1
|
Ghanem HE, Hamza DA, Zain El-Abdeen AA, Elbatrawy WS, El-Habashy HM. Influence of zinc foliar spray on growth, some important physiological processes, yield and yield attributes of bread wheat under water stress. Sci Rep 2025; 15:14943. [PMID: 40301388 PMCID: PMC12041492 DOI: 10.1038/s41598-025-94728-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 03/17/2025] [Indexed: 05/01/2025] Open
Abstract
Wheat constitutes one of the foremost important food crops in nations worldwide today. However, drought is one of the main global climate change risks that reduces agricultural productivity and causes significant economic losses. Zinc is an important nutritional microelement and is crucial for crops to be drought-tolerant. A field experiment was conducted at the Experimental Farm of Ismailia Agricultural Research Station, Egypt over two consecutive seasons under sprinkler irrigation to investigate the impact of various zinc levels (0, 100, 250, and 500 ppm) on Misr 3 wheat cultivar subjected to normal (100% field water capacity) and water stress (50% field water capacity) conditions. A split-plot design was used with three replicates, with irrigation treatments and zinc treatments allocated in separate main and sub-plots. Water stress was found to have a negative impact on shoot and flag leaf biomass, chlorophyll and carotenoids content, water relations and membrane characteristics. Also, drought significantly reduced yield and yield components. On the other hand, a gradual increase of Zinc up to a high level of 500 ppm alleviated water stress on wheat plants, thereby increasing the values of shoot fresh mass, shoot dry mass, flag leaf fresh mass, flag leaf dry mass, total chlorophyll, carotenoids, RWC, MSI and nutrient uptake. Moreover, all Zinc levels, especially 500 ppm, increased grain yield to 66.95-65.3%, yield attributes and the grain's chemical composition (the relative content of wheat grain total protein, wet gluten, dry gluten and N P K Zn) under control and drought treatments. Therefore, foliar Zinc application, particularly at 500 ppm, can improve wheat plant growth, yield and grain nutrients beneath control and/or water stress conditions.
Collapse
Affiliation(s)
- Hanan E Ghanem
- Wheat Research Department, Field Crops Research Institute, Agriculture Research Centre (ARC), Giza, Egypt.
| | - Doaa A Hamza
- Wheat Research Department, Field Crops Research Institute, Agriculture Research Centre (ARC), Giza, Egypt
| | - A A Zain El-Abdeen
- Wheat Research Department, Field Crops Research Institute, Agriculture Research Centre (ARC), Giza, Egypt
| | - Walaa S Elbatrawy
- Seed Technology Research Department, Field Crops Research Institute, Agricultural Research Centre (ARC), Giza, Egypt
| | - Helal M El-Habashy
- Soil and Water Science Department, Faculty of Technology and Development, Zagazig University, Zagazig, Egypt
| |
Collapse
|
2
|
Freyria NJ, de Oliveira TC, Chovatia M, Johnson J, Kuo A, Lipzen A, Barry KW, Grigoriev IV, Lovejoy C. Stress responses in an Arctic microalga (Pelagophyceae) following sudden salinity change revealed by gene expression analysis. Commun Biol 2024; 7:1084. [PMID: 39232195 PMCID: PMC11375080 DOI: 10.1038/s42003-024-06765-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/21/2024] [Indexed: 09/06/2024] Open
Abstract
Marine microbes that have for eons been adapted to stable salinity regimes are confronted with sudden decreases in salinity in the Arctic Ocean. The episodic freshening is increasing due to climate change with melting multi-year sea-ice and glaciers, greater inflows from rivers, and increased precipitation. To investigate algal responses to lowered salinity, we analyzed the responses and acclimatation over 24 h in a non-model Arctic marine alga (pelagophyte CCMP2097) following transfer to realistic lower salinities. Using RNA-seq transcriptomics, here we show rapid differentially expressed genes related to stress oxidative responses, proteins involved in the photosystem and circadian clock, and those affecting lipids and inorganic ions. After 24 h the pelagophyte adjusted to the lower salinity seen in the overexpression of genes associated with freezing resistance, cold adaptation, and salt tolerance. Overall, a suite of ancient widespread pathways is recruited enabling the species to adjust to the stress of rapid salinity change.
Collapse
Affiliation(s)
- Nastasia J Freyria
- Department of Natural Resource Sciences, McGill University, Ste. Anne-de-Bellevue, QC, Canada.
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada.
- Québec Océan, Département de Biologie, Université Laval, Québec, QC, Canada.
| | - Thais C de Oliveira
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada
- Centre d'Étude de la Forêt, Faculté de Foresterie, de Géographie et de Génomique, Université Laval, Québec, QC, Canada
| | - Mansi Chovatia
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jennifer Johnson
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Alan Kuo
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Anna Lipzen
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Kerrie W Barry
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Igor V Grigoriev
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
| | - Connie Lovejoy
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada.
