1
|
Ma F, Ma R, Zhao L. Effects of Antimicrobial Peptides on Antioxidant Properties, Non-specific Immune Response and Gut Microbes of Tsinling Lenok Trout (Brachymystax lenok tsinlingensis). Biochem Genet 2025; 63:85-103. [PMID: 38411941 DOI: 10.1007/s10528-024-10708-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 01/17/2024] [Indexed: 02/28/2024]
Abstract
Antimicrobial peptides (AMPs) are an important part of non-specific immunity and play a key role in the cellular host defense against pathogens and tissue injury infections. We investigated the effects of AMP supplementation on the antioxidant capacity, non-specific immunity, and gut microbiota of tsinling lenok trout. 240 fish were fed diets (CT, A120, A240 and A480) containing different amounts of AMP peptides (0, 120 mg kg-1, 240 mg kg-1, 480 mg kg-1) for 8 weeks. Our results showed that the activity of total antioxidant capacity (T-SOD) and glutathione peroxidase (GSH-Px), lysozyme (LZM), catalase (CAT) and acid phosphatase (ACP) in the A240 and A480 group were higher than that in the CT group (P < 0.05). The content of malondialdehyde (MDA) in AMP group was significantly lower than that in CT group (P < 0.05). Furthermore, we harvested the mid-gut and applied next-generation sequencing of 16S rDNA. The results showed that the abundance of Halomonas in AMP group was significantly lower than that in CT group. Functional analysis showed that the abundance of chloroalkane and chloroalkene degradation pathway increased significantly in AMP group. In conclusion, AMP enhanced the antioxidant capacity, non-specific immunity, and intestinal health of tsinling lenok trout.
Collapse
Affiliation(s)
- Fang Ma
- Key Laboratory of Resource Utilization of Agricultural Solid Waste in Gansu Province, Tianshui Normal University, South Xihe Road, Qinzhou District, Tianshui, 741000, Gansu, People's Republic of China.
| | - Ruilin Ma
- Key Laboratory of Resource Utilization of Agricultural Solid Waste in Gansu Province, Tianshui Normal University, South Xihe Road, Qinzhou District, Tianshui, 741000, Gansu, People's Republic of China
| | - Lei Zhao
- Key Laboratory of Resource Utilization of Agricultural Solid Waste in Gansu Province, Tianshui Normal University, South Xihe Road, Qinzhou District, Tianshui, 741000, Gansu, People's Republic of China
| |
Collapse
|
2
|
Basharat S, Zhai L, Jiang F, Asjad T, Khan A, Liao X. Screening and Comparative Genomics of Probiotic Lactic Acid Bacteria from Bee Bread of Apis Cerana: Influence of Stevia and Stevioside on Bacterial Cell Growth and the Potential of Fermented Stevia as an Antidiabetic, Antioxidant, and Antifungal Agent. Microorganisms 2025; 13:216. [PMID: 40005583 PMCID: PMC11857352 DOI: 10.3390/microorganisms13020216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 02/27/2025] Open
Abstract
The purpose of this research is to identify and characterize lactic acid bacteria (LAB) species in bee bread produced by honey bees (Apis Cerana) in the east mountain area of Suzhou, China. We isolated three strains, Apilactobacillus kunkeei (S1), Lactiplantibacillus plantarum (S2), and Lacticaseibacillus pentosus (S3), with S2 producing the highest amount of lactic acid. Phylogenetic analysis indicated that these isolates, along with the type strain, formed a distinct sub-cluster within the LAB group. The strains exhibited non-hemolytic activity, lacked functional virulence factors, demonstrated high acid and bile tolerance, strong adhesion to intestinal cells, and antimicrobial activity against pathogens, collectively indicating their safety and high probiotic potential for therapeutic applications. Our studies demonstrated that S2 and S3 grew well in the presence of stevia leaf powder and steviosides, while S1 showed reduced growth and inhibitory effects. Importantly, the stevia-fermented strains exhibited strong probiotic potential along with significant antidiabetic, antioxidant, and antifungal properties in vitro. These findings highlight their potential applications in the food, feed, and pharmaceutical industries. Future research should focus on in vivo experiments to validate these results and evaluate compatibility among the strains before their application in functional foods.
Collapse
Affiliation(s)
- Samra Basharat
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; (S.B.); (F.J.); (T.A.); (A.K.)
| | - Lixin Zhai
- Henan Key Laboratory of Biomarker Based Rapid-Detection Technology for Food Safety, Institute of Molecular Detection Technology and Equipment, Xuchang University, Xuchang 461000, China;
| | - Fuyao Jiang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; (S.B.); (F.J.); (T.A.); (A.K.)
| | - Tanzila Asjad
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; (S.B.); (F.J.); (T.A.); (A.K.)
| | - Adil Khan
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; (S.B.); (F.J.); (T.A.); (A.K.)
| | - Xiangru Liao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; (S.B.); (F.J.); (T.A.); (A.K.)
