byron Blagburn
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| | - Lindsay Starkey
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| | - Sarah Zohdy
- College of Forestry, Wildlife and Environment, Auburn University, Auburn, Alabama, USA
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
8
|
Aryaprema VS, Steck MR, Peper ST, Xue RD, Qualls WA. A systematic review of published literature on mosquito control action thresholds across the world. PLoS Negl Trop Dis 2023; 17:e0011173. [PMID: 36867651 PMCID: PMC10016652 DOI: 10.1371/journal.pntd.0011173] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 03/15/2023] [Accepted: 02/14/2023] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND Despite the use of numerous methods of control measures, mosquito populations and mosquito-borne diseases are still increasing globally. Evidence-based action thresholds to initiate or intensify control activities have been identified as essential in reducing mosquito populations to required levels at the correct/optimal time. This systematic review was conducted to identify different mosquito control action thresholds existing across the world and associated surveillance and implementation characteristics. METHODOLOGY/PRINCIPAL FINDINGS Searches for literature published from 2010 up to 2021 were performed using two search engines, Google Scholar and PubMed Central, according to PRISMA guidelines. A set of inclusion/exclusion criteria were identified and of the 1,485 initial selections, only 87 were included in the final review. Thirty inclusions reported originally generated thresholds. Thirteen inclusions were with statistical models that seemed intended to be continuously utilized to test the exceedance of thresholds in a specific region. There was another set of 44 inclusions that solely mentioned previously generated thresholds. The inclusions with "epidemiological thresholds" outnumbered those with "entomological thresholds". Most of the inclusions came from Asia and those thresholds were targeted toward Aedes and dengue control. Overall, mosquito counts (adult and larval) and climatic variables (temperature and rainfall) were the most used parameters in thresholds. The associated surveillance and implementation characteristics of the identified thresholds are discussed here. CONCLUSIONS/SIGNIFICANCE The review identified 87 publications with different mosquito control thresholds developed across the world and published during the last decade. Associated surveillance and implementation characteristics will help organize surveillance systems targeting the development and implementation of action thresholds, as well as direct awareness towards already existing thresholds for those with programs lacking available resources for comprehensive surveillance systems. The findings of the review highlight data gaps and areas of focus to fill in the action threshold compartment of the IVM toolbox.
Collapse
Affiliation(s)
- Vindhya S. Aryaprema
- Anastasia Mosquito Control District, St. Augustine, Florida, United States of America
| | - Madeline R. Steck
- Anastasia Mosquito Control District, St. Augustine, Florida, United States of America
| | - Steven T. Peper
- Anastasia Mosquito Control District, St. Augustine, Florida, United States of America
| | - Rui-de Xue
- Anastasia Mosquito Control District, St. Augustine, Florida, United States of America
| | - Whitney A. Qualls
- Anastasia Mosquito Control District, St. Augustine, Florida, United States of America
- * E-mail:
| |
Collapse
|
9
|
Wilke ABB, Mhlanga A, Kummer AG, Vasquez C, Moreno M, Petrie WD, Rodriguez A, Vitek C, Hamer GL, Mutebi JP, Ajelli M. Diel activity patterns of vector mosquito species in the urban environment: Implications for vector control strategies. PLoS Negl Trop Dis 2023; 17:e0011074. [PMID: 36701264 PMCID: PMC9879453 DOI: 10.1371/journal.pntd.0011074] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/06/2023] [Indexed: 01/27/2023] Open
Abstract
