1
|
Li DD, Lan N, Zhao P, Tang YY. Advances in Etiology and Prevention of Capsular Contracture After Breast Implantation. Aesthetic Plast Surg 2025; 49:1915-1926. [PMID: 39586860 PMCID: PMC12031949 DOI: 10.1007/s00266-024-04500-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/25/2024] [Indexed: 11/27/2024]
Abstract
Capsular contracture (CC) is one of the most common complications of breast implant usage in breast augmentation or reconstruction. The CC approach can cause breast hardening, pain, and varying degrees of deformity, affecting the quality of life of patients. Considerably, it has become one of the most common reasons for frequent surgeries. Nonetheless, the etiology and pathogenesis of CC remain unclear. Moreover, there exist still a lot of uncertainties regarding prevention and treatment measures. In this article, we present discussions on the research status of the etiology, pathogenesis, prevention, and treatment measures of CC. In summary, this study provides a reference for further research on CC and clinical use.Level of Evidence V This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Dan-Dan Li
- The Second Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, No. 519 of Kunzhou Street, Xishan District, Kunming, 650000, China
| | - Nan Lan
- The Second Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, No. 519 of Kunzhou Street, Xishan District, Kunming, 650000, China
| | - Ping Zhao
- The First Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Xishan District, No. 519 of Kunzhou Street, Kunming, 650000, China.
| | - Yi-Yin Tang
- The Second Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, No. 519 of Kunzhou Street, Xishan District, Kunming, 650000, China.
| |
Collapse
|
2
|
Rad SK, Yeo KKL, Wu F, Li R, Nourmohammadi S, Tomita Y, Price TJ, Ingman WV, Townsend AR, Smith E. A Systematic Review and Meta-Analysis of 16S rRNA and Cancer Microbiome Atlas Datasets to Characterize Microbiota Signatures in Normal Breast, Mastitis, and Breast Cancer. Microorganisms 2025; 13:467. [PMID: 40005832 PMCID: PMC11858161 DOI: 10.3390/microorganisms13020467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 02/13/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
The breast tissue microbiome has been increasingly recognized as a potential contributor to breast cancer development and progression. However, inconsistencies in microbial composition across studies have hindered the identification of definitive microbial signatures. We conducted a systematic review and meta-analysis of 11 studies using 16S rRNA sequencing to characterize the bacterial microbiome in 1260 fresh breast tissue samples, including normal, mastitis-affected, benign, cancer-adjacent, and cancerous tissues. Studies published until 31 December 2023 were included if they analyzed human breast tissue using Illumina short-read 16S rRNA sequencing with sufficient metadata, while non-human samples, non-breast tissues, non-English articles, and those lacking metadata or using alternative sequencing methods were excluded. We also incorporated microbiome data from The Cancer Genome Atlas breast cancer (TCGA-BRCA) cohort to enhance our analyses. Our meta-analysis identified Proteobacteria, Firmicutes, Actinobacteriota, and Bacteroidota as the dominant phyla in breast tissue, with Staphylococcus and Corynebacterium frequently detected across studies. While microbial diversity was similar between cancer and cancer-adjacent tissues, they both exhibited a lower diversity compared to normal and mastitis-affected tissues. Variability in bacterial genera was observed across primer sets and studies, emphasizing the need for standardized methodologies in microbiome research. An analysis of TCGA-BRCA data confirmed the dominance of Staphylococcus and Corynebacterium, which was associated with breast cancer proliferation-related gene expression programs. Notably, high Staphylococcus abundance was associated with a 4.1-fold increased mortality risk. These findings underscore the potential clinical relevance of the breast microbiome in tumor progression and emphasize the importance of methodological consistency. Future studies to establish causal relationships, elucidate underlying mechanisms, and assess microbiome-targeted interventions are warranted.
Collapse
Affiliation(s)
- Sima Kianpour Rad
- Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Central Adelaide Local Health Network, Woodville South, Adelaide, SA 5011, Australia; (S.K.R.); (K.K.L.Y.); (F.W.); (R.L.); (S.N.); (Y.T.); (T.J.P.); (A.R.T.)
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia;
| | - Kenny K. L. Yeo
- Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Central Adelaide Local Health Network, Woodville South, Adelaide, SA 5011, Australia; (S.K.R.); (K.K.L.Y.); (F.W.); (R.L.); (S.N.); (Y.T.); (T.J.P.); (A.R.T.)
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia;
| | - Fangmeinuo Wu
- Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Central Adelaide Local Health Network, Woodville South, Adelaide, SA 5011, Australia; (S.K.R.); (K.K.L.Y.); (F.W.); (R.L.); (S.N.); (Y.T.); (T.J.P.); (A.R.T.)
