1
|
Glänzel NM, da Rosa-Junior NT, Signori MF, de Andrade Silveira J, Pinheiro CV, Marcuzzo MB, Campos-Carraro C, da Rosa Araujo AS, Schiöth HB, Wajner M, Leipnitz G. Increased ROS levels, antioxidant defense disturbances and bioenergetic disruption induced by thiosulfate administration in the brain of neonatal rats. Metab Brain Dis 2024; 40:73. [PMID: 39704910 DOI: 10.1007/s11011-024-01510-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 12/15/2024] [Indexed: 12/21/2024]
Abstract
Sulfite oxidase deficiencies, either caused by deficiency of the apoenzyme or the molybdenum cofactor, and ethylmalonic encephalopathy are inherited disorders that impact sulfur metabolism. These patients present with severe neurodeterioration accompanied by cerebral cortex and cerebellum abnormalities, and high thiosulfate levels in plasma and tissues, including the brain. We aimed to clarify the mechanisms of such abnormalities, so we assessed the ex vivo effects of thiosulfate administration on energetic status and oxidative stress markers in cortical and cerebellar tissues of newborn rats. Thiosulfate (0.5 µmol/g) or PBS (vehicle) was injected into the fourth ventricle of rat pups. Thirty minutes after the injection, animals were euthanized and the brain structures were utilized for the experiments. Our data showed that thiosulfate decreased the reduced glutathione (GSH) concentrations, and superoxide dismutase (SOD), catalase (CAT) and glutathione S-transferase (GST) activities in the cortical structure. Thiosulfate also increased DCFH oxidation, hydrogen peroxide generation and glutathione reductase activity. In the cerebellum, thiosulfate reduced SOD and glutathione peroxidase activities but increased GST and CAT activities as well as DCFH oxidation. Regarding energy metabolism, thiosulfate specifically decreased complex IV activity in the cortex, whereas it increased cerebellar complex I and creatine kinase activities, indicating bioenergetic disturbances. The results suggest that the accumulation of thiosulfate causing redox disruption and bioenergetic alterations has a prominent role in the pathogenesis of sulfur metabolism deficiencies.
Collapse
Affiliation(s)
- Nícolas Manzke Glänzel
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, 90035-003, RS, Brazil
| | - Nevton Teixeira da Rosa-Junior
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, 90035-003, RS, Brazil
| | - Marian F Signori
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, 90035-003, RS, Brazil
| | - Josyane de Andrade Silveira
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, 90035-003, RS, Brazil
| | - Camila Vieira Pinheiro
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, 90035-003, RS, Brazil
| | - Manuela Bianchin Marcuzzo
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, 90035-003, RS, Brazil
| | - Cristina Campos-Carraro
- Laboratório de Fisiologia Cardiovascular, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Alex Sander da Rosa Araujo
- Laboratório de Fisiologia Cardiovascular, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Helgi B Schiöth
- Functional Pharmacology and Neuroscience, Department of Surgical Sciences, Uppsala University, Uppsala, 75124, Sweden
| | - Moacir Wajner
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, 90035-003, RS, Brazil
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, Porto Alegre, 2350, 90035-903, RS, Brazil
| | - Guilhian Leipnitz
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, 90035-003, RS, Brazil.
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, 90035-003, RS, Brazil.
- Functional Pharmacology and Neuroscience, Department of Surgical Sciences, Uppsala University, Uppsala, 75124, Sweden.
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, 90035-003, RS, Brazil.
- Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, 90035-003, RS, Brazil.
| |
Collapse
|
2
|
Ge GR, Song W, Giannetto MJ, Rolland JP, Nedergaard M, Parker KJ. Mouse brain elastography changes with sleep/wake cycles, aging, and Alzheimer's disease. Neuroimage 2024; 295:120662. [PMID: 38823503 PMCID: PMC11409907 DOI: 10.1016/j.neuroimage.2024.120662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/05/2024] [Accepted: 05/30/2024] [Indexed: 06/03/2024] Open
Abstract
Understanding the physiological processes in aging and how neurodegenerative disorders affect cognitive function is a high priority for advancing human health. One specific area of recently enabled research is the in vivo biomechanical state of the brain. This study utilized reverberant optical coherence elastography, a high-resolution elasticity imaging method, to investigate stiffness changes during the sleep/wake cycle, aging, and Alzheimer's disease in murine models. Four-dimensional scans of 44 wildtype mice, 13 mice with deletion of aquaporin-4 water channel, and 12 mice with Alzheimer-related pathology (APP/PS1) demonstrated that (1) cortical tissue became softer (on the order of a 10% decrease in shear wave speed) when young wildtype mice transitioned from wake to anesthetized, yet this effect was lost in aging and with mice overexpressing amyloid-β or lacking the water channel AQP4. (2) Cortical stiffness increased with age in all mice lines, but wildtype mice exhibited the most prominent changes as a function of aging. The study provides novel insight into the brain's biomechanics, the constraints of fluid flow, and how the state of brain activity affects basic properties of cortical tissues.
Collapse
Affiliation(s)
- Gary R Ge
- The Institute of Optics, University of Rochester, 480 Intercampus Drive, Rochester, NY 14627, USA
| | - Wei Song
- Center for Translational Neuromedicine, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Michael J Giannetto
- Center for Translational Neuromedicine, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Jannick P Rolland
- The Institute of Optics, University of Rochester, 480 Intercampus Drive, Rochester, NY 14627, USA; Department of Biomedical Engineering, University of Rochester, 204 Robert B. Goergen Hall, Rochester, NY 14627, USA; Center for Visual Science, University of Rochester, 361 Meliora Hall, Rochester, NY 14627, USA
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA; Center for Translational Neuromedicine, University of Copenhagen, Blegdamsvej 3B, 2200-N, Denmark.
| | - Kevin J Parker
- Department of Biomedical Engineering, University of Rochester, 204 Robert B. Goergen Hall, Rochester, NY 14627, USA; Department of Electrical and Computer Engineering, University of Rochester, 500 Computer Studies Building, Rochester, NY 14627, USA; Department of Imaging Sciences (Radiology), University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| |
Collapse
|
3
|
He Z, Soullié P, Lefebvre P, Ambarki K, Felblinger J, Odille F. Changes of in vivo electrical conductivity in the brain and torso related to age, fat fraction and sex using MRI. Sci Rep 2024; 14:16109. [PMID: 38997324 PMCID: PMC11245625 DOI: 10.1038/s41598-024-67014-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024] Open
Abstract
This work was inspired by the observation that a majority of MR-electrical properties tomography studies are based on direct comparisons with ex vivo measurements carried out on post-mortem samples in the 90's. As a result, the in vivo conductivity values obtained from MRI in the megahertz range in different types of tissues (brain, liver, tumors, muscles, etc.) found in the literature may not correspond to their ex vivo equivalent, which still serves as a reference for electromagnetic modelling. This study aims to pave the way for improving current databases since the definition of personalized electromagnetic models (e.g. for Specific Absorption Rate estimation) would benefit from better estimation. Seventeen healthy volunteers underwent MRI of both brain and thorax/abdomen using a three-dimensional ultrashort echo-time (UTE) sequence. We estimated conductivity (S/m) in several classes of macroscopic tissue using a customized reconstruction method from complex UTE images, and give general statistics for each of these regions (mean-median-standard deviation). These values are used to find possible correlations with biological parameters such as age, sex, body mass index and/or fat volume fraction, using linear regression analysis. In short, the collected in vivo values show significant deviations from the ex vivo values in conventional databases, and we show significant relationships with the latter parameters in certain organs for the first time, e.g. a decrease in brain conductivity with age.
