1
|
Samuel V, Solomons R, Mason S. Targeted metabolomics investigation of metabolic markers of Mycobacterium tuberculosis in the cerebrospinal fluid of paediatric patients with tuberculous meningitis. PLoS One 2024; 19:e0314854. [PMID: 39689104 DOI: 10.1371/journal.pone.0314854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/18/2024] [Indexed: 12/19/2024] Open
Abstract
OBJECTIVE To investigate metabolic markers linked to Mycobacterium tuberculosis (M. tb) in the cerebrospinal fluid (CSF) of a South African cohort of paediatric tuberculous meningitis (TBM). METHODS Targeted proton magnetic resonance (1H-NMR) spectroscopy and two-dimensional gas chromatography coupled with time-of-flight mass spectrometry (GCxGC-TOFMS) metabolomics approaches were used to evaluate M. tb-linked metabolites in the CSF of 21 definite cases of TBM and 25 control cases. Uni- and multivariate statistical analyses were performed. RESULTS Four statistically significant metabolites were identified to discriminate TBM cases from controls. Mannose and arabinose were found at lower concentrations in the TBM group. Nonanoic acid and propanoic acid were found in higher concentrations in the definite TBM group. CONCLUSIONS We identified the novel presence of nonanoic acid for the first time as a M. tb-linked marker in the CSF of cases of TBM, possibly as a degradation product of the M. tb cell wall. Propanoic acid can be related to perturbed brain neuro-energetics and neuro-inflammation in TBM cases and is likely a host-response metabolite. Mannose and arabinose-supposed surrogates for lipoarabinomannan, a component of the M. tb cell wall-were not reliable markers for M. tb. Further research should focus on the analysis of fatty acids in the CSF of patients with TBM.
Collapse
Affiliation(s)
- Victory Samuel
- Biochemistry Department, Focus Area for Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Regan Solomons
- Faculty of Medicine and Health Sciences, Department of Paediatrics and Child Health, Stellenbosch University, Cape Town, South Africa
| | - Shayne Mason
- Biochemistry Department, Focus Area for Human Metabolomics, North-West University, Potchefstroom, South Africa
| |
Collapse
|
2
|
Barnacle JR, Davis AG, Wilkinson RJ. Recent advances in understanding the human host immune response in tuberculous meningitis. Front Immunol 2024; 14:1326651. [PMID: 38264653 PMCID: PMC10803428 DOI: 10.3389/fimmu.2023.1326651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/18/2023] [Indexed: 01/25/2024] Open
Abstract
Tuberculous meningitis (TBM), the most severe form of tuberculosis, causes death in approximately 25% cases despite antibiotic therapy, and half of survivors are left with neurological disability. Mortality and morbidity are contributed to by a dysregulated immune response, and adjunctive host-directed therapies are required to modulate this response and improve outcomes. Developing such therapies relies on improved understanding of the host immune response to TBM. The historical challenges in TBM research of limited in vivo and in vitro models have been partially overcome by recent developments in proteomics, transcriptomics, and metabolomics, and the use of these technologies in nested substudies of large clinical trials. We review the current understanding of the human immune response in TBM. We begin with M. tuberculosis entry into the central nervous system (CNS), microglial infection and blood-brain and other CNS barrier dysfunction. We then outline the innate response, including the early cytokine response, role of canonical and non-canonical inflammasomes, eicosanoids and specialised pro-resolving mediators. Next, we review the adaptive response including T cells, microRNAs and B cells, followed by the role of the glutamate-GABA neurotransmitter cycle and the tryptophan pathway. We discuss host genetic immune factors, differences between adults and children, paradoxical reaction, and the impact of HIV-1 co-infection including immune reconstitution inflammatory syndrome. Promising immunomodulatory therapies, research gaps, ongoing challenges and future paths are discussed.