| |
Collapse
|
3
|
Puan SL, Erriah P, Yahaya NM, Ali MSM, Ahmad SA, Oslan SN, Baharum SN, Salleh AB, Sabri S. Genome-Guided Identification and Characterisation of Broad-Spectrum Antimicrobial Compounds of Bacillus velezensis Strain PD9 Isolated from Stingless Bee Propolis. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10451-3. [PMID: 39815115 DOI: 10.1007/s12602-025-10451-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2025] [Indexed: 01/18/2025]
Abstract
The emergence of multidrug-resistant pathogens presents a significant global health challenge, which is primarily fuelled by overuse and misuse of antibiotics. Bacteria-derived antimicrobial metabolites offer a promising alternative strategy for combating antimicrobial resistance issues. Bacillus velezensis PD9 (BvPD9), isolated from stingless bee propolis, has been reported to have antibacterial activities against methicillin-resistant Staphylococcus aureus (MRSA). This study aimed to characterise and identify the antimicrobial compounds (AMCs) synthesised by BvPD9 through integration of genome mining and liquid chromatography-mass spectrometry (LC-MS) analysis. The whole-genome sequence of BvPD9 contained 4,263,351 base pairs and 4101 protein-coding sequences, with 12 potential AMC biosynthetic gene clusters. Comparative genomic analysis highlighted the unique profile of BvPD9 that possesses the largest number of unknown proteins, indicating significant potential for further exploration. The combined genomics-metabolic profiling uncovered five AMCs in BvPD9 extract, including bacillibactin, bacilysin, surfactin A, fengycin A, and bacillomycin D. The extract exhibited a broad antibacterial spectrum against 25 pathogenic bacteria, including both Gram-positive and Gram-negative bacteria, with the lowest minimum inhibitory concentration (MIC, 0.032 mg/ml) against S. epidermidis ATCC 12228, and the lowest minimum bactericidal concentration (MBC; 0.128 mg/ml) against MRSA ATCC 700699 and Aeromonas hydrophilia. The robust stability of BvPD9 extract was demonstrated at high temperatures, over a wide range of pH conditions (6 to 12) and in the presence of various hydrolytic enzymes. Additionally, the extract showed 50% haemolytic and cytotoxicity activity at 0.158 and 0.250 mg/ml, respectively. These characteristics suggest potential applications of BvPD9 metabolites for tackling antimicrobial resistance and its applicability across diverse industries.
Collapse
Affiliation(s)
- Sheau Ling Puan
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Pirasannah Erriah
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Normi Mohd Yahaya
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Mohd Shukuri Mohamad Ali
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Siti Aqlima Ahmad
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Siti Nurbaya Oslan
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Syarul Nataqain Baharum
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Abu Bakar Salleh
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Suriana Sabri
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| |
Collapse
|
4
|
Priyanto JA, Prastya ME, Hening ENW, Suryanti E, Kristiana R. Two Strains of Endophytic Bacillus velezensis Carrying Antibiotic-Biosynthetic Genes Show Antibacterial and Antibiofilm Activities Against Methicillin-Resistant Staphylococcus aureus (MRSA). Indian J Microbiol 2024; 64:1884-1893. [PMID: 39678944 PMCID: PMC11645368 DOI: 10.1007/s12088-024-01262-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 03/13/2024] [Indexed: 12/17/2024] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is considered a priority pathogen causing high mortality that requires effective control measures. This study aimed to detect the presence of antibiotic-biosynthetic genes and to evaluate the anti-MRSA activity of two strains of endophytic Bacillus velezensis isolated from Archidendron pauciflorum. PCR-based screening showed that B. velezensis strains, such as DJ4 and DJ9 possessed six antibiotic-biosynthetic genes, namely MlnA , DhbE , BacD , DfnD, SrfA, and BaeR. According to the preliminary test conducted using disc-diffusion assay, metabolite extracts from these strains have anti-MRSA activity with clear zone diameters of 13.00 ± 0.82 mm, and 17.33 ± 0.47 mm, respectively. Extract from DJ9 strain was more active to MRSA, with minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values of 62.50 µg/mL and 250 µg/mL, respectively. Furthermore, a bactericidal effect was observed, as evidenced by MBC/MIC ratio of four. Both DJ9 and DJ4 extracts showed a dose-dependent inhibitory effect on MRSA biofilm formation. Furthermore, a maximum inhibition percentage of 60.12 ± 2.5% was shown by DJ9 extract in two-fold MIC. The corresponding extract disrupted MRSA mature biofilms most effectively at 55.74 ± 1.4%. In conclusion, crude extract, particularly the DJ9 strain had significant potential in inhibiting MRSA cell growth, MRSA biofilm formation, and disrupting MRSA mature biofilm in vitro. Supplementary Information The online version contains supplementary material available at 10.1007/s12088-024-01262-1.
Collapse
Affiliation(s)
- Jepri Agung Priyanto
- Division of Microbiology, Department of Biology, Faculty of Mathematics and Natural Sciences, IPB University, Agatis Street, IPB Dramaga Campus, Bogor, West Java 16680 Indonesia
| | - Muhammad Eka Prastya
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Kawasan Sains Dan Teknologi (KST) B.J Habibie (PUSPIPTEK), Serpong, South Tangerang, Banten Indonesia
| | - Egiyanti Nur Widhia Hening
- Division of Microbiology, Department of Biology, Faculty of Mathematics and Natural Sciences, IPB University, Agatis Street, IPB Dramaga Campus, Bogor, West Java 16680 Indonesia
| | - Erma Suryanti
- Department of Biology, Faculty of Sciences, Sumatera Institute of Technology, Lampung Selatan, Lampung, Indonesia
| | - Rhesi Kristiana
- Indonesian Marine Education and Research Organisation (MERO) Foundation, Br. Dinas Muntig, Bali, Indonesia
| |
Collapse
|
5
|
Perini HF, Pereira BDB, Sousa EG, Matos BS, Silva Prado LCD, Carvalho Azevedo VAD, Castro Soares SD, Silva MVD. Inhibitory effect of Bacillus velezensis 1273 strain cell-free supernatant against developing and preformed biofilms of Staphylococcus aureus and MRSA. Microb Pathog 2024; 197:107065. [PMID: 39447663 DOI: 10.1016/j.micpath.2024.107065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/14/2024] [Accepted: 10/20/2024] [Indexed: 10/26/2024]
Abstract
Microbial biofilms constitute a significant virulence factor and a substantial challenge in clinical environments due to their role in promoting antimicrobial resistance and their resilience to eradication efforts. Methicillin-resistant Staphylococcus aureus (MRSA) infections substantially increase healthcare costs, extend hospitalizations, and elevate morbidity and mortality rates. Therefore, developing innovative strategies to target and eliminate these bacteria and their biofilms effectively is imperative for robust epidemiological control. In this study, we evaluated the antibacterial and antibiofilm activities of cell-free supernatant (CFS) obtained from the Bacillus velezensis 1273 strain culture. Our data showed that CFS inhibited the growth of S. aureus ATCC 29213 and MRSA (clinical strain), with greater efficacy observed against S. aureus (1:16 dilution). Furthermore, CFS showed substantial potential in reducing biofilm formation in both strains (∼30 %) at subinhibitory concentrations. Additionally, the antibacterial activity against biofilm-formed cells showed that pure CFS treatment decreased the viability of S. aureus (60 %) and MRSA (45 %) sessile cells. We further demonstrated that CFS treatment induces the production of reactive oxygen species (ROS) and damages the membranes and cell walls of the pathogen cells. Genome analysis revealed the presence of genes encoding bacteriocins and secondary metabolites with antibacterial activity in the B. velezensis 1273 genome. These findings highlight the potential of probiotic bacterial metabolites as antibiofilm and anti-multidrug-resistant pathogens.