Collapse
Affiliation(s)
- Zhongzheng He
- IADI U1254, INSERM and Université de Lorraine, Nancy, France
| | - Paul Soullié
- IADI U1254, INSERM and Université de Lorraine, Nancy, France.
| | | | | | - Jacques Felblinger
- IADI U1254, INSERM and Université de Lorraine, Nancy, France
- CIC-IT 1433, INSERM, Université de Lorraine and CHRU Nancy, Nancy, France
| | - Freddy Odille
- IADI U1254, INSERM and Université de Lorraine, Nancy, France
- CIC-IT 1433, INSERM, Université de Lorraine and CHRU Nancy, Nancy, France
| |
Collapse
|
4
|
Thomas DC, Oros-Peusquens AM, Schöneck M, Willuweit A, Abbas Z, Zimmermann M, Felder J, Celik A, Shah NJ. In Vivo Measurement of Rat Brain Water Content at 9.4 T MR Using Super-Resolution Reconstruction: Validation With Ex Vivo Experiments. J Magn Reson Imaging 2024; 60:161-172. [PMID: 37855368 DOI: 10.1002/jmri.29061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/20/2023] Open
Abstract
BACKGROUND Given that changes in brain water content are often correlated with disease, investigating water content non-invasively and in vivo could lead to a better understanding of the pathogenesis of several neurologic diseases. PURPOSE To adapt a super-resolution-based technique, previously developed for humans, to the rat brain and report in vivo high-resolution (HR) water content maps in comparison with ex vivo wet/dry methods. STUDY TYPE Prospective. ANIMAL MODEL Eight healthy male Wistar rats. FIELD STRENGTH/SEQUENCE 9.4-T, multi-echo gradient-echo (mGRE) sequence. ASSESSMENT Using super-resolution reconstruction (SRR), a HR mGRE image (200 μm isotropic) was reconstructed from three low-resolution (LR) orthogonal whole-brain images in each animal, which was followed by water content mapping in vivo. The animals were subsequently sacrificed, the brains excised and divided into five regions (front left, front right, middle left, middle right, and cerebellum-brainstem regions), and the water content was measured ex vivo using wet/dry measurements as the reference standard. The water content values of the in vivo and ex vivo methods were then compared for the whole brain and also for the different regions separately. STATISTICAL TESTS Friedman's non-parametric test was used to test difference between the five regions, and Pearson's correlation coefficient was used for correlation between in vivo and ex vivo measurements. A P-value <0.05 was considered statistically significant. RESULTS Water content values derived from in vivo MR measurements showed strong correlations with water content measured ex vivo at a regional level (r = 0.902). Different brain regions showed significantly different water content values. Water content values were highest in the frontal brain, followed by the midbrain, and lowest in the cerebellum and brainstem regions. DATA CONCLUSION An in vivo technique to achieve HR isotropic water content maps in the rat brain using SRR was adopted in this study. The MRI-derived water content values obtained using the technique showed strong correlations with water content values obtained using ex vivo wet/dry methods. LEVEL OF EVIDENCE 1 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Dennis C Thomas
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, Jülich, Germany
- Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | | | - Michael Schöneck
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, Jülich, Germany
| | - Antje Willuweit
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, Jülich, Germany
| | - Zaheer Abbas
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, Jülich, Germany
| | - Markus Zimmermann
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, Jülich, Germany
| | - Jörg Felder
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, Jülich, Germany
- RWTH Aachen University, Aachen, Germany
| | - Avdo Celik
- Institute of Neuroscience and Medicine 11, INM-11, JARA, Forschungszentrum Jülich, Jülich, Germany
| | - Nadim Joni Shah
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, Jülich, Germany
- Institute of Neuroscience and Medicine 11, INM-11, JARA, Forschungszentrum Jülich, Jülich, Germany
- JARA-BRAIN-Translational Medicine, Aachen, Germany
- Department of Neurology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
5
|
Sacchi M, Sauter-Starace F, Mailley P, Texier I. Resorbable conductive materials for optimally interfacing medical devices with the living. Front Bioeng Biotechnol 2024; 12:1294238. [PMID: 38449676 PMCID: PMC10916519 DOI: 10.3389/fbioe.2024.1294238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/02/2024] [Indexed: 03/08/2024] Open
Abstract
Implantable and wearable bioelectronic systems are arising growing interest in the medical field. Linking the microelectronic (electronic conductivity) and biological (ionic conductivity) worlds, the biocompatible conductive materials at the electrode/tissue interface are key components in these systems. We herein focus more particularly on resorbable bioelectronic systems, which can safely degrade in the biological environment once they have completed their purpose, namely, stimulating or sensing biological activity in the tissues. Resorbable conductive materials are also explored in the fields of tissue engineering and 3D cell culture. After a short description of polymer-based substrates and scaffolds, and resorbable electrical conductors, we review how they can be combined to design resorbable conductive materials. Although these materials are still emerging, various medical and biomedical applications are already taking shape that can profoundly modify post-operative and wound healing follow-up. Future challenges and perspectives in the field are proposed.