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia;
| | - Runhao Li
- Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Central Adelaide Local Health Network, Woodville South, Adelaide, SA 5011, Australia; (S.K.R.); (K.K.L.Y.); (F.W.); (R.L.); (S.N.); (Y.T.); (T.J.P.); (A.R.T.)
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia;
| | - Saeed Nourmohammadi
- Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Central Adelaide Local Health Network, Woodville South, Adelaide, SA 5011, Australia; (S.K.R.); (K.K.L.Y.); (F.W.); (R.L.); (S.N.); (Y.T.); (T.J.P.); (A.R.T.)
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia;
| | - Yoko Tomita
- Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Central Adelaide Local Health Network, Woodville South, Adelaide, SA 5011, Australia; (S.K.R.); (K.K.L.Y.); (F.W.); (R.L.); (S.N.); (Y.T.); (T.J.P.); (A.R.T.)
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia;
- Medical Oncology, The Queen Elizabeth Hospital, Central Adelaide Local Health Network, Woodville South, Adelaide, SA 5011, Australia
| | - Timothy J. Price
- Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Central Adelaide Local Health Network, Woodville South, Adelaide, SA 5011, Australia; (S.K.R.); (K.K.L.Y.); (F.W.); (R.L.); (S.N.); (Y.T.); (T.J.P.); (A.R.T.)
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia;
- Medical Oncology, The Queen Elizabeth Hospital, Central Adelaide Local Health Network, Woodville South, Adelaide, SA 5011, Australia
| | - Wendy V. Ingman
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia;
- Robinson Research Institute, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Amanda R. Townsend
- Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Central Adelaide Local Health Network, Woodville South, Adelaide, SA 5011, Australia; (S.K.R.); (K.K.L.Y.); (F.W.); (R.L.); (S.N.); (Y.T.); (T.J.P.); (A.R.T.)
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia;
- Medical Oncology, The Queen Elizabeth Hospital, Central Adelaide Local Health Network, Woodville South, Adelaide, SA 5011, Australia
| | - Eric Smith
- Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Central Adelaide Local Health Network, Woodville South, Adelaide, SA 5011, Australia; (S.K.R.); (K.K.L.Y.); (F.W.); (R.L.); (S.N.); (Y.T.); (T.J.P.); (A.R.T.)
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia;
- Discipline of Surgery, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
3
|
Allen-Taylor D, Boro G, Cabato P, Mai C, Nguyen K, Rijal G. Staphylococcus epidermidis biofilm in inflammatory breast cancer and its treatment strategies. Biofilm 2024; 8:100220. [PMID: 39318870 PMCID: PMC11420492 DOI: 10.1016/j.bioflm.2024.100220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/26/2024] Open
Abstract
Bacterial biofilms represent a significant challenge in both clinical and industrial settings because of their robust nature and resistance to antimicrobials. Biofilms are formed by microorganisms that produce an exopolysaccharide matrix, protecting function and supporting for nutrients. Among the various bacterial species capable of forming biofilms, Staphylococcus epidermidis, a commensal organism found on human skin and mucous membranes, has emerged as a prominent opportunistic pathogen, when introduced into the body via medical devices, such as catheters, prosthetic joints, and heart valves. The formation of biofilms by S. epidermidis on these surfaces facilitates colonization and provides protection against host immune responses and antibiotic therapies, leading to persistent and difficult-to-treat infections. The possible involvement of biofilms for breast oncogenesis has recently created the curiosity. This paper therefore delves into S. epidermidis biofilm involvement in breast cancer. S. epidermidis biofilms can create a sustained inflammatory environment through their metabolites and can break DNA in breast tissue, promoting cellular proliferation, angiogenesis, and genetic instability. Preventing biofilm formation primarily involves preventing bacterial proliferation using prophylactic measures and sterilization of medical devices and equipment. In cancer treatment, common modalities include chemotherapy, surgery, immunotherapy, alkylating agents, and various anticancer drugs. Understanding the relationship between anticancer drugs and bacterial biofilms is crucial, especially for those undergoing cancer treatment who may be at increased risk of bacterial infections, for improving patient outcomes. By elucidating these interactions, strategies to prevent or disrupt biofilm formation, thereby reducing the incidence of infections associated with medical devices and implants, can be identified.