- Québec Océan, Département de Biologie, Université Laval, Québec, QC, Canada.
| |
Collapse
|
3
|
Knaus U, Hübner DHD, Küchenmeister C, Appelbaum S, Iten W, Palm HW. Aquaponic growth of basil (Ocimum basilicum) with African catfish (Clarias gariepinus) in standard substrate combined with a Humicacid Fiber-Substrate (HFS). Sci Rep 2024; 14:17725. [PMID: 39085371 PMCID: PMC11291827 DOI: 10.1038/s41598-024-68361-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024] Open
Abstract
A major challenge in agriculture, horticulture and aquaponics practices is the reduction of mineral fertilisers and peat to reduce CO2 emissions and increase sustainability. This study used a three-phase-natural fertiliser, the Humicacid Fiber-Substrate (HFS), made from natural regenerative organic and mineral-fractions (Humus-Mineral-Complex), to reduce the peat content in plant pots for aquaponics farming. Basil (Ocimum basilicum) growth was compared with i) 100% standard media substrate ("Einheitserde", white peat 80%, clay 20%), and ii) 85% "Einheitserde" and 15% of HFS under irrigation with aquaculture process waters from an extensive and intensive production of African catfish (Clarias gariepinus) under coupled aquaponic conditions. The substitution with 15% HFS and use of intensive fish water resulted in comparable plant growth to a fertiliser solution as control, and in higher leaf width and leaf green weight and lower root dry weight compared with the standard media substrate "Einheitserde". Basil leaf chlorophyll content from the aquaponics was higher compared with local market plants. This suggests the possible substitution of the peat substrate "Einheitserde" with at least 15% HFS to reduce the natural peat fraction. Further studies on crop-specific substrates are needed to reduce peat in aquaponics farming plant cultivation.
Collapse
Affiliation(s)
- Ulrich Knaus
- Faculty of Agricultural and Environmental Sciences, Professor of Aquaculture and Sea-Ranching, University of Rostock, Justus-von-Liebig-Weg 6, 18059, Rostock, Germany.
| | - Dirk Hyo-Dschung Hübner
- Faculty of Agricultural and Environmental Sciences, Professor of Aquaculture and Sea-Ranching, University of Rostock, Justus-von-Liebig-Weg 6, 18059, Rostock, Germany
| | - Christian Küchenmeister
- Faculty of Agricultural and Environmental Sciences, Professor of Aquaculture and Sea-Ranching, University of Rostock, Justus-von-Liebig-Weg 6, 18059, Rostock, Germany
| | - Samuel Appelbaum
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Midreshet Ben-Gurion, Israel
| | - Walter Iten
- Institut für angewandte Naturwirtschaft/Natural Science IfaN GmbH, Sennweidstrasse 44, 6312, Steinhausen, Switzerland
| | - Harry W Palm
- Faculty of Agricultural and Environmental Sciences, Professor of Aquaculture and Sea-Ranching, University of Rostock, Justus-von-Liebig-Weg 6, 18059, Rostock, Germany
| |
Collapse
|
4
|
Khan WA, Penrose B, Yun P, Zhou M, Shabala S. Exogenous zinc application mitigates negative effects of salinity on barley ( Hordeum vulgare) growth by improving root ionic homeostasis. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23266. [PMID: 38753957 DOI: 10.1071/fp23266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/25/2024] [Indexed: 05/18/2024]
Abstract
Detrimental effects of salinity could be mitigated by exogenous zinc (Zn) application; however, the mechanisms underlying this amelioration are poorly understood. This study demonstrated the interaction between Zn and salinity by measuring plant biomass, photosynthetic performance, ion concentrations, ROS accumulation, antioxidant activity and electrophysiological parameters in barley (Hordeum vulgare L.). Salinity stress (200mM NaCl for 3weeks) resulted in a massive reduction in plant biomass; however, both fresh and dry weight of shoots were increased by ~30% with adequate Zn supply. Zinc supplementation also maintained K+ and Na+ homeostasis and prevented H2 O2 toxicity under salinity stress. Furthermore, exposure to 10mM H2 O2 resulted in massive K+ efflux from root epidermal cells in both the elongation and mature root zones, and pre-treating roots with Zn reduced ROS-induced K+ efflux from the roots by 3-4-fold. Similar results were observed for Ca2+ . The observed effects may be causally related to more efficient regulation of cation-permeable non-selective channels involved in the transport and sequestration of Na+ , K+ and Ca2+ in various cellular compartments and tissues. This study provides valuable insights into Zn protective functions in plants and encourages the use of Zn fertilisers in barley crops grown on salt-affected soils.