Collapse
Affiliation(s)
- Marta Sacchi
- Université Grenoble Alpes, CEA, LETI-DTIS (Département des Technologies pour l’Innovation en Santé), Grenoble, France
- Université Paris-Saclay, CEA, JACOB-SEPIA, Fontenay-aux-Roses, France
| | - Fabien Sauter-Starace
- Université Grenoble Alpes, CEA, LETI-DTIS (Département des Technologies pour l’Innovation en Santé), Grenoble, France
| | - Pascal Mailley
- Université Grenoble Alpes, CEA, LETI-DTIS (Département des Technologies pour l’Innovation en Santé), Grenoble, France
| | - Isabelle Texier
- Université Grenoble Alpes, CEA, LETI-DTIS (Département des Technologies pour l’Innovation en Santé), Grenoble, France
| |
Collapse
|
6
|
Walter C, Balouchzadeh R, Garcia KE, Kroenke CD, Pathak A, Bayly PV. Multi-scale measurement of stiffness in the developing ferret brain. Sci Rep 2023; 13:20583. [PMID: 37996465 PMCID: PMC10667369 DOI: 10.1038/s41598-023-47900-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/20/2023] [Indexed: 11/25/2023] Open
Abstract
Cortical folding is an important process during brain development, and aberrant folding is linked to disorders such as autism and schizophrenia. Changes in cell numbers, size, and morphology have been proposed to exert forces that control the folding process, but these changes may also influence the mechanical properties of developing brain tissue. Currently, the changes in tissue stiffness during brain folding are unknown. Here, we report stiffness in the developing ferret brain across multiple length scales, emphasizing changes in folding cortical tissue. Using rheometry to measure the bulk properties of brain tissue, we found that overall brain stiffness increases with age over the period of cortical folding. Using atomic force microscopy to target the cortical plate, we found that the occipital cortex increases in stiffness as well as stiffness heterogeneity over the course of development and folding. These findings can help to elucidate the mechanics of the cortical folding process by clarifying the concurrent evolution of tissue properties.
Collapse
Affiliation(s)
- Christopher Walter
- Mechanical Engineering and Materials Science, Washington University, St. Louis, USA.
| | - Ramin Balouchzadeh
- Mechanical Engineering and Materials Science, Washington University, St. Louis, USA
| | - Kara E Garcia
- Radiology and Imaging Sciences, Indiana University School of Medicine, Evansville, IN, USA
| | - Christopher D Kroenke
- Advanced Imaging Research Center and Oregon National Primate Research Center Division of Neuroscience, Oregon Health and Science University, Portland, OR, USA
| | - Amit Pathak
- Mechanical Engineering and Materials Science, Washington University, St. Louis, USA
| | - Philip V Bayly
- Mechanical Engineering and Materials Science, Washington University, St. Louis, USA.