Collapse
Affiliation(s)
- D. Allen-Taylor
- Department of Medical Laboratory Sciences, Public Health, and Nutrition Science, College of Health Sciences, Tarleton State University, a Member of Texas A & M University System, Fort Worth, Texas, 76036, USA
| | - G. Boro
- Department of Medical Laboratory Sciences, Public Health, and Nutrition Science, College of Health Sciences, Tarleton State University, a Member of Texas A & M University System, Fort Worth, Texas, 76036, USA
| | - P.M. Cabato
- Department of Medical Laboratory Sciences, Public Health, and Nutrition Science, College of Health Sciences, Tarleton State University, a Member of Texas A & M University System, Fort Worth, Texas, 76036, USA
| | - C. Mai
- Department of Medical Laboratory Sciences, Public Health, and Nutrition Science, College of Health Sciences, Tarleton State University, a Member of Texas A & M University System, Fort Worth, Texas, 76036, USA
| | - K. Nguyen
- Department of Medical Laboratory Sciences, Public Health, and Nutrition Science, College of Health Sciences, Tarleton State University, a Member of Texas A & M University System, Fort Worth, Texas, 76036, USA
| | - G. Rijal
- Department of Medical Laboratory Sciences, Public Health, and Nutrition Science, College of Health Sciences, Tarleton State University, a Member of Texas A & M University System, Fort Worth, Texas, 76036, USA
| |
Collapse
|
4
|
Whitfield R, Tipton CD, Diaz N, Ancira J, Landry KS. Clinical Evaluation of Microbial Communities and Associated Biofilms with Breast Augmentation Failure. Microorganisms 2024; 12:1830. [PMID: 39338504 PMCID: PMC11434069 DOI: 10.3390/microorganisms12091830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/21/2024] [Accepted: 08/24/2024] [Indexed: 09/30/2024] Open
Abstract
The incidence of breast implant illness (BII) and BII-related explant procedures has not decreased with current surgical and treatment techniques. It is speculated the main underlying cause of BII complications is the result of chronic, sub-clinical infections residing on and around the implant. The infection, and subsequent biofilm, produce antagonistic compounds that drive chronic inflammation and immune responses. In this study, the microbial communities in over 600 consecutive samples of infected explant capsules and tissues were identified via next-generation sequencing to identify any commonality between samples. The majority of the bacteria identified were Gram-positive, with Cutibacterium acnes and Staphylococcus epidermidis being the dominant organisms. No correlation between sample richness and implant filling was found. However, there was a significant correlation between sample richness and patient age. Due to the complex nature, breast augmentation failures may be better addressed from a holistic approach than one of limited scope.
Collapse
Affiliation(s)
| | - Craig D. Tipton
- RTL Genomics, MicroGen DX, Lubbock, TX 79424, USA (N.D.); (J.A.)
| | - Niccole Diaz
- RTL Genomics, MicroGen DX, Lubbock, TX 79424, USA (N.D.); (J.A.)
| | - Jacob Ancira
- RTL Genomics, MicroGen DX, Lubbock, TX 79424, USA (N.D.); (J.A.)
| | - Kyle S. Landry
- Department of Health and Rehabilitation Sciences, Boston University, Boston, MA 02215, USA
- Delavie Sciences LLC, Worcester, MA 01606, USA
| |
Collapse
|
5
|
Mohan AS, Sullivan J, Tenenbaum MM, Broderick KB, Myckatyn TM. Toward a Consensus Aproach for Assessing Capsular Contracture Severity and Progression: A Systematic Review. Plast Reconstr Surg 2024; 153:7-22. [PMID: 37075286 PMCID: PMC10729898 DOI: 10.1097/prs.0000000000010573] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/11/2022] [Indexed: 04/21/2023]
Abstract
BACKGROUND Breast implants are the most commonly used medical devices in plastic surgery, and capsular contracture (CC) is one of the most common complications. However, our assessment of CC is based largely on Baker grade, which is problematically subjective and affords only four possible values. METHODS The authors performed a systematic review concluding in September of 2021 in compliance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. It identified 19 articles that propose approaches to measuring CC. RESULTS In addition to Baker grade, the authors identified several modalities reported to measure CC. These included magnetic resonance imaging, ultrasonography, sonoelastography, mammacompliance measuring devices, applanation tonometry, histologic evaluation, and serology. Capsule thickness and other measures of CC inconsistently correlated with Baker grade, whereas the presence of synovial metaplasia was consistently associated with Baker grade I and II, but not III and IV capsules. CONCLUSIONS There remains no particular method to reliably and specifically measure the contracture of capsules that form around breast implants. As such, we would recommend that research investigators use more than one modality to measure CC. Other variables that can impact breast implant stiffness and associated discomfort beyond CC need to be considered when evaluating patient outcomes. Given the value placed on CC outcomes in assessing breast implant safety, and the prevalence of breast implants overall, the need for a more reliable approach to measuring this outcome persists.