Collapse
Affiliation(s)
- Hugo Felix Perini
- Department of Microbiology, Immunology and Parasitology, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil.
| | - Bianca de Barros Pereira
- Department of Microbiology, Immunology and Parasitology, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Eduarda Guimarães Sousa
- Department of Genetics, Ecology and Evolution, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Beatriz Sodré Matos
- Department of Microbiology, Immunology and Parasitology, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | | | | | - Siomar de Castro Soares
- Department of Microbiology, Immunology and Parasitology, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Marcos Vinicius da Silva
- Department of Microbiology, Immunology and Parasitology, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| |
Collapse
|
6
|
Lee PS, Liou CY, Chiu YC, Ma CY, Huang PW, Wang LC. Complete genome sequence of aquaculture pond isolate, Bacillus velezensis M4019. Microbiol Resour Announc 2024; 13:e0064424. [PMID: 39297631 PMCID: PMC11465877 DOI: 10.1128/mra.00644-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/17/2024] [Indexed: 10/11/2024] Open
Abstract
Bacillus velezensis is commonly found in soil and has various antibacterial activities against animal and plant pathogens. Here, we present the complete genome sequence of Bacillus velezensis strain M4019, isolated from a euryhaline aquaculture pond water in Yong-An, Kaohsiung City, Taiwan. This pond-water-derived isolate, unlike common soil-derived isolates, may provide potentially different adaptations and antimicrobial cues for future research.
Collapse
Affiliation(s)
- Po-Sen Lee
- Marine and Pathogenic Microbiology Laboratory, Department of Marine Biotechnology and Resources, College of Marine Science, National Sun Yat-sen University, Kaohsiung City, Taiwan
| | - Chung-Yi Liou
- Marine and Pathogenic Microbiology Laboratory, Department of Marine Biotechnology and Resources, College of Marine Science, National Sun Yat-sen University, Kaohsiung City, Taiwan
| | - Yu-Che Chiu
- Marine and Pathogenic Microbiology Laboratory, Department of Marine Biotechnology and Resources, College of Marine Science, National Sun Yat-sen University, Kaohsiung City, Taiwan
| | - Cheng-Yu Ma
- Committee of Fisheries Extension Service, College of Marine Science, National Sun Yat-sen University, Kaohsiung City, Taiwan
- Kaohsiung City Animal Protection Office, Kaohsiung City, Taiwan
| | - Po-Wei Huang
- Marine and Pathogenic Microbiology Laboratory, Department of Marine Biotechnology and Resources, College of Marine Science, National Sun Yat-sen University, Kaohsiung City, Taiwan
- Division of Urology, Department of Surgery, Zuoying Armed Forces General Hospital, Kaohsiung City, Taiwan
| | - Liang-Chun Wang
- Marine and Pathogenic Microbiology Laboratory, Department of Marine Biotechnology and Resources, College of Marine Science, National Sun Yat-sen University, Kaohsiung City, Taiwan
- Committee of Fisheries Extension Service, College of Marine Science, National Sun Yat-sen University, Kaohsiung City, Taiwan
| |
Collapse
|
7
|
Wang Z, Zhang W, Wang Z, Zhang Z, Liu Y, Liu S, Wu Q, Saiding E, Han J, Zhou J, Xu J, Yi X, Zhang Z, Wang R, Su X. Analysis of antimicrobial biological activity of a marine Bacillus velezensis NDB. Arch Microbiol 2024; 206:131. [PMID: 38421449 DOI: 10.1007/s00203-024-03861-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 03/02/2024]
Abstract
A new strain of Bacillus velezensis NDB was isolated from Xiangshan Harbor and antibacterial test revealed antibacterial activity of this strain against 12 major pathogenic bacteria. The whole genome of the bacterium was sequenced and found to consist of a 4,214,838 bp circular chromosome and a 7410 bp circular plasmid. Furthermore, it was predicted by AntiSMASH and BAGEL4 to have 12 clusters of secondary metabolism genes for the synthesis of the inhibitors, fengycin, bacillomycin, macrolactin H, bacillaene, and difficidin, and there were also five clusters encoding potentially novel antimicrobial substances, as well as three bacteriocin biosynthesis gene clusters of amylocyclicin, ComX1, and LCI. qRT-PCR revealed significant up-regulation of antimicrobial secondary metabolite synthesis genes after 24 h of antagonism with pathogenic bacteria. Furthermore, MALDI-TOF mass spectrometry revealed that it can secrete surfactin non-ribosomal peptide synthase and polyketide synthase to exert antibacterial effects. GC-MS was used to analyze methanol extract of B. velezensis NDB, a total of 68 compounds were identified and these metabolites include 16 amino acids, 17 acids, 3 amines, 11 sugars, 11 alcohols, 1 ester, and 9 other compounds which can inhibit pathogenic bacteria by initiating the antibiotic secretion pathway. A comparative genomic analysis of gene families showed that the specificity of B. velezensis NDB was mainly reflected in environmental adaptability. Overall, this research on B. velezensis NDB provides the basis for elucidating its biocontrol effect and promotes its future application as a probiotic.