| |
Collapse
|
7
|
Shinotsuka T, Miyazawa T, Karasawa K, Ozeki Y, Yasui M, Nuriya M. Stimulated Raman scattering microscopy reveals a unique and steady nature of brain water dynamics. CELL REPORTS METHODS 2023; 3:100519. [PMID: 37533646 PMCID: PMC10391342 DOI: 10.1016/j.crmeth.2023.100519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/26/2023] [Accepted: 06/07/2023] [Indexed: 08/04/2023]
Abstract
The biological activities of substances in the brain are shaped by their spatiotemporal dynamics in brain tissues, all of which are regulated by water dynamics. In contrast to solute dynamics, water dynamics have been poorly characterized, owing to the lack of appropriate analytical tools. To overcome this limitation, we apply stimulated Raman scattering multimodal multiphoton microscopy to live brain tissues. The microscopy system allows for the visualization of deuterated water, fluorescence-labeled solutes, and cellular structures at high spatiotemporal resolution, revealing that water moves faster than fluorescent molecules in brain tissues. Detailed analyses demonstrate that water, unlike solutes, diffuses homogeneously in brain tissues without differences between the intra- and the extracellular routes. Furthermore, we find that the water dynamics are steady during development and ischemia, when diffusions of solutes are severely affected. Thus, our approach reveals routes and uniquely robust properties of water diffusion in brain tissues.
Collapse
Affiliation(s)
- Takanori Shinotsuka
- Department of Pharmacology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Tsuyoshi Miyazawa
- Department of Pharmacology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Keiko Karasawa
- Department of Pharmacology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Yasuyuki Ozeki
- Department of Electrical Engineering and Information Systems, The University of Tokyo, Tokyo 113-8656, Japan
| | - Masato Yasui
- Department of Pharmacology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Mutsuo Nuriya
- Department of Pharmacology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
- Graduate School of Environment and Information Sciences, Yokohama National University, 79-1 Tokiwadai, Hodogaya, Yokohama, Kanagawa 240-8501, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
8
|
Ge GR, Rolland JP, Song W, Nedergaard M, Parker KJ. Fluid compartments influence elastography of the aging mouse brain. Phys Med Biol 2023; 68:095004. [PMID: 36996842 PMCID: PMC10108361 DOI: 10.1088/1361-6560/acc922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/30/2023] [Indexed: 04/01/2023]
Abstract
Objective. Elastography of the brain has the potential to reveal subtle but clinically important changes in the structure and composition as a function of age, disease, and injury.Approach. In order to quantify the specific effects of aging on mouse brain elastography, and to determine the key factors influencing observed changes, we applied optical coherence tomography reverberant shear wave elastography at 2000 Hz to a group of wild-type healthy mice ranging from young to old age.Main results. We found a strong trend towards increasing stiffness with age, with an approximately 30% increase in shear wave speed from 2 months to 30 months within this sampled group. Furthermore, this appears to be strongly correlated with decreasing measures of whole brain fluid content, so older brains have less water and are stiffer. Rheological models are applied, and the strong effect is captured by specific assignment of changes to the glymphatic compartment of the brain fluid structures along with a correlated change in the parenchymal stiffness.Significance. Short-term and longer-term changes in elastography measures may provide a sensitive biomarker of progressive and fine-scale changes in the glymphatic fluid channels and parenchymal components of the brain.