Collapse
Affiliation(s)
- Abee S. Mohan
- From the Department of Plastic and Reconstructive Surgery, Johns Hopkins School of Medicine
| | - Janessa Sullivan
- Division of Plastic and Reconstructive Surgery, Washington University in St. Louis School of Medicine
| | - Marissa M. Tenenbaum
- Division of Plastic and Reconstructive Surgery, Washington University in St. Louis School of Medicine
| | - Kristen B. Broderick
- From the Department of Plastic and Reconstructive Surgery, Johns Hopkins School of Medicine
| | - Terence M. Myckatyn
- Division of Plastic and Reconstructive Surgery, Washington University in St. Louis School of Medicine
| |
Collapse
|
6
|
Myckatyn TM, Duran Ramirez JM, Walker JN, Hanson BM. Management of Biofilm with Breast Implant Surgery. Plast Reconstr Surg 2023; 152:919e-942e. [PMID: 37871028 DOI: 10.1097/prs.0000000000010791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
LEARNING OBJECTIVES After studying this article, the participant should be able to: 1. Understand how bacteria negatively impact aesthetic and reconstructive breast implants. 2. Understand how bacteria infect breast implants. 3. Understand the evidence associated with common implant infection-prevention strategies, and their limitations. 4. Understand why implementation of bacteria-mitigation strategies such as antibiotic administration or "no-touch" techniques may not indefinitely prevent breast implant infection. SUMMARY Bacterial infection of aesthetic and reconstructive breast implants is a common and expensive problem. Subacute infections or chronic capsular contractures leading to device explantation are the most commonly documented sequelae. Although bench and translational research underscores the complexities of implant-associated infection, high-quality studies with adequate power, control groups, and duration of follow-up are lacking. Common strategies to minimize infections use antibiotics-administered systemically, in the breast implant pocket, or by directly bathing the implant before insertion-to limit bacterial contamination. Limiting contact between the implant and skin or breast parenchyma represents an additional common strategy. The clinical prevention of breast implant infection is challenged by the clean-contaminated nature of breast parenchyma, and the variable behavior of not only specific bacterial species but also their strains. These factors impact bacterial virulence and antibiotic resistance.
Collapse
Affiliation(s)
- Terence M Myckatyn
- From the Division of Plastic and Reconstructive Surgery, Washington University in St. Louis School of Medicine
| | | | - Jennifer N Walker
- Department of Microbiology and Molecular Genetics
- Center for Infectious Diseases, Department of Epidemiology, School of Public Health, University of Texas Health Science Center at Houston
| | - Blake M Hanson
- Center for Antimicrobial Resistance and Microbial Genomics, McGovern Medical School
- Center for Infectious Diseases, Department of Epidemiology, School of Public Health, University of Texas Health Science Center at Houston
| |
Collapse
|
7
|
Walker JN, Hanson BM, Hunter T, Simar SR, Duran Ramirez JM, Obernuefemann CLP, Parikh RP, Tenenbaum MM, Margenthaler JA, Hultgren SJ, Myckatyn TM. A prospective randomized clinical trial to assess antibiotic pocket irrigation on tissue expander breast reconstruction. Microbiol Spectr 2023; 11:e0143023. [PMID: 37754546 PMCID: PMC10581127 DOI: 10.1128/spectrum.01430-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/31/2023] [Indexed: 09/28/2023] Open
Abstract
Bacterial infection is the most common complication following staged post-mastectomy breast reconstruction initiated with a tissue expander (TE). To limit bacterial infection, antibiotic irrigation of the surgical site is commonly performed despite little high-quality data to support this practice. We performed a prospective randomized control trial to compare the impact of saline irrigation alone to a triple antibiotic irrigation regimen (1 g cefazolin, 80 mg gentamicin, and 50,000 units of bacitracin in 500 mL of saline) for breast implant surgery. The microbiome in breasts with cancer (n = 16) was compared to those without (n = 16), as all patients (n = 16) had unilateral cancers but bilateral mastectomies (n = 32). Biologic and prosthetic specimens procured both at the time of mastectomy and during TE removal months later were analyzed for longitudinal comparison. Outcomes included clinical infection, bacterial abundance, and relative microbiome composition. No patient in either group suffered a reconstructive failure or developed an infection. Triple antibiotic irrigation administered at the time of immediate TE reconstruction did not reduce bacterial abundance or impact microbial diversity relative to saline irrigation at the time of planned exchange. Implanted prosthetic material adopted the microbial composition of the surrounding host tissue. In cancer-naïve breasts, relative to saline, antibiotic irrigation increased bacterial abundance on periprosthetic capsules (P = 0.03) and acellular dermal matrices (P = 0.04) and altered the microbiota on both. These data show that, relative to saline only, the use of triple antibiotic irrigation in TE breast reconstruction does impact the bacterial abundance and diversity of certain biomaterials from cancer-naïve breasts. IMPORTANCE The lifetime risk of breast cancer is ~13% in women and is treated with a mastectomy in ~50% of cases. The majority are reconstructed, usually starting with a tissue expander to help restore the volume for a subsequent permanent breast implant or the women's own tissues. The biopsychosocial benefits of breast reconstruction, though, can be tempered by a high complication rate of at least 7% but over 30% in some women. Bacterial infection is the most common complication, and can lead to treatment delays, patient physical and emotional distress and escalating health care cost. To limit this risk, plastic surgeons have tried a variety of strategies to limit bacterial infection including irrigating the pocket created after removing the breast implant with antibiotic solutions, but good-quality data are scarce. Herein, we study the value of antibiotics in pocket irrigation using a robust randomized clinical trial design and molecular microbiology approaches.