Mathematical models have been widely used to study the population dynamics of mosquitoes as well as to test and validate the effectiveness of arbovirus outbreak responses and mosquito control strategies. The objective of this study is to assess the diel activity of mosquitoes in Miami-Dade, Florida, and Brownsville, Texas, the most affected areas during the Zika outbreak in 2016-2017, and to evaluate the effectiveness of simulated adulticide treatments on local mosquito populations. To assess variations in the diel activity patterns, mosquitoes were collected hourly for 96 hours once a month from May through November 2019 in Miami-Dade County, Florida, and Brownsville, Texas. We then performed a PERMANOVA followed by a SIMPER analysis to assess whether the abundance and species richness significantly varies at different hours of the day. Finally, we used a mathematical model to simulate the population dynamics of 5 mosquito vector species and evaluate the effectiveness of the simulated adulticide applications. A total of 14,502 mosquitoes comprising 17 species were collected in Brownsville and 10,948 mosquitoes comprising 19 species were collected in Miami-Dade County. Aedes aegypti was the most common mosquito species collected every hour in both cities and peaking in abundance in the morning and the evening. Our modeling results indicate that the effectiveness of adulticide applications varied greatly depending on the hour of the treatment. In both study locations, 9 PM was the best time for adulticide applications targeting all mosquito vector species; mornings/afternoons (9 AM- 5 PM) yielded low effectiveness, especially for Culex species, while at night (12 AM- 6 AM) the effectiveness was particularly low for Aedes species. Our results indicate that the timing of adulticide spraying interventions should be carefully considered by local authorities based on the ecology of the target mosquito species in the focus area.
Collapse
Affiliation(s)
- André B. B. Wilke
- Laboratory for Computational Epidemiology and Public Health, Department of Epidemiology and Biostatistics, Indiana University School of Public Health, Bloomington, Indiana, United States of America
| | - Adequate Mhlanga
- Laboratory for Computational Epidemiology and Public Health, Department of Epidemiology and Biostatistics, Indiana University School of Public Health, Bloomington, Indiana, United States of America
| | - Allisandra G. Kummer
- Laboratory for Computational Epidemiology and Public Health, Department of Epidemiology and Biostatistics, Indiana University School of Public Health, Bloomington, Indiana, United States of America
| | - Chalmers Vasquez
- Miami-Dade County Mosquito Control Division, Miami, Florida, United States of America
| | - Maday Moreno
- Miami-Dade County Mosquito Control Division, Miami, Florida, United States of America
| | - William D. Petrie
- Miami-Dade County Mosquito Control Division, Miami, Florida, United States of America
| | - Art Rodriguez
- Public Health Department, City of Brownsville, Brownsville, Texas, United States of America
| | - Christopher Vitek
- Center for Vector-Borne Diseases, The University of Texas Rio Grande Valley, Texas, United States of America
| | - Gabriel L. Hamer
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
| | - John-Paul Mutebi
- Arboviral Diseases Branch (ADB), Division of Vector-Borne Diseases (DVBD), Centers for Disease Control and Prevention (CDC), Fort Collins, Colorado, United States of America
| | - Marco Ajelli
- Laboratory for Computational Epidemiology and Public Health, Department of Epidemiology and Biostatistics, Indiana University School of Public Health, Bloomington, Indiana, United States of America
| |
Collapse
|
10
|
Subahar R, Aulia AP, Yulhasri Y, Felim RR, Susanto L, Winita R, El Bayani GF, Adugna T. Assessment of susceptible Culex quinquefasciatus larvae in Indonesia to different insecticides through metabolic enzymes and the histopathological midgut. Heliyon 2022; 8:e12234. [PMID: 36590519 PMCID: PMC9798163 DOI: 10.1016/j.heliyon.2022.e12234] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/03/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022] Open
Abstract