Collapse
Affiliation(s)
- Gary R Ge
- Institute of Optics, University of Rochester, 480 Intercampus Drive, Box 270186, Rochester, NY 14627, United States of America
| | - Jannick P Rolland
- Institute of Optics, University of Rochester, 480 Intercampus Drive, Box 270186, Rochester, NY 14627, United States of America
| | - Wei Song
- Center for Translational Neuromedicine, University of Rochester Medical Center, 601 Elmwood Avenue, Box 645, Rochester, NY 14642, United States of America
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, University of Rochester Medical Center, 601 Elmwood Avenue, Box 645, Rochester, NY 14642, United States of America
| | - Kevin J Parker
- Department of Electrical and Computer Engineering, University of Rochester, 724 Computer Studies Building, Box 270231, Rochester, NY 14627, United States of America
| |
Collapse
|
9
|
Balouchzadeh R, Bayly PV, Garcia KE. Effects of stress-dependent growth on evolution of sulcal direction and curvature in models of cortical folding. BRAIN MULTIPHYSICS 2023; 4:100065. [PMID: 38948884 PMCID: PMC11213281 DOI: 10.1016/j.brain.2023.100065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
The majority of human brain folding occurs during the third trimester of gestation. Although many studies have investigated the physical mechanisms of brain folding, a comprehensive understanding of this complex process has not yet been achieved. In mechanical terms, the "differential growth hypothesis" suggests that the formation of folds results from a difference in expansion rates between cortical and subcortical layers, which eventually leads to mechanical instability akin to buckling. It has also been observed that axons, a substantial component of subcortical tissue, can elongate or shrink under tensile or compressive stress, respectively. Previous work has proposed that this cell-scale behavior in aggregate can produce stress-dependent growth in the subcortical layers. The current study investigates the potential role of stress-dependent growth on cortical surface morphology, in particular the variations in folding direction and curvature over the course of development. Evolution of sulcal direction and mid-cortical surface curvature were calculated from finite element simulations of three-dimensional folding in four different initial geometries: (i) sphere; (ii) axisymmetric oblate spheroid; (iii) axisymmetric prolate spheroid; and (iv) triaxial spheroid. The results were compared to mid-cortical surface reconstructions from four preterm human infants, imaged and analyzed at four time points during the period of brain folding. Results indicate that models incorporating subcortical stress-dependent growth predict folding patterns that more closely resemble those in the developing human brain. Statement of Significance Cortical folding is a critical process in human brain development. Aberrant folding is associated with disorders such as autism and schizophrenia, yet our understanding of the physical mechanism of folding remains limited. Ultimately mechanical forces must shape the brain. An important question is whether mechanical forces simply deform tissue elastically, or whether stresses in the tissue modulate growth. Evidence from this paper, consisting of quantitative comparisons between patterns of folding in the developing human brain and corresponding patterns in simulations, supports a key role for stress-dependent growth in cortical folding.
Collapse
Affiliation(s)
- Ramin Balouchzadeh
- Mechanical Engineering and Materials Science, Washington University in St. Louis, Missouri, United States of America
| | - Philip V. Bayly
- Mechanical Engineering and Materials Science, Washington University in St. Louis, Missouri, United States of America
| | - Kara E. Garcia
- Mechanical Engineering and Materials Science, Washington University in St. Louis, Missouri, United States of America
- Radiology and Imaging Sciences, Indiana University School of Medicine, Indiana, United States of America
| |
Collapse
|
10
|
Lee GY, Kim OH, Kim ER, Lee HJ. Biomechanical forces in the aged brain: Relationship to AD. Life Sci 2022; 312:121237. [PMID: 36436618 DOI: 10.1016/j.lfs.2022.121237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
The pathogenesis of neurodegenerative disorders, including Alzheimer's disease, has been studied with a focus on biochemical mechanisms, such as the amyloid-β plaque deposition and removal. Recently, the importance of brain microenvironmental cues, which comprise the sophisticated cellular and fluid system, has been emphasized in the aged brain or in pathological conditions. Especially, substrate rigidity and biomechanical forces of the brain microenvironment determine the function of glial cells and neurons; furthermore, these microenvironmental cues change with age. However, our understanding of role of the biomechanical cues on glial cells and neurons is relatively poor. In this review, we briefly introduce an overview of biomechanical forces that present in the aged brain and its sensations, and then examine the brain in Alzheimer's disease, which constitutes a representative neurodegenerative disorder, with regard to changes in the biomechanical forces associated with disease and aging.
Collapse
Affiliation(s)
- Gyeong Yun Lee
- Department of Anatomy and Cell Biology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Ok-Hyeon Kim
- Department of Anatomy and Cell Biology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Eun Ran Kim
- Division of Endocrine and Kidney Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea.
| | - Hyun Jung Lee
- Department of Anatomy and Cell Biology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Republic of Korea.
| |
Collapse
|