Collapse
Affiliation(s)
- Jennifer N. Walker
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Sciences Center, Houston, Texas, USA
- Department of Epidemiology, Human Genetics & Environmental Sciences, Center for Infectious Diseases, School of Public Health, University of Texas Health Sciences Center, Houston, Texas, USA
| | - Blake M. Hanson
- Department of Epidemiology, Human Genetics & Environmental Sciences, Center for Infectious Diseases, School of Public Health, University of Texas Health Sciences Center, Houston, Texas, USA
- Division of Infectious Disease, Department of Pediatrics, McGovern Medical School, University of Texas Health Sciences Center, Houston, Texas, USA
- Center for Antimicrobial Resistance and Microbial Genomics, McGovern Medical School, University of Texas Health Sciences Center, Houston, Texas, USA
| | - Tayler Hunter
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Sciences Center, Houston, Texas, USA
| | - Shelby R. Simar
- Department of Epidemiology, Human Genetics & Environmental Sciences, Center for Infectious Diseases, School of Public Health, University of Texas Health Sciences Center, Houston, Texas, USA
- Division of Infectious Disease, Department of Pediatrics, McGovern Medical School, University of Texas Health Sciences Center, Houston, Texas, USA
- Center for Antimicrobial Resistance and Microbial Genomics, McGovern Medical School, University of Texas Health Sciences Center, Houston, Texas, USA
| | - Jesus M. Duran Ramirez
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Sciences Center, Houston, Texas, USA
| | - Chloe L. P. Obernuefemann
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Rajiv P. Parikh
- Division of Plastic and Reconstructive Surgery, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Marissa M. Tenenbaum
- Division of Plastic and Reconstructive Surgery, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Julie A. Margenthaler
- Division of Surgical Oncology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Scott J. Hultgren
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Terence M. Myckatyn
- Division of Plastic and Reconstructive Surgery, Washington University School of Medicine, Saint Louis, Missouri, USA
| |
Collapse
|
8
|
Bonilla Moncada J, Ríos CA, Castro CM, Leal AL, Arturo JA, Diaz K, Duarte C, Puerto G, Moreno N, Velasco A, Moreno J. Infections in patients with adverse reactions to the use of unknown modeling substances for soft tissue enhancement in Cali, Colombia. PLoS One 2023; 18:e0277958. [PMID: 36757960 PMCID: PMC9910686 DOI: 10.1371/journal.pone.0277958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 11/07/2022] [Indexed: 02/10/2023] Open
Abstract
The infiltration of foreign materials not approved for medical purposes or of modeling substances used in soft tissue to modify the anatomical appearance for aesthetic purposes represents a serious health problem. These procedures lead to the development of delayed complications, including infections. The objective of this study was to characterize infections in patients with adverse reactions to the use of modeling substances in Cali, Colombia. A cross-sectional and descriptive study was used to determine the frequency of bacterial and fungal infections associated with complications from and adverse reactions to the use of modeling substances in 113 patients. We identified microorganisms in 22 patients and a frequency of 68.1% monomicrobial infections and 31.8% polymicrobial infections. The microorganisms identified in our study included Bacillus cereus, Mycobacterium fortuitum, and Pseudomonas stutzeri, among other microorganisms. The presence of adverse effects derived from the use of illegal modeling substances has been demonstrated; among these effects, infections occur with high frequency and place the health of the patient at risk and increase problems in health care.