Collapse
Affiliation(s)
- Waleed Amjad Khan
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tas. 7001, Australia
| | - Beth Penrose
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tas. 7001, Australia
| | - Ping Yun
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tas. 7001, Australia
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tas. 7001, Australia
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tas. 7001, Australia; and International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China; and School of Biological Science, University of Western Australia, Crawley, WA 6009, Australia
| |
Collapse
|
5
|
Nassarawa IS, Li Z, Xue L, Li H, Muhammad U, Zhu S, Chen J, Zhao T. Zinc Oxide Nanoparticles and Zinc Sulfate Alleviate Boron Toxicity in Cotton ( Gossypium hirsutum L.). PLANTS (BASEL, SWITZERLAND) 2024; 13:1184. [PMID: 38732398 PMCID: PMC11085453 DOI: 10.3390/plants13091184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 05/13/2024]
Abstract
Boron toxicity significantly hinders the growth and development of cotton plants, therefore affecting the yield and quality of this important cash crop worldwide. Limited studies have explored the efficacy of ZnSO4 (zinc sulfate) and ZnO nanoparticles (NPs) in alleviating boron toxicity. Nanoparticles have emerged as a novel strategy to reduce abiotic stress directly. The precise mechanism underlying the alleviation of boron toxicity by ZnO NPs in cotton remains unclear. In this study, ZnO NPs demonstrated superior potential for alleviating boron toxicity compared to ZnSO4 in hydroponically cultivated cotton seedlings. Under boron stress, plants supplemented with ZnO NPs exhibited significant increases in total fresh weight (75.97%), root fresh weight (39.64%), and leaf fresh weight (69.91%). ZnO NPs positively affected photosynthetic parameters and SPAD values. ZnO NPs substantially reduced H2O2 (hydrogen peroxide) by 27.87% and 32.26%, MDA (malondialdehyde) by 27.01% and 34.26%, and O2- (superoxide anion) by 41.64% and 48.70% after 24 and 72 h, respectively. The application of ZnO NPs increased the antioxidant activities of SOD (superoxide dismutase) by 82.09% and 76.52%, CAT (catalase) by 16.79% and 16.33%, and POD (peroxidase) by 23.77% and 21.66% after 24 and 72 h, respectively. ZnO NP and ZnSO4 application demonstrated remarkable efficiency in improving plant biomass, mineral nutrient content, and reducing boron levels in cotton seedlings under boron toxicity. A transcriptome analysis and corresponding verification revealed a significant up-regulation of genes encoding antioxidant enzymes, photosynthesis pathway, and ABC transporter genes with the application of ZnO NPs. These findings provide valuable insights for the mechanism of boron stress tolerance in cotton and provide a theoretical basis for applying ZnO NPs and ZnSO4 to reduce boron toxicity in cotton production.
Collapse
Affiliation(s)
- Ismail Sanusi Nassarawa
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (I.S.N.); (L.X.); (H.L.); (U.M.); (S.Z.)
| | - Zhuolin Li
- Hainan Institute, Zhejiang University, Sanya 572025, China;
| | - Longshuo Xue
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (I.S.N.); (L.X.); (H.L.); (U.M.); (S.Z.)
| | - Huazu Li
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (I.S.N.); (L.X.); (H.L.); (U.M.); (S.Z.)
| | - Uzair Muhammad
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (I.S.N.); (L.X.); (H.L.); (U.M.); (S.Z.)
| | - Shuijin Zhu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (I.S.N.); (L.X.); (H.L.); (U.M.); (S.Z.)
- Hainan Institute, Zhejiang University, Sanya 572025, China;
| | - Jinhong Chen
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (I.S.N.); (L.X.); (H.L.); (U.M.); (S.Z.)
- Hainan Institute, Zhejiang University, Sanya 572025, China;
| | - Tianlun Zhao
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (I.S.N.); (L.X.); (H.L.); (U.M.); (S.Z.)
- Hainan Institute, Zhejiang University, Sanya 572025, China;
| |
Collapse
|
6
|
Kumari P, Kumari N, Mohan C, Chinglenthoiba C, Amesho KTT. Environmentally benign approach to formulate nanoclay/starch hydrogel for controlled release of zinc and its application in seed coating of Oryza Sativa plant. Int J Biol Macromol 2024; 257:128278. [PMID: 38029920 DOI: 10.1016/j.ijbiomac.2023.128278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 12/01/2023]
Abstract
Improper use of conventional fertilizers has been linked to adverse effects on soil nutrient levels. To mitigate the negative impact of surface feeding fertilizers and reduce environmental pollution, a new type of seed coating material has been developed to provide nutrients in close proximity to the growing seed. In this study, a biodegradable seed coating film encapsulating micronutrients was fabricated by incorporating montmorillonite into a starch matrix using the melt processing technique. The dispersion of montmorillonite within the starch matrix was examined using X-ray diffraction (XRD), infrared spectroscopy (IR), and thermal gravimetric analysis (TGA). The results revealed polar interactions among starch, silicate layers, and the hydrogel. The XRD analysis demonstrated a shift in the diffraction peak (001) of the Zinc/montmorillonite/starch/glycerol nanocomposite film from 6.2° to 4.9°, indicating the successful intercalation of Zinc, starch, and glycerol. Furthermore, the inclusion of nanoclay improved the thermal stability of the resulting polymer composite and enhanced its ion exchange capacity, water retention, and micronutrient retention. The time-dependent release of zinc micronutrient from the montmorillonite/starch/glycerol composite film was investigated in Zn-deficient soil extract over a 20-day period. The composite film demonstrated extended release behavior of Zn2+. Subsequently, rice seeds were coated with the zinc-containing composite film using a dip-coating method, and their performance in Zn-deficient soil was evaluated. The results indicated that zinc-coated seeds exhibited improved germination percentage, vegetative growth, and yield compared to uncoated seeds.