Filariasis and virus diseases that are transmitted by Culex quinquefasciatus are still a global health problem. Control of mosquito vectors with synthetic insecticides causes resistance to these mosquitoes to insecticides so that detection of susceptibility of the mosquito larval stage to insecticides is important for evaluating mosquito control programs. The aim of this study was to evaluate the susceptibility of wild-caught Cx. quinquefasciatus larvae in Jakarta, Indonesia, following exposure to temephos, malathion, cypermethrin, and deltamethrin; this was done by examining the detoxifying enzyme activities and histological damage to the larval midgut. Cx. quinquefasciatus larvae were collected from five fields in Jakarta and exposed for 24 h to temephos (1.25, 6.25, 31.25, and 156.25 ppm), malathion (0.5 ppm), cypermethrin (0.25 ppm), and deltamethrin (0.35 ppm). The larvae were then examined for acetylcholinesterase (AChE), glutathione S-transferase (GST), and oxidase activities using biochemical methods. Histological damage to the larval midgut was examined using routine histopathological methods and transmission electron microscopy (TEM). After 24 h, temephos and deltamethrin led to 100% mortality in the Cx. quinquefasciatus larvae. Temephos and malathion significantly inhibited the activity of AChE, while cypermethrin and deltamethrin significantly inhibited oxidase activity. Histologically, all insecticides damaged the larval midgut, as indicated by irregularities in the epithelial cell (ECs), microvilli (Mv), food boluses (FBs), peritrophic membranes (PMs), and cracked epithelial layers (Ep). The TEM findings confirmed that temephos and cypermethrin damage to the midgut ECs included damage to the cell membrane, nucleus, nucleoli, mitochondria, and other cell organelles. Overall, Cx. quinquefasciatus larvae in Jakarta were completely susceptible to temephos and deltamethrin. Synthetic insecticides may kill Cx. quinquefasciatus larvae through their actions on the metabolic enzyme activities and histopathological midgut.
Collapse
Affiliation(s)
- Rizal Subahar
- Department of Parasitology, Faculty of Medicine, Universitas Indonesia, Depok, Indonesia
- Corresponding author.
| | - Annisa Putri Aulia
- Medical Doctor Program, Faculty of Medicine, Universitas Indonesia, Depok, Indonesia
| | - Yulhasri Yulhasri
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Universitas Indonesia, Depok, Indonesia
| | - Ris Raihan Felim
- Medical Doctor Program, Faculty of Medicine, Universitas Indonesia, Depok, Indonesia
| | - Lisawati Susanto
- Department of Parasitology, Faculty of Medicine, Universitas Indonesia, Depok, Indonesia
| | - Rawina Winita
- Department of Parasitology, Faculty of Medicine, Universitas Indonesia, Depok, Indonesia
| | - Gulshan Fahmi El Bayani
- Department of Medical Physiology and Biophysics, Faculty of Medicine, Universitas Indonesia, Depok, Indonesia
| | | |
Collapse
|
11
|
Rodrigues J, Rocha LFN, Martinez JM, Montalva C, Humber RA, Luz C. Clonostachys spp., natural mosquito antagonists, and their prospects for biological control of Aedes aegypti. Parasitol Res 2022; 121:2979-2984. [PMID: 35994116 DOI: 10.1007/s00436-022-07630-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/16/2022] [Indexed: 10/15/2022]
Abstract
Aedes aegypti (Linnaeus, 1762) is an important vector of arboviruses in the tropics and subtropics. New control strategies based on natural enemies such as entomopathogenic fungi are of utmost importance, and the present study reports the first isolation of Clonostachys spp. (Hypocreales: Bionectriaceae) from mosquitoes and their activity against A. aegypti. Entomopathogenic fungi were surveyed in central Brazil using A. aegypti larvae as sentinels and, also, a CDC light trap. Clonostachys eriocamporesii R.H. Perera & K.D. Hyde, 2020 (IP 440) and Clonostachys byssicola Schroers, 2001 (IP 461) were identified by sequence analysis of the nuclear ribosomal internal transcribed spacer gene, and tested against eggs, larvae, and adults. Both strains were highly active against A. aegypti third instar larvae, with mortalities ≥ 80% at 107 conidia/mL after 5 days but distinctly less active against eggs and adults. This is the first report of both C. eriocamporesii and C. byssicola as naturally occurring pathogens affecting mosquitoes, and IP 440 appears to be a promising control agent against aquatic stages of A. aegypti.