Collapse
Affiliation(s)
- Jennifer Bonilla Moncada
- Department of Microbiology, National Health Institute, Bogotá, Colombia
- Biotechnology Institute, National University of Colombia, Bogotá, Colombia
| | | | | | - Aura Lucia Leal
- Department of Microbiology, National Health Institute, Bogotá, Colombia
| | | | | | - Carolina Duarte
- Department of Microbiology, National Health Institute, Bogotá, Colombia
| | - Gloria Puerto
- Department of Microbiology, National Health Institute, Bogotá, Colombia
- Department of Mycobacteria, National Health Institute, Bogotá, Colombia
| | | | - Amelia Velasco
- Department of Mycobacteria, National Health Institute, Bogotá, Colombia
| | - Jaime Moreno
- Department of Microbiology, National Health Institute, Bogotá, Colombia
- * E-mail:
| |
Collapse
|
9
|
Foroushani FT, Dzobo K, Khumalo NP, Mora VZ, de Mezerville R, Bayat A. Advances in surface modifications of the silicone breast implant and impact on its biocompatibility and biointegration. Biomater Res 2022; 26:80. [PMID: 36517896 PMCID: PMC9749192 DOI: 10.1186/s40824-022-00314-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/31/2022] [Indexed: 12/15/2022] Open
Abstract
Silicone breast implants are commonly used for cosmetic and oncologic surgical indications owing to their inertness and being nontoxic. However, complications including capsular contracture and anaplastic large cell lymphoma have been associated with certain breast implant surfaces over time. Novel implant surfaces and modifications of existing ones can directly impact cell-surface interactions and enhance biocompatibility and integration. The extent of foreign body response induced by breast implants influence implant success and integration into the body. This review highlights recent advances in breast implant surface technologies including modifications of implant surface topography and chemistry and effects on protein adsorption, and cell adhesion. A comprehensive online literature search was performed for relevant articles using the following keywords silicone breast implants, foreign body response, cell adhesion, protein adsorption, and cell-surface interaction. Properties of silicone breast implants impacting cell-material interactions including surface roughness, wettability, and stiffness, are discussed. Recent studies highlighting both silicone implant surface activation strategies and modifications to enhance biocompatibility in order to prevent capsular contracture formation and development of anaplastic large cell lymphoma are presented. Overall, breast implant surface modifications are being extensively investigated in order to improve implant biocompatibility to cater for increased demand for both cosmetic and oncologic surgeries.
Collapse
Affiliation(s)
- Fatemeh Tavakoli Foroushani
- Wound and Keloid Scarring Research Unit, Hair and Skin Research Laboratory, Division of Dermatology, Department of Medicine, The South African Medical Research Council, University of Cape Town, Cape Town, South Africa
| | - Kevin Dzobo
- Wound and Keloid Scarring Research Unit, Hair and Skin Research Laboratory, Division of Dermatology, Department of Medicine, The South African Medical Research Council, University of Cape Town, Cape Town, South Africa
| | - Nonhlanhla P Khumalo
- Wound and Keloid Scarring Research Unit, Hair and Skin Research Laboratory, Division of Dermatology, Department of Medicine, The South African Medical Research Council, University of Cape Town, Cape Town, South Africa
| | | | | | - Ardeshir Bayat
- Wound and Keloid Scarring Research Unit, Hair and Skin Research Laboratory, Division of Dermatology, Department of Medicine, The South African Medical Research Council, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
10
|
An In Vitro Model of the Efficacy of Breast Implant Irrigant Solutions Against Gram-Negative Infections. Ann Plast Surg 2022; 89:679-683. [DOI: 10.1097/sap.0000000000003302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Lima A, França A, Muzny CA, Taylor CM, Cerca N. DNA extraction leads to bias in bacterial quantification by qPCR. Appl Microbiol Biotechnol 2022; 106:7993-8006. [PMID: 36374332 PMCID: PMC10493044 DOI: 10.1007/s00253-022-12276-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 11/16/2022]
Abstract
Quantitative PCR (qPCR) has become a widely used technique for bacterial quantification. The affordability, ease of experimental design, reproducibility, and robustness of qPCR experiments contribute to its success. The establishment of guidelines for minimum information for publication of qPCR experiments, now more than 10 years ago, aimed to mitigate the publication of contradictory data. Unfortunately, there are still a significant number of recent research articles that do not consider the main pitfalls of qPCR for quantification of biological samples, which undoubtedly leads to biased experimental conclusions. qPCR experiments have two main issues that need to be properly tackled: those related to the extraction and purification of genomic DNA and those related to the thermal amplification process. This mini-review provides an updated literature survey that critically analyzes the following key aspects of bacterial quantification by qPCR: (i) the normalization of qPCR results by using exogenous controls, (ii) the construction of adequate calibration curves, and (iii) the determination of qPCR reaction efficiency. It is primarily focused on original papers published last year, where qPCR was applied to quantify bacterial species in different types of biological samples, including multi-species biofilms, human fluids, and water and soil samples. KEY POINTS: • qPCR is a widely used technique used for absolute bacterial quantification. • Recently published papers lack proper qPCR methodologies. • Not including proper qPCR controls significantly affect experimental conclusions.