Collapse
Affiliation(s)
- Ze Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, 169 Qixing South Road, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, 169 Qixing South Road, Ningbo, China
- School of Marine Science, Ningbo University, 169 Qixing South Road, Ningbo, China
| | - Wenwen Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, 169 Qixing South Road, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, 169 Qixing South Road, Ningbo, China
- School of Marine Science, Ningbo University, 169 Qixing South Road, Ningbo, China
| | - Ziyan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, 169 Qixing South Road, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, 169 Qixing South Road, Ningbo, China
- School of Marine Science, Ningbo University, 169 Qixing South Road, Ningbo, China
| | - Zhixuan Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, 169 Qixing South Road, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, 169 Qixing South Road, Ningbo, China
- School of Marine Science, Ningbo University, 169 Qixing South Road, Ningbo, China
| | - Yan Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, 169 Qixing South Road, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, 169 Qixing South Road, Ningbo, China
- School of Marine Science, Ningbo University, 169 Qixing South Road, Ningbo, China
| | - Songyi Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, 169 Qixing South Road, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, 169 Qixing South Road, Ningbo, China
- School of Marine Science, Ningbo University, 169 Qixing South Road, Ningbo, China
| | - Qiaoli Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, 169 Qixing South Road, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, 169 Qixing South Road, Ningbo, China
- School of Marine Science, Ningbo University, 169 Qixing South Road, Ningbo, China
| | - Emilaguli Saiding
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, 169 Qixing South Road, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, 169 Qixing South Road, Ningbo, China
- School of Marine Science, Ningbo University, 169 Qixing South Road, Ningbo, China
| | - Jiaojiao Han
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, 169 Qixing South Road, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, 169 Qixing South Road, Ningbo, China
- School of Marine Science, Ningbo University, 169 Qixing South Road, Ningbo, China
| | - Jun Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, 169 Qixing South Road, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, 169 Qixing South Road, Ningbo, China
- School of Marine Science, Ningbo University, 169 Qixing South Road, Ningbo, China
| | - Jiajie Xu
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, 169 Qixing South Road, Ningbo, China
- School of Marine Science, Ningbo University, 169 Qixing South Road, Ningbo, China
| | - Xianghua Yi
- Xiangshan Lanshang Marine Technology Co., Ltd, Ningbo, China
| | - Zhen Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, 169 Qixing South Road, Ningbo, China.
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, 169 Qixing South Road, Ningbo, China.
- School of Marine Science, Ningbo University, 169 Qixing South Road, Ningbo, China.
| | - Rixin Wang
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, 169 Qixing South Road, Ningbo, China.
- School of Marine Science, Ningbo University, 169 Qixing South Road, Ningbo, China.
| | - Xiurong Su
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, 169 Qixing South Road, Ningbo, China.
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, 169 Qixing South Road, Ningbo, China.
- School of Marine Science, Ningbo University, 169 Qixing South Road, Ningbo, China.
| |
Collapse
|
8
|
Liu Y, Jiang B, Wang K. A review of fermented bee products: Sources, nutritional values, and health benefits. Food Res Int 2023; 174:113506. [PMID: 37986501 DOI: 10.1016/j.foodres.2023.113506] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/15/2023] [Accepted: 09/22/2023] [Indexed: 11/22/2023]
Abstract
Bee products have garnered considerable interest due to their abundant nutritional content and versatile biological activities. The utilization of bee products as fermentation materials has shown favorable potential for increasing nutrients, altering texture, and endorsing unique tastes. This review critically examines the existing literature on fermented bee products, with a specific emphasis on the impact of fermentation on their nutritional composition and potential health benefits. The raw materials, strains, conditions, and methodologies employed in the fermentation of bee products, as well as the utilization of bee products as fermentation raw materials/excipients, are reviewed. We also present a special focus on the nutritional composition and content of bioactive substances, such as polyphenols and volatile organic compounds, in fermented bee products. Additionally, the influence of fermentation on bee product ingredients and their health benefits is summarized. Fermented bee products substantially benefit human health, with superior antioxidant, anti-inflammatory, and anti-allergic properties compared to non-fermented bee products. Finally, this article discusses the types, strains, health benefits, production processes, and market prospects of fermented bee products, which are expected to become an important part of human food culture as functional food or nutritional supplements. The aforementioned findings highlight the remarkable nutritional value and bioactive properties exhibited by fermented bee products.
Collapse
Affiliation(s)
- Yang Liu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Bokai Jiang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Kai Wang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China.
| |
Collapse
|
9
|
Basharat S, Meng T, Zhai L, Hussain A, Aqeel SM, Khan S, Shah OU, Liao X. Bacterial diversity of stingless bee honey in Yunnan, China: isolation and genome sequencing of a novel acid-resistant Lactobacillus pentosus ( SYBC-MI) with probiotic and L. tryptophan producing potential via millet fermentation. Front Bioeng Biotechnol 2023; 11:1272308. [PMID: 38107618 PMCID: PMC10722240 DOI: 10.3389/fbioe.2023.1272308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/02/2023] [Indexed: 12/19/2023] Open
Abstract
Stingless bee (Hymenoptera, Apidae, and Trigona) honey is a remarkable "miracle liquid" with a wide range of medical benefits for conditions including gastroenteritis, cataracts, and wound healing. Our study aimed to isolate, identify, and characterize acid-resistant Lactobacillus spp. from sour honey distributed in Yunnan, China. To assess the safety of an entirely novel Lactobacillus pentosus strain, S4 (OM618128), based on probiotic property evaluation and whole-genome sequencing analysis. A 16S rRNA gene high-throughput sequencing analysis showed that Lactobacillus was abundant at the genus level in sour honey. Seven Lactobacillus strains (viz. S1-7) were isolated from sour honey using a multiple-anaerobic culture enrichment method. One potential acid-resistant isolate, Lactobacillus sp. S4, was obtained after screening the seven Lactobacillus isolates, and it had the highest lactic acid production (17.62 g/L), followed by Lactobacillus sp. S3 (17.07 g/L). Phylogenetic and comparative analyses of conserved sequence regions have shown that all seven strains are phylogenetically located in the Lactobacillus pentosus sub-cluster. In L. pentosus SYBC-MI, there is a circular chromosome (3288615 bps) and 11,466 bps plasmids. GC content is 44.03%. The number of predicted genes is 3,129, with 16 rRNAs and 74 tRNAs present. During the fermentation of foxtail millet by seven Lactobacillus pentosus (S1-7) strains isolated from sour honey, a potential tryptophan accumulating isolate, Lactobacillus pentosus S4, was obtained, which could reach a maximum tryptophan content of 238.43 mgL-1 that is 1.80 times the initial tryptophan content in the fermentation broth. This strain has strong acid tolerance, salt tolerance, and fermentation acid production abilities. This strain degrades nitrite at a rate of over 99%, and it has high probiotic potential as well. This project has established a solid foundation for further exploring the excellent lactic acid bacteria in sour honey. It is also investigating the key taxa and their role in the environment. According to the results of our studies, these LAB isolates provide a lot of potential for use in the future, as a source of probiotics for human, animals, and starter cultures for food applications.