Collapse
Affiliation(s)
- James R. Barnacle
- The Francis Crick Institute, London, United Kingdom
- Department of Infectious Disease, Imperial College, London, United Kingdom
- Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
| | - Angharad G. Davis
- The Francis Crick Institute, London, United Kingdom
- Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
| | - Robert J. Wilkinson
- The Francis Crick Institute, London, United Kingdom
- Department of Infectious Disease, Imperial College, London, United Kingdom
- Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
| |
Collapse
|
3
|
Lang SS, Rahman R, Kumar N, Tucker A, Flanders TM, Kirschen M, Huh JW. Invasive Neuromonitoring Modalities in the Pediatric Population. Neurocrit Care 2023; 38:470-485. [PMID: 36890340 DOI: 10.1007/s12028-023-01684-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 01/30/2023] [Indexed: 03/10/2023]
Abstract
Invasive neuromonitoring has become an important part of pediatric neurocritical care, as neuromonitoring devices provide objective data that can guide patient management in real time. New modalities continue to emerge, allowing clinicians to integrate data that reflect different aspects of cerebral function to optimize patient management. Currently, available common invasive neuromonitoring devices that have been studied in the pediatric population include the intracranial pressure monitor, brain tissue oxygenation monitor, jugular venous oximetry, cerebral microdialysis, and thermal diffusion flowmetry. In this review, we describe these neuromonitoring technologies, including their mechanisms of function, indications for use, advantages and disadvantages, and efficacy, in pediatric neurocritical care settings with respect to patient outcomes.
Collapse
Affiliation(s)
- Shih-Shan Lang
- Division of Neurosurgery, Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, 6 Wood Center, Philadelphia, PA, 19104, USA. .,Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Raphia Rahman
- Division of Neurosurgery, Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, 6 Wood Center, Philadelphia, PA, 19104, USA.,School of Osteopathic Medicine, Rowan University, Stratford, NJ, USA
| | - Nankee Kumar
- Division of Neurosurgery, Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, 6 Wood Center, Philadelphia, PA, 19104, USA
| | - Alexander Tucker
- Division of Neurosurgery, Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, 6 Wood Center, Philadelphia, PA, 19104, USA
| | - Tracy M Flanders
- Division of Neurosurgery, Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, 6 Wood Center, Philadelphia, PA, 19104, USA
| | - Matthew Kirschen
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jimmy W Huh
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
4
|
Stone TW, Clanchy FIL, Huang YS, Chiang NY, Darlington LG, Williams RO. An integrated cytokine and kynurenine network as the basis of neuroimmune communication. Front Neurosci 2022; 16:1002004. [PMID: 36507331 PMCID: PMC9729788 DOI: 10.3389/fnins.2022.1002004] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 10/31/2022] [Indexed: 11/25/2022] Open
Abstract
Two of the molecular families closely associated with mediating communication between the brain and immune system are cytokines and the kynurenine metabolites of tryptophan. Both groups regulate neuron and glial activity in the central nervous system (CNS) and leukocyte function in the immune system, although neither group alone completely explains neuroimmune function, disease occurrence or severity. This essay suggests that the two families perform complementary functions generating an integrated network. The kynurenine pathway determines overall neuronal excitability and plasticity by modulating glutamate receptors and GPR35 activity across the CNS, and regulates general features of immune cell status, surveillance and tolerance which often involves the Aryl Hydrocarbon Receptor (AHR). Equally, cytokines and chemokines define and regulate specific populations of neurons, glia or immune system leukocytes, generating more specific responses within restricted CNS regions or leukocyte populations. In addition, as there is a much larger variety of these compounds, their homing properties enable the superimposition of dynamic variations of cell activity upon local, spatially limited, cell populations. This would in principle allow the targeting of potential treatments to restricted regions of the CNS. The proposed synergistic interface of 'tonic' kynurenine pathway affecting baseline activity and the superimposed 'phasic' cytokine system would constitute an integrated network explaining some features of neuroimmune communication. The concept would broaden the scope for the development of new treatments for disorders involving both the CNS and immune systems, with safer and more effective agents targeted to specific CNS regions.