Collapse
Affiliation(s)
- Juscelino Rodrigues
- Instituto de Patologia Tropical e Saúde Pública (IPTSP), Universidade Federal de Goiás (UFG), Avenida Esperança s/n, Campus Samambaia, Goiânia, 74690-900, Brazil
| | - Luiz F N Rocha
- Instituto de Patologia Tropical e Saúde Pública (IPTSP), Universidade Federal de Goiás (UFG), Avenida Esperança s/n, Campus Samambaia, Goiânia, 74690-900, Brazil.,Instituto Federal de Educação, Ciência e Tecnologia de Goiás (IFG), Aparecida de Goiânia, Brazil
| | - Juan M Martinez
- Instituto de Patologia Tropical e Saúde Pública (IPTSP), Universidade Federal de Goiás (UFG), Avenida Esperança s/n, Campus Samambaia, Goiânia, 74690-900, Brazil
| | - Cristian Montalva
- Instituto de Patologia Tropical e Saúde Pública (IPTSP), Universidade Federal de Goiás (UFG), Avenida Esperança s/n, Campus Samambaia, Goiânia, 74690-900, Brazil.,Instituto de Conservación, Biodiversidad y Territorio, Universidad Austral de Chile, Valdivia, Chile
| | - Richard A Humber
- Instituto de Patologia Tropical e Saúde Pública (IPTSP), Universidade Federal de Goiás (UFG), Avenida Esperança s/n, Campus Samambaia, Goiânia, 74690-900, Brazil.,USDA-ARS Emerging Pests and Pathogens Research Unit, Robert W. Holley Center for Agriculture and Health, Ithaca, USA
| | - Christian Luz
- Instituto de Patologia Tropical e Saúde Pública (IPTSP), Universidade Federal de Goiás (UFG), Avenida Esperança s/n, Campus Samambaia, Goiânia, 74690-900, Brazil.
| |
Collapse
|
12
|
Burtis JC, Bickerton MW, Indelicato N, Poggi JD, Crans SC, Harrington LC. Effectiveness of a Buffalo Turbine and A1 Mist Sprayer for the Areawide Deployment of Larvicide for Mosquito Control in an Urban Residential Setting. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:903-910. [PMID: 35289899 PMCID: PMC10601396 DOI: 10.1093/jme/tjac017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Indexed: 06/14/2023]
Abstract
The control of medically important container-inhabiting mosquitoes is an ongoing challenge for mosquito control operations. Truck-mounted application equipment is a common option for rapid areawide larvicide deployment utilized by mosquito control operations. We tested the effectiveness of two truck-mounted sprayers (A1 Super Duty + Buffalo Turbine CSM3), for the deployment of water-dispersible biopesticides (VectoBac WDG:VectoLex WDG 50:50). Sixty residences within four residential neighborhoods in New Jersey were treated in 2019 and 2020. Three empty bioassay cups were placed in specific locations on each property (front yard/ back yard/ side of house), with an additional cup placed in an adjacent catch basin. This approach was replicated in two untreated control neighborhoods. Following larvicide application, cups were subjected to bioassays wherein larval mortality was tracked through adult eclosion. Overall, average larval mortality rates were 56% higher in treated cups compared against untreated controls. Mortality rates were affected by cup location, with 39% mortality in bioassay cups from back yards, 54% in those from the sides of houses, 73% in front yards, and 76% from cups in catch basins. Mortality did not differ significantly between the four treated neighborhoods, nor by the type of sprayer used. Our research shows that truck-mounted sprayers can be an effective method for larvicide deployment in residential neighborhoods, but effectiveness may depend upon the location of the target treatment area in relation to residences and other geographic obstacles.