Collapse
Affiliation(s)
- Samra Basharat
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Tiantian Meng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Lixin Zhai
- Henan Key Laboratory of Biomarker Based Rapid-detection Technology for Food Safety, Institute of Molecular Detection Technology and Equipment, Xuchang University, Xuchang, Henan, China
| | - Asif Hussain
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Sahibzada Muhammad Aqeel
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
| | - Salman Khan
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Obaid Ullah Shah
- Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, School of Tropical Crops, Hainan University, Haikou, China
| | - Xiangru Liao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| |
Collapse
|
10
|
Taghavi S, Abbasi Montazeri E, Zekavati R, Roomiani L, Saffarian P. Identification of a New Compound (4-Fluoro-2-Trifluoromethyl Imidazole) Extracted from a New Halophilic Bacillus aquimaris Strain Persiangulf TA2 Isolated from the Northern Persian Gulf with Broad-Spectrum Antimicrobial Effect. IRANIAN JOURNAL OF BIOTECHNOLOGY 2023; 21:e3359. [PMID: 38269196 PMCID: PMC10804065 DOI: 10.30498/ijb.2023.338788.3359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 05/18/2023] [Indexed: 01/26/2024]
Abstract
Background The unique ecosystem of the Persian Gulf has made it a rich source of natural antimicrobial compounds produced by various microorganisms, especially bacteria, which can be used in the treatment of infectious diseases, especially those of drug-resistant microbes. Objectives This study aimed to identify antimicrobial compounds in the bacteria isolated from the northern region of the Persian Gulf in Abadan (Chavibdeh port), Iran, for the first time. Materials and Methods Sampling was performed in the fall on November 15, 2019, from 10 different stations (water and sediment samples). The secondary metabolites of all isolates were extracted, and their antimicrobial effects were investigated. 16S ribosomal ribonucleic acid sequencing was used for the identification of the strains that showed the best inhibition against selected pathogens, and growth conditions were optimized for them. A fermentation medium in a volume of 5000 mL was prepared to produce the antimicrobial compound by the superior strain. The extracted antimicrobial compounds were identified using the gas chromatography-mass spectrometry technique. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined for the superior strain. The effects of salinity, pH, and temperature on the production of antimicrobial compounds were determined by measuring the inhibitory region (mm) of methicillin-resistant Staphylococcus aureus (MRSA). Results Four new strains with antimicrobial properties (i.e., Halomonas sp. strain Persiangulf TA1, Bacillus aquimaris strain Persiangulf TA2, Salinicoccus roseus strain Persiangulf TA4, and Exiguobacterium profundum strain Persiangulf TA9) were identified. The optimum growth temperatures were determined at 37-30, 37, and 40 °C for TA1 and TA2, TA4, and TA9 strains, respectively. The optimum pH values for the four strains were 7, 6-7, 7.5, and 6.5-7.5, respectively. The optimal salt concentrations for the four strains were 15%, 2.5-5%, 7.5%, and 5%, respectively. The ethyl acetate extract of strain Persiangulf TA2 showed extensive antimicrobial activity against human pathogens (75%) and MRSA. The most abundant compound identified in TA2 extract was the new compound 4-fluoro-2-trifluoromethyl imidazole. The MBC and MIC for the ethyl acetate extract of strain TA2 were 20 and 5 mg. mL-1 (Staphylococcus aureus), 40 and 20 mg. mL-1 (MRSA, Escherichia coli, and Enterococcus faecalis), 40 and 10 mg. mL-1 Acinetobacter baumannii), and 80 and 40 mg. mL-1 (Staphylococcus epidermidis, Shigella sp., Bacillus cereus, and Klebsiella pneumoniae), respectively. The optimal conditions for antibiotic production by TA2 strain were 5% salt concentration, pH of 7, and temperature of 35 °C. Conclusion Newly detected natural compounds in TA2 strain due to superior antimicrobial activity even against MRSA strain can be clinically valuable in pharmacy and treatment.
Collapse
Affiliation(s)
- Sara Taghavi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Effat Abbasi Montazeri
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Roya Zekavati
- Department of Biology, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
| | - laleh Roomiani
- Department of Fisheries, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
| | - Parvaneh Saffarian
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
11
|
Zhou J, Yang C, Lei W, Xu M, Cai X, Yuan W, Lin H. Identification and characterization of SCCmec typing with psm-mec positivity in staphylococci from patients with coagulase-negative staphylococci peritoneal dialysis-related peritonitis. BMC Microbiol 2023; 23:267. [PMID: 37742008 PMCID: PMC10517493 DOI: 10.1186/s12866-023-03017-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 09/12/2023] [Indexed: 09/25/2023] Open
Abstract
BACKGROUND Peritonitis is the most important complication of peritoneal dialysis (PD) and coagulase-negative staphylococci (CNS) are a frequent cause of dialysis-related infections. The association between SCCmec typing with psm-mec positivity in staphylococci and PD-related infections has not been identified. We aim to investigate the molecular epidemiology of CNS isolated from PD-peritonitis in a single Chinese center, focusing on the genetic determinants conferring methicillin resistance. METHODS We collected 10 genetically unrelated CNS isolates from 10 patients with CNS PD-related peritonitis. The patients were divided into two groups based on the results of MIC to oxacillin: the methicillin-resistant CNS (MRCNS) and methicillin-sensitive CNS (MSCNS) groups. The biofilm formation group (BFG) and the non-biofilm formation group (NBFG) were used as the control groups. Phenotypic and molecular methods were used to analyze SCCmec types I, II and III, associated genes and biofilm formation and the existence of psm-mec. The demographic data and clinical indicators were collected. RESULTS Ten CNS PD-related peritonitis patients were enrolled for this study. There were 6 MRCNS and 4 MRCNS isolates. SCCmec types were fully determined in 10 isolates. Seven staphylococci (70%) carried SCCmec, of which 4 isolates carried single SCCmec type I (40%) and 3 isolates had multiple SCCmec elements (I + III). Of the 6 MRCNS isolates, 3 carried SCCmec type I (50%) and 2 isolates carried SCCmec type I + III (33.3%). A high diversity of ccr types, mec complexes and ccr-mec complex combinations was identified among the 10 CNS isolates. The psm-mec gene was detected in 2/10 (20%) CNS isolates. There was no mutation in the psm-mec gene. CONCLUSIONS The majority of isolates were hospital-associated isolates. Furthermore, 2 psm-mec positive isolates were MRCNS in the NBFG. The PD patients frequent exposure to hospital would be the main risk factor. The presence of the psm-mec signal in the spectra of the MRCNS tested here demonstrates the presence of certain SCCmec cassettes that convey methicillin resistance.