Collapse
Affiliation(s)
- Trevor W. Stone
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom,*Correspondence: Trevor W. Stone,
| | - Felix I. L. Clanchy
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
| | - Yi-Shu Huang
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
| | - Nien-Yi Chiang
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
| | - L. Gail Darlington
- Department of Internal Medicine, Ashtead Hospital, Ashtead, United Kingdom
| | - Richard O. Williams
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
5
|
Upton CM, Steele CI, Maartens G, Diacon AH, Wiesner L, Dooley KE. Pharmacokinetics of bedaquiline in cerebrospinal fluid (CSF) in patients with pulmonary tuberculosis (TB). J Antimicrob Chemother 2022; 77:1720-1724. [PMID: 35257182 PMCID: PMC9633714 DOI: 10.1093/jac/dkac067] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 02/07/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND With current treatment options most patients with CNS TB develop severe disability or die. Drug-resistant tuberculous meningitis is nearly uniformly fatal. Novel treatment strategies are needed. Bedaquiline, a potent anti-TB drug, has been reported to be absent from CSF in a single report. OBJECTIVES To explore the pharmacokinetics of bedaquiline and its M2 metabolite in the CSF of patients with pulmonary TB. PATIENTS AND METHODS Individuals with rifampicin-resistant pulmonary TB established on a 24 week course of treatment with bedaquiline underwent a lumbar puncture along with multiple blood sample collections over 24 h for CSF and plasma pharmacokinetic assessment, respectively. To capture the expected low bedaquiline and M2 concentrations (due to high protein binding in plasma) we optimized CSF collection and storage methods in vitro before concentrations were quantified via liquid chromatography with tandem MS. RESULTS Seven male participants were enrolled, two with HIV coinfection. Using LoBind® tubes lined with a 5% BSA solution, bedaquiline and M2 could be accurately measured in CSF. Bedaquiline and M2 were present in all patients at all timepoints at concentrations similar to the estimated unbound fractions in plasma. CONCLUSIONS Bedaquiline and M2 penetrate freely into the CSF of pulmonary TB patients with a presumably intact blood-brain barrier. Clinical studies are urgently needed to determine whether bedaquiline can contribute meaningfully to the treatment of CNS TB.
Collapse
Affiliation(s)
| | - Chanel I Steele
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Gary Maartens
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | | | - Lubbe Wiesner
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Kelly E Dooley
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
6
|
Dalmage MR, Nwankwo A, Sur H, Nduom E, Jackson S. A scoping review of pediatric microdialysis: A missed opportunity for microdialysis in the pediatric neuro-oncology setting. Neurooncol Adv 2022; 4:vdac171. [PMID: 36438644 PMCID: PMC9683385 DOI: 10.1093/noajnl/vdac171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025] Open
Abstract
Background Brain microdialysis is a minimally invasive technique for monitoring analytes, metabolites, drugs, neurotransmitters, and/or cytokines. Studies to date have centered on adults with traumatic brain injury, with a limited number of pediatric studies performed. This scoping review details past use of brain microdialysis in children and identifies potential use for future neuro-oncology trials. Methods In December 2020, Cochrane Library: CENTRAL, Embase, PubMed, Scopus, and Web of Science: Core Collection were searched. Two reviewers screened all articles by title and abstract review and then full study texts, using microdialysis in patients less than 18 yo. Results Of the 1171 articles screened, 49 were included. The 49 studies included 472 pediatric patients (age range 0-17 years old), in the brain (21), abdominal (16), and musculoskeletal (12) regions. Intracerebral microdialysis was performed in 64 collective patients, with a median age of 11 years old, and predominance in metabolic evaluations. Conclusion Historically, pediatric microdialysis was safely performed within the brain in varied neurologic conditions, except neuro-oncology. Adult brain tumor studies using intratumoral/peritumoral microdialysis sampling can inform future pediatric studies to advance diagnosis and treatment options for such aggressive tumors.
Collapse
Affiliation(s)
- Mahalia R Dalmage
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Anthony Nwankwo
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Hannah Sur
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Edjah Nduom
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Sadhana Jackson
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
7
|
Kruthika P. Role of IL 6 as a biomarker in the diagnosis of tuberculous meningitis – A systematic review. Int J Mycobacteriol 2022; 11:229-235. [DOI: 10.4103/ijmy.ijmy_101_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|