Collapse
Affiliation(s)
- James C. Burtis
- Department of Entomology, Cornell University, Ithaca, NY 14850, USA
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA
| | - Matthew W. Bickerton
- Bergen County Department of Health Services, Mosquito Control, Hackensack, NJ 07601, USA
- Rutgers University, Center for Vector Biology, New Brunswick, NJ 08901, USA
| | | | - Joseph D. Poggi
- Department of Entomology, Cornell University, Ithaca, NY 14850, USA
| | - Scott C. Crans
- NJDEP, Office of Mosquito Control Coordination, Trenton, NJ 08625, USA
| | | |
Collapse
|
13
|
Dieng H, McLean S, Stradling H, Morgan C, Gordon M, Ebanks W, Ebanks Z, Wheeler A. Aquatain® causes anti-oviposition, egg retention and oocyte melanization and triggers female death in Aedes aegypti. Parasit Vectors 2022; 15:100. [PMID: 35317811 PMCID: PMC8939118 DOI: 10.1186/s13071-022-05202-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/12/2022] [Indexed: 12/20/2022] Open
Abstract
Background In arboviral disease systems where the virus can be transmitted from male to female vectors and from one generation to the next, targeting the female (especially when she is gravid) can help alter the persistence of the virus in nature and its transmission. A typical example is Aedes aegypti, which has become unmanageable due to the development of insecticide resistance. Despite evidence that monomolecular surface films prevent the selection of genetic resistance, their potential in Aedes vector control remains largely unexplored. Methods We examined the oviposition, egg retention, oocyte melanization, and female mortality of the Cayman Islands strain of Ae. aegypti, using choice (balanced and unbalanced) and no-choice bioassays involving Aquatain® Mosquito Formulation (AMF; Aquatain Products Pty Ltd.), a polydimethylsiloxane–based liquid used for mosquito control. Results When presented with similar opportunities to oviposit in two sites treated with AMF and two other sites with untreated water (control), egg deposition rates were significantly higher in the untreated water sites than in the AMF-treated sites (P < 0.05). We also observed a matching pattern of egg deposition preference in environments with more options in terms of AMF-treated sites. Females laid significantly more eggs when water was the only available medium than when all sites were treated with AMF (P < 0.05). Also, significantly more mature eggs were withheld in the AMF no-choice environment than in the no-choice test involving only water (P < 0.05). Internal oocyte melanization was not observed in females from the oviposition arenas with the lowest AMF presence (equal-choice and water-based no-choice); in contrast, this physiological response intensified as the number of AMF-treated sites increased. Female death occurred at high rates in AMF-treated environments, and this response increased with the increasing presence of such egg deposition sites. Conclusions This study demonstrated that AMF acted as a deterrent signal to ovipositing Ae. aegypti and as an indirect adulticide. These results suggest that AMF may be a promising control tool against the dengue vector, and this warrants further evaluation under field settings. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Hamady Dieng
- Mosquito Research and Control Unit (MRCU), George Town, Cayman Islands.