Collapse
Affiliation(s)
- Priyanka Kumari
- Department of Chemistry, Shivaji College, University of Delhi, India
| | - Neeraj Kumari
- Department of Chemistry, SBAS, K.R. Mangalam University, Gurugram 122103, India
| | - Chandra Mohan
- Department of Chemistry, SBAS, K.R. Mangalam University, Gurugram 122103, India.
| | - Chingakham Chinglenthoiba
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 Singapore, Singapore
| | - Kassian T T Amesho
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; Center for Emerging Contaminants Research, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; The International University of Management, Centre for Environmental Studies, Main Campus, Dorado Park Ext 1, Windhoek, Namibia; Destinies Biomass Energy and Farming Pty Ltd, P.O. Box 7387, Swakopmund, Namibia.
| |
Collapse
|
7
|
Shao J, Tang W, Huang K, Ding C, Wang H, Zhang W, Li R, Aamer M, Hassan MU, Elnour RO, Hashem M, Huang G, Qari SH. How Does Zinc Improve Salinity Tolerance? Mechanisms and Future Prospects. PLANTS (BASEL, SWITZERLAND) 2023; 12:3207. [PMID: 37765371 PMCID: PMC10534951 DOI: 10.3390/plants12183207] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023]
Abstract
Salinity stress (SS) is a serious abiotic stress and a major constraint to agricultural productivity across the globe. High SS negatively affects plant growth and yield by altering soil physio-chemical properties and plant physiological, biochemical, and molecular processes. The application of micronutrients is considered an important practice to mitigate the adverse effects of SS. Zinc (Zn) is an important nutrient that plays an imperative role in plant growth, and it could also help alleviate the effects of salt stress. Zn application improves seed germination, seedling growth, water uptake, plant water relations, nutrient uptake, and nutrient homeostasis, therefore improving plant performance and saline conditions. Zn application also protects the photosynthetic apparatus from salinity-induced oxidative stress and improves stomata movement, chlorophyll synthesis, carbon fixation, and osmolytes and hormone accumulation. Moreover, Zn application also increases the synthesis of secondary metabolites and the expression of stress responsive genes and stimulates antioxidant activities to counter the toxic effects of salt stress. Therefore, to better understand the role of Zn in plants under SS, we have discussed the various mechanisms by which Zn induces salinity tolerance in plants. We have also identified diverse research gaps that must be filled in future research programs. The present review article will fill the knowledge gaps on the role of Zn in mitigating salinity stress. This review will also help readers to learn more about the role of Zn and will provide new suggestions on how this knowledge can be used to develop salt tolerance in plants by using Zn.
Collapse
Affiliation(s)
- Jinhua Shao
- China Guangxi Key Laboratory of Water Engineering Materials and Structures, Guangxi Hydraulic Research Institute, Nanning 530023, China; (J.S.); (W.T.); (K.H.); (C.D.); (W.Z.)
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang 330045, China; (M.A.); (M.U.H.); (G.H.)
| | - Wei Tang
- China Guangxi Key Laboratory of Water Engineering Materials and Structures, Guangxi Hydraulic Research Institute, Nanning 530023, China; (J.S.); (W.T.); (K.H.); (C.D.); (W.Z.)
| | - Kai Huang
- China Guangxi Key Laboratory of Water Engineering Materials and Structures, Guangxi Hydraulic Research Institute, Nanning 530023, China; (J.S.); (W.T.); (K.H.); (C.D.); (W.Z.)
| | - Can Ding
- China Guangxi Key Laboratory of Water Engineering Materials and Structures, Guangxi Hydraulic Research Institute, Nanning 530023, China; (J.S.); (W.T.); (K.H.); (C.D.); (W.Z.)
| | - Haocheng Wang
- China Guangxi Key Laboratory of Water Engineering Materials and Structures, Guangxi Hydraulic Research Institute, Nanning 530023, China; (J.S.); (W.T.); (K.H.); (C.D.); (W.Z.)