Collapse
Affiliation(s)
- Jun Zhou
- Department of Nephrology and Rheumatology, Haikou People's Hospital Affiliated to Xiangya School of Medicine, Haikou, China
| | - Chuishun Yang
- Department of Nephrology and Rheumatology, Haikou People's Hospital Affiliated to Xiangya School of Medicine, Haikou, China
| | - Wenjuan Lei
- Department of Nephrology and Rheumatology, Haikou People's Hospital Affiliated to Xiangya School of Medicine, Haikou, China
| | - Man Xu
- Department of Nephrology and Rheumatology, Haikou People's Hospital Affiliated to Xiangya School of Medicine, Haikou, China
| | - Xingli Cai
- Department of Nephrology and Rheumatology, Haikou People's Hospital Affiliated to Xiangya School of Medicine, Haikou, China
| | - Wanqiong Yuan
- Department of Orthopedics, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, China.
- Beijing Key Laboratory of Spinal Disease, Beijing, China.
- Engineering Research Center of Bone and Joint Precision Medicine, Beijing, China.
| | - Hua Lin
- Department of Nursing, Haikou People's Hospital Affiliated to Xiangya School of Medicine, 43 Renmin Road, Haidian Island, Haikou, China.
| |
Collapse
|
12
|
Puan SL, Erriah P, Baharudin MMAA, Yahaya NM, Kamil WNIWA, Ali MSM, Ahmad SA, Oslan SN, Lim S, Sabri S. Antimicrobial peptides from Bacillus spp. and strategies to enhance their yield. Appl Microbiol Biotechnol 2023; 107:5569-5593. [PMID: 37450018 DOI: 10.1007/s00253-023-12651-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 07/18/2023]
Abstract
Antibiotic resistance is a growing concern that is affecting public health globally. The search for alternative antimicrobial agents has become increasingly important. Antimicrobial peptides (AMPs) produced by Bacillus spp. have emerged as a promising alternative to antibiotics, due to their broad-spectrum antimicrobial activity against resistant pathogens. In this review, we provide an overview of Bacillus-derived AMPs, including their classification into ribosomal (bacteriocins) and non-ribosomal peptides (lipopeptides and polyketides). Additionally, we delve into the molecular mechanisms of AMP production and describe the key biosynthetic gene clusters involved. Despite their potential, the low yield of AMPs produced under normal laboratory conditions remains a challenge to large-scale production. This review thus concludes with a comprehensive summary of recent studies aimed at enhancing the productivity of Bacillus-derived AMPs. In addition to medium optimization and genetic manipulation, various molecular strategies have been explored to increase the production of recombinant antimicrobial peptides (AMPs). These include the selection of appropriate expression systems, the engineering of expression promoters, and metabolic engineering. Bacillus-derived AMPs offer great potential as alternative antimicrobial agents, and this review provides valuable insights on the strategies to enhance their production yield, which may have significant implications for combating antibiotic resistance. KEY POINTS: • Bacillus-derived AMP is a potential alternative therapy for resistant pathogens • Bacillus produces two main classes of AMPs: ribosomal and non-ribosomal peptides • AMP yield can be enhanced using culture optimization and molecular approaches.
Collapse
Affiliation(s)
- Sheau Ling Puan
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Pirasannah Erriah
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Mohamad Malik Al-Adil Baharudin
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Normi Mohd Yahaya
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Wan Nur Ismah Wan Ahmad Kamil
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Mohd Shukuri Mohamad Ali
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Siti Aqlima Ahmad
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Siti Nurbaya Oslan
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Sooa Lim
- Department of Pharmaceutical Engineering, Hoseo University, 31499, Asan-Si, Chungnam, Republic of Korea
| | - Suriana Sabri
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia.