| | - Storm McLean
- The University College of the Cayman Islands, Olympic Way, George Town, Cayman Islands
| | | | - Cole Morgan
- The Forensic Department, Health Services Authority, George Town, Cayman Islands
| | - Malik Gordon
- The University College of the Cayman Islands, Olympic Way, George Town, Cayman Islands
| | - Whitney Ebanks
- Mosquito Research and Control Unit (MRCU), George Town, Cayman Islands
| | - Zoila Ebanks
- Mosquito Research and Control Unit (MRCU), George Town, Cayman Islands
| | - Alan Wheeler
- Mosquito Research and Control Unit (MRCU), George Town, Cayman Islands
| |
Collapse
|
14
|
Wilke ABB, Vasquez C, Carvajal A, Moreno M, Petrie WD, Beier JC. Evaluation of the effectiveness of BG-Sentinel and CDC light traps in assessing the abundance, richness, and community composition of mosquitoes in rural and natural areas. Parasit Vectors 2022; 15:51. [PMID: 35135589 PMCID: PMC8822692 DOI: 10.1186/s13071-022-05172-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/21/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Vector-borne diseases are a major burden to public health. Controlling mosquitoes is considered the most effective way to prevent vector-borne disease transmission. Mosquito surveillance is a core component of integrated vector management, as surveillance programs are often the cornerstone for the development of mosquito control operations. Two traps are the most commonly used for the surveillance of adult mosquitoes: Centers for Disease Control and Prevention miniature light trap (CDC light trap) and BG-Sentinel trap (BioGents, Regensburg, Germany). However, despite the importance of the BG-Sentinel trap in surveillance programs in the United States, especially in the Southern states, its effectiveness in consistently and reliably collecting mosquitoes in rural and natural areas is still unknown. We hypothesized that BG-Sentinel and CDC light traps would be more attractive to specific mosquito species present in rural and natural areas. Therefore, our objective was to compare the relative abundance, species richness, and community composition of mosquitoes collected in natural and rural areas by BG-Sentinel and CDC light traps. METHODS Mosquitoes were collected from October 2020 to March 2021 using BG-Sentinel and CDC light traps baited with dry ice, totaling 105 trap-nights. RESULTS The BG-Sentinel traps collected 195,115 mosquitoes comprising 23 species from eight genera, and the CDC light traps collected 188,594 mosquitoes comprising 23 species from eight genera. The results from the permutational multivariate analysis of variance (PERMANOVA) and generalized estimating equation model for repeated measures indicate the BG-Sentinel and CDC light traps had similar sampling power. CONCLUSION Even though BG-Sentinel traps had a slightly better performance, the difference was not statistically significant indicating that both traps are suitable to be used in mosquito surveillance in rural and natural areas.
Collapse
Affiliation(s)
- André B B Wilke
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, 1120 Northwest 14th Street, Miami, FL, 33136, USA.
| | | | | | - Maday Moreno
- Miami-Dade County Mosquito Control Division, Miami, FL, USA
| | | | - John C Beier
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, 1120 Northwest 14th Street, Miami, FL, 33136, USA
| |
Collapse
|
15
|
Urbanization favors the proliferation of Aedes aegypti and Culex quinquefasciatus in urban areas of Miami-Dade County, Florida. Sci Rep 2021; 11:22989. [PMID: 34836970 PMCID: PMC8626430 DOI: 10.1038/s41598-021-02061-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 11/09/2021] [Indexed: 12/20/2022] Open
Abstract
Urbanization processes are increasing globally. Anthropogenic alterations in the environment have profound effects on biodiversity. Decreased biodiversity due to biotic homogenization processes as a consequence of urbanization often result in increased levels of mosquito vector species and vector-borne pathogen transmission. Understanding how anthropogenic alterations in the environment will affect the abundance, richness, and composition of vector mosquito species is crucial for the implementation of effective and targeted mosquito control strategies. We hypothesized that anthropogenic alterations in the environment are responsible for increasing the abundance of mosquito species that are adapted to urban environments such as Aedesaegypti and Culexquinquefasciatus. Therefore, our objective was to survey mosquito relative abundance, richness, and community composition in Miami-Dade County, Florida, in areas with different levels of urbanization. We selected 24 areas, 16 remote areas comprised of natural and rural areas, and 8 urban areas comprised of residential and touristic areas in Miami-Dade County, Florida. Mosquitoes were collected weekly in each area for 24 h for 5 consecutive weeks from August to October 2020 using BG-Sentinel traps baited with dry ice. A total of 36,645 mosquitoes were collected, from which 34,048 were collected in the remote areas and 2,597 in the urban areas. Our results show a clear and well-defined pattern of abundance, richness, and community composition according to anthropogenic modifications in land use and land cover. The more urbanized a given area the fewer species were found and those were primary vectors of arboviruses, Ae.aegypti and Cx.quinquefasciatus.
Collapse
|