Collapse
Affiliation(s)
- Angela Lima
- Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), Centre of Biological Engineering (CEB), University of Minho, Braga, Portugal
- LABBELS -Associate Laboratory, Braga, Guimarães, Portugal
| | - Angela França
- Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), Centre of Biological Engineering (CEB), University of Minho, Braga, Portugal
- LABBELS -Associate Laboratory, Braga, Guimarães, Portugal
| | - Christina A Muzny
- Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, USA
| | - Christopher M Taylor
- Department of Microbiology, Immunology, and Parasitology & Microbial Genomics Resource Group, Louisiana State University Health Sciences Center, New Orleans, USA
| | - Nuno Cerca
- Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), Centre of Biological Engineering (CEB), University of Minho, Braga, Portugal.
- LABBELS -Associate Laboratory, Braga, Guimarães, Portugal.
| |
Collapse
|
12
|
Lee SW, Johnson EL, Chediak JA, Shin H, Wang Y, Phillips KS, Ren D. High-Throughput Biofilm Assay to Investigate Bacterial Interactions with Surface Topographies. ACS APPLIED BIO MATERIALS 2022; 5:3816-3825. [PMID: 35816421 PMCID: PMC9382637 DOI: 10.1021/acsabm.2c00367] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
The specific topography of biomaterials plays an important
role
in their biological interactions with cells and thus the safety of
medical implants. Antifouling materials can be engineered with topographic
features to repel microbes. Meanwhile, undesired topographies of implants
can cause complications such as breast implant-associated anaplastic
large cell lymphoma (BIA-ALCL). While the cause of BIA-ALCL is not
well understood, it is speculated that textured surfaces are prone
to bacterial biofilm formation as a contributing factor. To guide
the design of safer biomaterials and implants, quantitative screening
approaches are needed to assess bacterial adhesion to different topographic
surface features. Here we report the development of a high-throughput
microplate biofilm assay for such screening. The assay was used to
test a library of polydimethylsiloxane (PDMS) textures composed of
varying sizes of recessive features and distances between features
including those in the range of breast implant textures. Outliers
of patterns prone to bacterial adhesion were further studied using
real-time confocal fluorescence microscopy. The results from these
analyses revealed that surface area itself is a poor predictor for
adhesion, while the size and spacing of topographic features play
an important role. This high-throughput biofilm assay can be applied
to studying bacteria–material interactions and rational development
of materials that inhibit bacterial colonization.
Collapse
Affiliation(s)
- Sang Won Lee
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States.,Office of Medical Products and Tobacco, Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, Division of Biology, Chemistry, and Materials Science, United States Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Erick L Johnson
- Mechanical and Industrial Engineering, Montana State University, Bozeman, Montana 59717, United States
| | - J Alex Chediak
- Office of Medical Products and Tobacco, Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, Division of Biology, Chemistry, and Materials Science, United States Food and Drug Administration, Silver Spring, Maryland 20993, United States.,Department of Mathematical Sciences, California Baptist University, Riverside, California 92504, United States
| | - Hainsworth Shin
- Office of Medical Products and Tobacco, Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, Division of Biology, Chemistry, and Materials Science, United States Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Yi Wang
- Office of Medical Products and Tobacco, Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, Division of Biology, Chemistry, and Materials Science, United States Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - K Scott Phillips
- Office of Medical Products and Tobacco, Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, Division of Biology, Chemistry, and Materials Science, United States Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Dacheng Ren
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States.,Department of Civil and Environmental Engineering, Syracuse University, Syracuse, New York 13244, United States.,Department of Biology, Syracuse University, Syracuse, New York 13244, United States
| |
Collapse
|
13
|
Di Domenico EG, Oliva A, Guembe M. The Current Knowledge on the Pathogenesis of Tissue and Medical Device-Related Biofilm Infections. Microorganisms 2022; 10:microorganisms10071259. [PMID: 35888978 PMCID: PMC9322301 DOI: 10.3390/microorganisms10071259] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/13/2022] [Accepted: 06/16/2022] [Indexed: 02/04/2023] Open
Abstract
Biofilm is the trigger for the majority of infections caused by the ability of microorganisms to adhere to tissues and medical devices. Microbial cells embedded in the biofilm matrix are highly tolerant to antimicrobials and escape the host immune system. Thus, the refractory nature of biofilm-related infections (BRIs) still represents a great challenge for physicians and is a serious health threat worldwide. Despite its importance, the microbiological diagnosis of a BRI is still difficult and not routinely assessed in clinical microbiology. Moreover, biofilm bacteria are up to 100–1000 times less susceptible to antibiotics than their planktonic counterpart. Consequently, conventional antibiograms might not be representative of the bacterial drug susceptibility in vivo. The timely recognition of a BRI is a crucial step to directing the most appropriate biofilm-targeted antimicrobial strategy.