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
13
|
Cabezas-Mera FS, Atiencia-Carrera MB, Villacrés-Granda I, Proaño AA, Debut A, Vizuete K, Herrero-Bayo L, Gonzalez-Paramás AM, Giampieri F, Abreu-Naranjo R, Tejera E, Álvarez-Suarez JM, Machado A. Evaluation of the polyphenolic profile of native Ecuadorian stingless bee honeys ( Tribe: Meliponini) and their antibiofilm activity on susceptible and multidrug-resistant pathogens: An exploratory analysis. Curr Res Food Sci 2023; 7:100543. [PMID: 37455680 PMCID: PMC10344713 DOI: 10.1016/j.crfs.2023.100543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/08/2023] [Accepted: 06/27/2023] [Indexed: 07/18/2023] Open
Abstract
Biofilms are associated with infections that are resistant to conventional therapies, contributing to the antimicrobial resistance crisis. The need for alternative approaches against biofilms is well-known. Although natural products like stingless bee honeys (tribe: Meliponini) constitute an alternative treatment, much is still unknown. Our main goal was to evaluate the antibiofilm activity of stingless bee honey samples against multidrug-resistant (MDR) pathogens through biomass assays, fluorescence (cell count and viability), and scanning electron (structural composition) microscopy. We analyzed thirty-five honey samples at 15% (v/v) produced by ten different stingless bee species (Cephalotrigona sp., Melipona sp., M. cramptoni, M. fuscopilosa, M. grandis, M. indecisa, M. mimetica, M. nigrifacies, Scaptotrigona problanca, and Tetragonisca angustula) from five provinces of Ecuador (Tungurahua, Pastaza, El Oro, Los Ríos, and Loja) against 24-h biofilms of Staphylococcus aureus, Klebsiella pneumoniae, Candida albicans, and Candida tropicalis. The present honey set belonged to our previous study, where the samples were collected in 2018-2019 and their physicochemical parameters, chemical composition, mineral elements, and minimal inhibitory concentration (MIC) were screened. However, the polyphenolic profile and their antibiofilm activity on susceptible and multidrug-resistant pathogens were still unknown. According to polyphenolic profile of the honey samples, significant differences were observed according to their geographical origin in terms of the qualitative profiles. The five best honey samples (OR24.1, LR34, LO40, LO48, and LO53) belonging to S. problanca, Melipona sp., and M. indecisa were selected for further analysis due to their high biomass reduction values, identification of the stingless bee specimens, and previously reported physicochemical parameters. This subset of honey samples showed a range of 63-80% biofilm inhibition through biomass assays. Fluorescence microscopy (FM) analysis evidenced statistical log reduction in the cell count of honey-treated samples in all pathogens (P <0.05), except for S. aureus ATCC 25923. Concerning cell viability, C. tropicalis, K. pneumoniae ATCC 33495, and K. pneumoniae KPC significantly decreased (P <0.01) by 21.67, 25.69, and 45.62%, respectively. Finally, scanning electron microscopy (SEM) analysis demonstrated structural biofilm disruption through cell morphological parameters (such as area, size, and form). In relation to their polyphenolic profile, medioresinol was only found in the honey of Loja, while scopoletin, kaempferol, and quercetin were only identified in honey of Los Rios, and dihydrocaffeic and dihydroxyphenylacetic acids were only detected in honey of El Oro. All the five honey samples showed dihydrocoumaroylhexose, luteolin, and kaempferol rutinoside. To the authors' best knowledge, this is the first study to analyze stingless bees honey-treated biofilms of susceptible and/or MDR strains of S. aureus, K. pneumoniae, and Candida species.
Collapse
Affiliation(s)
- Fausto Sebastián Cabezas-Mera
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias Biológicas y Ambientales COCIBA, Instituto de Microbiología, Laboratorio de Bacteriología, Calle Diego de Robles y Pampite, Quito, 170901, Ecuador
| | - María Belén Atiencia-Carrera
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias Biológicas y Ambientales COCIBA, Instituto de Microbiología, Laboratorio de Bacteriología, Calle Diego de Robles y Pampite, Quito, 170901, Ecuador
| | - Irina Villacrés-Granda
- Programa de Doctorado Interuniversitario en Ciencias de la Salud, Universidad de Sevilla, Sevilla, Spain
- Facultad de Ingeniería y Ciencias Agropecuarias Aplicadas, Grupo de Bioquimioinformática, Universidad de Las Américas (UDLA), De Los Colimes esq, Quito, 170513, Quito, Ecuador
| | - Adrian Alexander Proaño
- Laboratorios de Investigación, Universidad de Las Américas (UDLA), Vía a Nayón, Quito, 170124, Ecuador
| | - Alexis Debut
- Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas ESPE, Sangolquí, 171103, Ecuador
- Centro de Nanociencia y Nanotecnología, Universidad de Las Fuerzas Armadas ESPE, Sangolquí, 171103, Ecuador
| | - Karla Vizuete
- Centro de Nanociencia y Nanotecnología, Universidad de Las Fuerzas Armadas ESPE, Sangolquí, 171103, Ecuador
| | - Lorena Herrero-Bayo
- Grupo de Investigación en Polifenoles (GIP-USAL), Universidad de Salamanca, Campus Miguel de Unamuno, 37008, Salamanca, Spain
| | - Ana M. Gonzalez-Paramás
- Grupo de Investigación en Polifenoles (GIP-USAL), Universidad de Salamanca, Campus Miguel de Unamuno, 37008, Salamanca, Spain
| | - Francesca Giampieri
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, C. Isabel Torres, 21, 39011, Santander, Cantabria, Spain
| | - Reinier Abreu-Naranjo
- Departamento de Ciencias de La Vida, Universidad Estatal Amazónica, Puyo, 160150, Ecuador
| | - Eduardo Tejera
- Facultad de Ingeniería y Ciencias Agropecuarias Aplicadas, Grupo de Bioquimioinformática, Universidad de Las Américas (UDLA), De Los Colimes esq, Quito, 170513, Quito, Ecuador
| | - José M. Álvarez-Suarez
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias e Ingenierías, Departamento de Ingeniería en Alimentos, Calle Diego de Robles y Pampite, Quito, 170901, Ecuador
| | - António Machado
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias Biológicas y Ambientales COCIBA, Instituto de Microbiología, Laboratorio de Bacteriología, Calle Diego de Robles y Pampite, Quito, 170901, Ecuador
| |
Collapse
|
14
|
Neidhöfer C, Rathore K, Parčina M, Sieber MA. ESKAPEE Pathogen Biofilm Control on Surfaces with Probiotic Lactobacillaceae and Bacillus species. Antibiotics (Basel) 2023; 12:871. [PMID: 37237774 PMCID: PMC10215598 DOI: 10.3390/antibiotics12050871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/21/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Combatting the rapidly growing threat of antimicrobial resistance and reducing prevalence and transmission of ESKAPEE pathogens in healthcare settings requires innovative strategies, one of which is displacing these pathogens using beneficial microorganisms. Our review comprehensively examines the evidence of probiotic bacteria displacing ESKAPEE pathogens, with a focus on inanimate surfaces. A systematic search was conducted using the PubMed and Web of Science databases on 21 December 2021, and 143 studies were identified examining the effects of Lactobacillaceae and Bacillus spp. cells and products on the growth, colonization, and survival of ESKAPEE pathogens. While the diversity of study methods limits evidence analysis, results presented by narrative synthesis demonstrate that several species have the potential as cells or their products or supernatants to displace nosocomial infection-causing organisms in a variety of in vitro and in vivo settings. Our review aims to aid the development of new promising approaches to control pathogen biofilms in medical settings by informing researchers and policymakers about the potential of probiotics to combat nosocomial infections. More targeted studies are needed to assess safety and efficacy of different probiotic formulations, followed by large-scale studies to assess utility in infection control and medical practice.