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang 330045, China; (M.A.); (M.U.H.); (G.H.)
| | - Wenlong Zhang
- China Guangxi Key Laboratory of Water Engineering Materials and Structures, Guangxi Hydraulic Research Institute, Nanning 530023, China; (J.S.); (W.T.); (K.H.); (C.D.); (W.Z.)
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang 330045, China; (M.A.); (M.U.H.); (G.H.)
| | - Ronghui Li
- College of Civil Engineering and Architecture, Guangxi University, Nanning 530004, China
| | - Muhammad Aamer
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang 330045, China; (M.A.); (M.U.H.); (G.H.)
| | - Muhammad Umair Hassan
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang 330045, China; (M.A.); (M.U.H.); (G.H.)
| | - Rehab O. Elnour
- Biology Department, Faculty of Sciences and Arts, King Khalid University, Dahran Al-Janoub, Abha 64353, Saudi Arabia;
| | - Mohamed Hashem
- Department of Biology, College of Science, King Khalid University, Abha 61413, Saudi Arabia;
| | - Guoqin Huang
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang 330045, China; (M.A.); (M.U.H.); (G.H.)
| | - Sameer H. Qari
- Department of Biology, Al-Jumum University College, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| |
Collapse
|
8
|
Ghassemi-Golezani K, Rahimzadeh S. Biochar-based nutritional nanocomposites: a superior treatment for alleviating salt toxicity and improving physiological performance of dill (Anethum graveolens). ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:3089-3111. [PMID: 36153765 DOI: 10.1007/s10653-022-01397-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 09/13/2022] [Indexed: 06/01/2023]
Abstract
Biochar-supported metal oxide nanocomposites as functional materials could help to improve the production and stress tolerance of plants by enhancing the physicochemical properties of biochar. This experiment was carried out to assess the effects of unmodified biochar (30 g kg-1 soil) and biochar-based nanocomposites (BNCs) of iron (30 g BNC-FeO kg-1 soil), zinc (30 g BNC-ZnO kg-1 soil), and a combined form (15 g BNC-FeO + 15 g BNC-ZnO kg-1 soil) on dill (Anethum graveolens L.) plants under various salinity levels (non-saline, 6 and 12 dS m-1). The biochar-related treatments reduced sodium content of the plants, leading to a decline in osmolytes, antioxidant enzymes activities, reactive oxygen species (ROS), lipid peroxidation, NADP reduction, abscisic acid, jasmonic acid, and salicylic acid in dill leaf tissues. The combined form of BNCs reduced sodium content of leaf tissue by about 22% and 26% under 6 and 12 dS m-1 salinities, respectively. In contrast, addition of biochar, particularly biochar-based nanocomposites to the saline soil, enhanced potassium, iron, and zinc contents of leaf tissue, photosynthetic pigments, leaf water content, oxygen evolution rate, hill reaction and ATPase activities, endogenous indole-3-acetic acid, plant organs biomass, and consequently essential oil yield of plant organs. The combined form of BNCs in comparison with unmodified biochar improved vegetative, inflorescence, and seed biomass under 12 dS m-1 salinity by about 33%, 25%, and 6%, respectively. These findings revealed that BNCs with novel structure can potentially enhance salt tolerance, plant biomass, and essential oil yield of different organs in salt-stressed dill plants through decreasing leaf sodium content and ROS generation and increasing nutrient availability, water status, and photosynthetic pigments.
Collapse
Affiliation(s)
- Kazem Ghassemi-Golezani
- Department of Plant Eco-Physiology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.
| | - Saeedeh Rahimzadeh
- Department of Plant Eco-Physiology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| |
Collapse
|
9
|
Mousavi SS, Karami A, Saharkhiz MJ, Etemadi M, Zarshenas MM. Evaluation of metabolites in Iranian Licorice accessions under salinity stress and Azotobacter sp. inoculation. Sci Rep 2022; 12:15837. [PMID: 36151202 PMCID: PMC9508240 DOI: 10.1038/s41598-022-20366-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 09/12/2022] [Indexed: 11/09/2022] Open
Abstract
Licorice (Glycyrrhiza glabra L.) is an industrial medicinal plant that is potentially threatened by extinction. In this study, the effects of salinity (0 and 200 mM sodium chloride (NaCl)) and Azotobacter inoculation were evaluated on 16 licorice accessions. The results showed that salinity significantly reduced the fresh and dry biomass (FW and DW, respectively) of roots, compared to plants of the control group (a decrease of 15.92% and 17.26%, respectively). As a result of bacterial inoculation, the total sugar content of roots increased by 21.56% when salinity was applied, but increased by 14.01% without salinity. Salinity stress increased the content of glycyrrhizic acid (GA), phenols, and flavonoids in licorice roots by 104.6%, 117.2%, and 56.3%, respectively. Integrated bacterial inoculation and salt stress significantly increased the GA content in the accessions. Bajgah and Sepidan accessions had the highest GA contents (96.26 and 83.17 mg/g DW, respectively), while Eghlid accession had the lowest (41.98 mg/g DW). With the bacterial application, the maximum amounts of glabridin were obtained in Kashmar and Kermanshah accessions (2.04 and 1.98 mg/g DW, respectively). Bajgah and Kashmar accessions had higher amounts of rutin in their aerial parts (6.11 and 9.48 mg/g DW, respectively) when their roots were uninoculated. In conclusion, these results can assist in selecting promising licorice accessions for cultivation in harsh environments.