Collapse
Affiliation(s)
- Enea Gino Di Domenico
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, 00185 Rome, Italy;
| | - Alessandra Oliva
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy;
| | - María Guembe
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
- Correspondence: ; Tel.: +34-914-269-595
| |
Collapse
|
14
|
Fernández-Ibarburu B, Díaz-Navarro M, Ibarra G, Rivera A, Hafian R, Irigoyen Ã, Carrillo R, Pérez-Cano R, Muñoz P, García-Ruano Á, Lasso JM, Guembe M. Efficacy of Povidone Iodine Against Microbial Biofilms in Breast Implants With Different Textures: Results From an in vitro Study. Front Microbiol 2022; 13:868347. [PMID: 35422778 PMCID: PMC9002313 DOI: 10.3389/fmicb.2022.868347] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/04/2022] [Indexed: 11/13/2022] Open
Abstract
Background In the practice of breast augmentation and reconstruction, implant irrigation with various solutions has been widely used to prevent infection and capsular contracture, but to date, there is no consensus on the optimal protocol to use. Recently, application of povidone iodine (PI) for 30 min has shown in vitro to be the most effective irrigating formula in reducing contamination in smooth breast implants. However, as 30 min is not feasible intraoperatively, it is necessary to determine whether shorter times could be equally effective as well as to test it in both smooth and textured implants. Methods We tested the efficacy of 10% PI at 1', 3', and 5' against biofilms of 8 strains (2 ATCC and 6 clinical) of Staphylococcus spp. on silicone disks obtained from Mentor® and Polytech® implants of different textures. We analyzed the percentage reduction of cfu counts, cell viability and bacterial density between treatment (PI) and control (sterile saline, SS) groups for each time of application. We consider clinical significance when > 25% reduction was observed in cell viability or bacterial density. Results All textured implants treated with PI at any of the 3 exposure times reduced 100% bacterial load by culture. However, none of the implants reached enough clinical significance in percentage reduction of living cells. Regarding bacterial density, only 25-50 μm Polytxt® Polytech® implants showed significant reduction at the three PI exposure times. Conclusion PI is able to inhibit bacterial growth applied on the surface of breast implants regardless of the exposure time. However, no significant reduction on living cells or bacterial density was observed. This lack of correlation may be caused by differences in texture that directly affect PI absorption.
Collapse
Affiliation(s)
| | - Marta Díaz-Navarro
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Gorka Ibarra
- Department of Plastic Surgery, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Andrés Rivera
- Department of Plastic Surgery, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Rama Hafian
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Ãlvaro Irigoyen
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Raquel Carrillo
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Rosa Pérez-Cano
- Department of Plastic Surgery, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Patricia Muñoz
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,CIBER Enfermedades Respiratorias-CIBERES (CB06/06/0058), Madrid, Spain.,Medicine Department, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Ángela García-Ruano
- Department of Plastic Surgery, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - José M Lasso
- Department of Plastic Surgery, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - María Guembe
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| |
Collapse
|
15
|
Silicon breast implants’ texture affecting bacterial biofilm formation. SRP ARK CELOK LEK 2022. [DOI: 10.2298/sarh211012065m] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Introduction/Objective. The most important etiologic factors for both, capsular contracture (CC) and breast implant-associated anaplastic large cell lymphoma (BIA-ALCL) is subclinical infection, defined as a response of an organism on presence of biofilm on the implant surface. The aim of this research was to examine the possibility of biofilm formation of four different bacteria (Staphylococcus epidermidis, Staphylococcus aureus, Pseudomonas aeruginosa, and Ralstonia picketti) on three differently textured silicone breast implants (Siltex, Mentor, pore size 70?150 ?m; MESMORsensitive, Polytech, pore size 50?900 ?m; and SilkSurface, Motiva pores 13 ?m) in vitro. Methods. Samples of silicone breast implant capsules (sized 1 ? 1 cm) were divided into three groups according to texture. After sterilization, 30 samples in every group were contaminated with 100 ?l of examined bacterial broth, followed by incubation which led to biofilm formation. For testing the capability of biofilm formation, modified technique with microtitar plates described by Stepanovic? was used. Results. All four examined bacteria (Staphylococcus epidermidis, Staphylococcus aureus, Pseudomonas aeruginosa, and Ralstonia picketti) form more biofilm on implants with pore sizes 50?900 ?m compared to implants with pore size 70?150 ?m and those with 13 ?m. Statistical significance was found in biofilm formation on implants with pores 70?150 ?m compared to implants with pores 13 ?m. The only exception was P. aeuruginosa which did not show significant difference in biofilm formation on implants 70?150 ?m and 13 ?m. Conclusion. Silicone breast implants with micro and nanotexture should be chosen in order to prevent biofilm formation and possible consequent complications.
Collapse
|