Collapse
Affiliation(s)
- Seyyed Sasan Mousavi
- Department of Horticultural Science, School of Agriculture, Shiraz University, Shiraz, 71441-13131, Iran
| | - Akbar Karami
- Department of Horticultural Science, School of Agriculture, Shiraz University, Shiraz, 71441-13131, Iran.
| | - Mohammad Jamal Saharkhiz
- Department of Horticultural Science, School of Agriculture, Shiraz University, Shiraz, 71441-13131, Iran.,Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Etemadi
- Department of Horticultural Science, School of Agriculture, Shiraz University, Shiraz, 71441-13131, Iran
| | - Mohammad Mehdi Zarshenas
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Traditional Pharmacy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
10
|
Abd El-Samad H, Taha R. Effect of Zinc and Nickel Treatments on Improvement of the Osmotic Defense System of Wheat Plant Under Salinity Stress. ACTA AGROBOTANICA 2022; 75. [DOI: 10.5586/aa.757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Abstract
The present experiments were performed to determine the effects of Zn (20 µM and 200 µM) and Ni (1 µM and 100 µM) on the growth and metabolic activities in the roots, shoots, and spikes of wheat (
Triticum aestivum
L.) cv. Gimiza 11 grown under different salinity conditions. In addition to identifying the osmotic tolerance of wheat, the roles of Zn and Ni in alleviating osmotic stress were examined. The root was the organ most sensitive to osmotic stress, whereas the shoot was the most resistant, and the spike was the intermediate. These three organs negatively responded to increasing osmotic stress levels, as fresh and dry matter decreased, and related biochemical parameters were adversely affected. However, fresh and dry matter were generally elevated when plants were supplemented with Zn or Ni under increasing osmotic stress. The sensitivity of roots was associated with depletion in the concentrations of sugars and free proline, whereas soluble protein and amino acid levels were increased. The stress tolerance of shoots and spikes was accompanied by an increase in soluble sugars, soluble proteins, and proline, while amino acid levels increased in spikes only. The Na
+
and K
+
content in wheat plants increased with increasing NaCl-induced osmotic stress levels. In turn, the accumulation and partitioning of Na
+
and K
+
did not vary among the three organs, both at different salt concentrations and between Zn or Ni treatments. Moreover, the present results show that the concentrations of anthocyanins, flavonoids, and
l
-ascorbic acid increased under exposure to osmotic stress and did not change significantly under Zn or Ni treatments.
Collapse
|
11
|
Hamidi M, Moghadam HT, Nasri M, Kasraie P, Larijani H. The effect of ascorbic acid and bio fertilizers on basil under drought stress. BRAZ J BIOL 2022; 84:e262459. [PMID: 35830132 DOI: 10.1590/1519-6984.262459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/25/2022] [Indexed: 11/22/2022] Open
Abstract
Evaluate the effect of ascorbic acid application and coexistence of Mycorrhiza fungus and Azospirillium on basil (Ocimum basilicum L.) under drought stress. This experiment was performed as a split factorial in a randomized complete block design with three replications in the crop year 2017-2018 in Shahriar, Iran. In this experiment, irrigation was the main factor in three levels, including drought stress based on 40-70-100 mm from the evaporation pan of class A. Biofertilizer including growth-promoting bacteria (Azospirillium) and mycorrhiza fungus in four levels, including a(Non-consumption) B (Seeds of growth-promoting bacteria (Azospirillium)) C (Consumption of mycorrhiza fungus as seeds) D (Concomitant use of growth-promoting bacteria Azospirillium with mycorrhiza fungi as seeds) and ascorbic acid in two levels of foliar application, including A (Absence Application of ascorbic acid) and B (Application of ascorbic acid (two days after irrigation treatment)) was considered as a factorial factor. The results showed that the highest biological yield was obtained in drought stress of 40 mm and application of biological fertilizers in the form of mycorrhiza application with an average of 3307.1 kg/ha, which was about 70% more than 100 mm evaporation stress and no application of biological fertilizer. The use of ascorbic acid under drought stress conditions improved by 10%, the essential oil using ascorbic acid evaporated under drought stress conditions of 100 mm. As a general conclusion, the use of ascorbic acid and Mycorrhiza + Azospirillium biological fertilizer improved the quantitative and qualitative characteristics of basil under drought stress.
Collapse
Affiliation(s)
- M Hamidi
- Islamic Azad University, Varamin-Pishva Branch, College of Agriculture, Department of Agronomy, Varamin, Iran
| | - H Tohidi Moghadam
- Islamic Azad University, Varamin-Pishva Branch, College of Agriculture, Department of Agronomy, Varamin, Iran
| | - M Nasri
- Islamic Azad University, Varamin-Pishva Branch, College of Agriculture, Department of Agronomy, Varamin, Iran
| | - P Kasraie
- Islamic Azad University, Varamin-Pishva Branch, College of Agriculture, Department of Agronomy, Varamin, Iran
| | - H Larijani
- Islamic Azad University, Varamin-Pishva Branch, College of Agriculture, Department of Agronomy, Varamin, Iran
| |
Collapse
|
12
|
Fernandes J, Reboredo FH, Luis I, Silva MM, Simões MM, Lidon FC, Ramalho JC. Elemental Composition of Commercial Herbal Tea Plants and Respective Infusions. PLANTS 2022; 11:plants11111412. [PMID: 35684185 PMCID: PMC9182685 DOI: 10.3390/plants11111412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 12/11/2022]
Abstract
This study evaluated the elemental composition of 25 herbal tea plants commonly used in infusions by Portuguese consumers and the contribution to the elemental daily intake of some essential elements. Hydrocotyle asiatica (L.), Matricaria chamomilla (L.), and Melissa officinalis (L.) samples are a rich source of K with around 6.0 mg g−1 while the Asteraceae Silybum marianum (L.) and Echinacea angustifolia (DC.) exhibited 4.9 and 5.6 mg g−1 Ca, respectively. The highest concentrations of S and Zn were noted in Hydrocotyle asiatica (L.), while the highest concentration of Sr was found in Cassia angustifolia (Vahl.). In general, a large variability in the concentrations among different families and plant organs had been observed, except Cu with levels around 30 μg g−1. The principal component analysis (PCA) showed positive correlations between Zn and S and Sr and Ca, also revealing that Hydrocotyle asiatica (L.), Echinacea angustifolia (DC.), Silybum marianum (L.), and Cassia angustifolia (Vahl.) samples, stands out about all other samples regarding the enrichment of macro and micronutrients. The elemental solubility of macronutrients in the infusion is greater than the micronutrient solubility, despite the contribution to the recommended daily intake was weak. As a whole, Cynara scolymus (L.) and Hibiscus sabdariffa (L.) are the species with the best elemental solubilities, followed by Hydrocotyle asiatica (L.). No harmful elements, such as As and Pb, were observed in both the raw material and the infusions.
Collapse
Affiliation(s)
- Jaime Fernandes
- Departamento Ciências da Terra, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; (J.F.); (I.L.); (M.M.S.); (F.C.L.)
| | - Fernando H. Reboredo
- Departamento Ciências da Terra, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; (J.F.); (I.L.); (M.M.S.); (F.C.L.)
- GeoBioTec, Departamento de Ciências da Terra, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; (M.M.S.); (J.C.R.)
- Correspondence:
| | - Inês Luis
- Departamento Ciências da Terra, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; (J.F.); (I.L.); (M.M.S.); (F.C.L.)
| | - Maria Manuela Silva
- GeoBioTec, Departamento de Ciências da Terra, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; (M.M.S.); (J.C.R.)
- ESEAG-COFAC, Avenida do Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Maria M. Simões
- Departamento Ciências da Terra, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; (J.F.); (I.L.); (M.M.S.); (F.C.L.)
- GeoBioTec, Departamento de Ciências da Terra, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; (M.M.S.); (J.C.R.)
| | - Fernando C. Lidon
- Departamento Ciências da Terra, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; (J.F.); (I.L.); (M.M.S.); (F.C.L.)
- GeoBioTec, Departamento de Ciências da Terra, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; (M.M.S.); (J.C.R.)
| | - José C. Ramalho
- GeoBioTec, Departamento de Ciências da Terra, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; (M.M.S.); (J.C.R.)
- Plant Stress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. República, 2784-505 Oeiras, Portugal
| |
Collapse
|
13
|
ÖZ U. The effect of salinity stress on germination parameters in Satureja thymbra L. (Lamiaceae). INTERNATIONAL JOURNAL OF SECONDARY METABOLITE 2022. [DOI: 10.21448/ijsm.1025295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
14
|
Mishra P, Mishra J, Arora NK. Plant growth promoting bacteria for combating salinity stress in plants - Recent developments and prospects: A review. Microbiol Res 2021; 252:126861. [PMID: 34521049 DOI: 10.1016/j.micres.2021.126861] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 01/16/2023]
Abstract
Soil salinity has emerged as a great threat to the agricultural ecosystems throughout the globe. Many continents of the globe are affected by salinity and crop productivity is severely affected. Anthropogenic activities leading to the degradation of agricultural land have also accelerated the rate of salinization in arid and semi-arid regions. Several approaches are being evaluated for remediating saline soil and restoring their productivity. Amongst these, utilization of plant growth promoting bacteria (PGPB) has been marked as a promising tool. This greener approach is suitable for simultaneous reclamation of saline soil and improving the productivity. Salt-tolerant PGPB utilize numerous mechanisms that affect physiological, biochemical, and molecular responses in plants to cope with salt stress. These mechanisms include osmotic adjustment by ion homeostasis and osmolyte accumulation, protection from free radicals by the formation of free radicals scavenging enzymes, oxidative stress responses and maintenance of growth parameters by the synthesis of phytohormones and other metabolites. As salt-tolerant PGPB elicit better plant survival under salinity, they are the potential candidates for enhancing agricultural productivity. The present review focuses on the various mechanisms used by PGPB to improve plant health under salinity. Recent developments and prospects to facilitate better understanding on the functioning of PGPB for ameliorating salt stress in plants are emphasized.
Collapse
Affiliation(s)
- Priya Mishra
- Department of Environmental Science, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, UP, 226025, India.
| | - Jitendra Mishra
- Department of Environmental Science, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, UP, 226025, India.
| | - Naveen Kumar Arora
- Department of Environmental Science, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, UP, 226025, India.
| |
Collapse
|
15
|
Saia S, Corrado G, Vitaglione P, Colla G, Bonini P, Giordano M, Stasio ED, Raimondi G, Sacchi R, Rouphael Y. An Endophytic Fungi-Based Biostimulant Modulates Volatile and Non-Volatile Secondary Metabolites and Yield of Greenhouse Basil ( Ocimum basilicum L.) through Variable Mechanisms Dependent on Salinity Stress Level. Pathogens 2021; 10:797. [PMID: 34201640 PMCID: PMC8308794 DOI: 10.3390/pathogens10070797] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/11/2021] [Accepted: 06/22/2021] [Indexed: 01/12/2023] Open
Abstract
Salinity in water and soil is one of the major environmental factors limiting the productivity of agronomic and horticultural crops. In basil (Ocimum basilicum L., Lamiaceae) and other Ocimum species, information on the plant response to mild salinity levels, often induced by the irrigation or fertigation systems, is scarce. In the present work, we tested the effectiveness of a microbial-based biostimulant containing two strains of arbuscular mycorrhiza fungi (AMF) and Trichoderma koningii in sustaining greenhouse basil yield traits, subjected to two mild salinity stresses (25 mM [low] and 50 mM [high] modulated by augmenting the fertigation osmotic potential with NaCl) compared to a non-stressed control. The impact of salinity stress was further appraised in terms of plant physiology, morphological ontogenesis and composition in polyphenols and volatile organic compounds (VOC). As expected, increasing the salinity of the solution strongly depressed the plant yield, nutrient uptake and concentration, reduced photosynthetic activity and leaf water potential, increased the Na and Cl and induced the accumulation of polyphenols. In addition, it decreased the concentration of Eucalyptol and β-Linalool, two of its main essential oil constituents. Irrespective of the salinity stress level, the multispecies inoculum strongly benefited plant growth, leaf number and area, and the accumulation of Ca, Mg, B, p-coumaric and chicoric acids, while it reduced nitrate and Cl concentrations in the shoots and affected the concentration of some minor VOC constituents. The benefits derived from the inoculum in term of yield and quality harnessed different mechanisms depending on the degree of stress. under low-stress conditions, the inoculum directly stimulated the photosynthetic activity after an increase of the Fe and Mn availability for the plants and induced the accumulation of caffeic and rosmarinic acids. under high stress conditions, the inoculum mostly acted directly on the sequestration of Na and the increase of P availability for the plant, moreover it stimulated the accumulation of polyphenols, especially of ferulic and chicoric acids and quercetin-rutinoside in the shoots. Notably, the inoculum did not affect the VOC composition, thus suggesting that its activity did not interact with the essential oil biosynthesis. These results clearly indicate that beneficial inocula constitute a valuable tool for sustaining yield and improving or sustaining quality under suboptimal water quality conditions imposing low salinity stress on horticultural crops.
Collapse
Affiliation(s)
- Sergio Saia
- Department Veterinary Sciences, University of Pisa, via delle Piagge 2, 56129 Pisa, Italy
| | - Giandomenico Corrado
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Naples, Italy
| | - Paola Vitaglione
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Naples, Italy
| | - Giuseppe Colla
- Department of Agriculture and Forest Sciences, University of Tuscia, 01100 Viterbo, Italy
| | - Paolo Bonini
- NGAlab, La Riera de Gaia, 43762 Tarragona, Spain
| | - Maria Giordano
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Naples, Italy
| | - Emilio Di Stasio
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Naples, Italy
| | - Giampaolo Raimondi
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Naples, Italy
| | - Raffaele Sacchi
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Naples, Italy
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Naples, Italy
| |
Collapse
|