Collapse
Affiliation(s)
- Claudio Neidhöfer
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Kamni Rathore
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
- Institute for Functional Gene Analytics, Bonn-Rhein-Sieg University of Applied Sciences, 53757 Sankt Augustin, Germany
| | - Marijo Parčina
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Martin A. Sieber
- Institute for Functional Gene Analytics, Bonn-Rhein-Sieg University of Applied Sciences, 53757 Sankt Augustin, Germany
| |
Collapse
|
15
|
İncili GK, Akgöl M, Karatepe P, Tekin A, Kanmaz H, Kaya B, Hayaloğlu AA. Whole-Cell Postbiotics: an Innovative Approach for Extending the Shelf Life and Controlling Major Foodborne Pathogens in Chicken Breast Fillets. FOOD BIOPROCESS TECH 2023. [DOI: 10.1007/s11947-023-03009-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
Isolation and Identification of a Bacillus sp. from Freshwater Sediment Displaying Potent Activity Against Bacteria and Phytopathogen Fungi. Curr Microbiol 2022; 79:398. [DOI: 10.1007/s00284-022-03090-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 10/14/2022] [Indexed: 11/10/2022]
|
17
|
Antimicrobial activity of supernatants produced by bacteria isolated from Brazilian stingless bee's larval food. BMC Microbiol 2022; 22:127. [PMID: 35549853 PMCID: PMC9097392 DOI: 10.1186/s12866-022-02548-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/29/2022] [Indexed: 11/20/2022] Open
Abstract
Background The discovery of new molecules with antimicrobial properties has been a promising approach, mainly when related to substances produced by bacteria. The use of substances produced by bees has evidenced the antimicrobial action in different types of organisms. Thus, the use of bacteria isolated from larval food of stingless bees opens the way for the identification of the new molecules. The effect of supernatants produced by these bacteria was evaluated for their ability to inhibit the growth of bacteria of clinical interest. Furthermore, their effects were evaluated when used in synergy with antibiotics available in the pharmaceutical industry. Results A few supernatants showed an inhibitory effect against susceptible and multiresistant strains in the PIC assay and the modulation assay. Emphasizing the inhibitory effect on multidrug-resistant strains, 7 showed an effect on multidrug-resistant Escherichia coli (APEC), Klebsiella pneumoniae carbapenemase (KPC), multidrug-resistant Pseudomonas aeruginosa, and multidrug-resistant Staphylococcus aureus (MRSA) in the PIC assay. Of the supernatants analyzed, some presented synergism for more than one species of multidrug-resistant bacteria. Nine had a synergistic effect with ampicillin on E. coli (APEC) or S. aureus (MRSA), 5 with penicillin G on E. coli (APEC) or KPC, and 3 with vancomycin on KPC. Conclusion In summary, the results indicate that supernatants produced from microorganisms can synthesize different classes of molecules with potent antibiotic activity against multiresistant bacteria. Thus, suggesting the use of these microorganisms for use clinical tests to isolate the molecules produced and their potential for use.
Collapse
|
18
|
Geraldi A, Famunghui M, Abigail M, Siona Saragih CF, Febitania D, Elmarthenez H, Putri CA, Putri Merdekawati UAS, Sadila AY, Wijaya NH. Screening of antibacterial activities of Bacillus spp. isolated from the Parangkusumo coastal sand dunes, Indonesia. BIO INTEGRATION 2022. [DOI: 10.15212/bioi-2022-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Background: The emergence of multidrug-resistant bacteria because of poor understanding of the issue and the misuse of antibiotics has become global health concern. Therefore, the discovery of novel antibacterial drugs is urgently needed. New antibacterial compounds may be found in the Bacillus species, which are abundant in sand dune ecosystems. Herein, we examined samples from the Parangkusumo coastal sand dunes in Indonesia.Methods: Samples were collected from three areas in the sand dunes (the area closest to the sea, the core area of sand dunes, and the area farthest from the sea). The samples were inoculated on Luria Bertani agar. Morphological and molecular identification was performed on the basis of 16S rRNA. The samples’ antimicrobial activity was evaluated with the disc diffusion method and compared with that of opportunistic pathogenic bacteria.Results: Five species of Bacillus were successfully isolated from the Parangkusumo coastal sand dunes. To our knowledge, this is the first report of the isolation of Bacillus aryabhattai in Indonesia. All samples showed antimicrobial activity against pathogenic bacteria. B. velezensis and B. subtilis showed antibacterial activity against Gram-positive bacteria, whereas B. aryabhattai and B. megaterium showed antibacterial activity against Gram-negative bacteria, and B. spizizenii showed antibacterial activity toward Gram-positive and Gram-negative bacteria.Conclusion: Five Bacillus species were successfully isolated from the Parangkusumo coastal sand dunes, Indonesia, and all samples showed antimicrobial activity toward opportunistic pathogenic bacteria. The crude antimicrobial compounds from B. megaterium, B. aryabhattai, B. subtilis, and B. spizizenii showed the highest growth-inhibition activity against E. coli, P. aeruginosa, B. cereus, and S. aureus, respectively.
Collapse
Affiliation(s)
- Almando Geraldi
- University-Center of Excellence-Research Center for Bio-Molecule Engineering, Universitas Airlangga, Surabaya 60115, Indonesia
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Margareth Famunghui
- School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung 40132, Indonesia
| | - Mercyana Abigail
- School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung 40132, Indonesia
| | | | - Devina Febitania
- School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung 40132, Indonesia
| | - Henrietta Elmarthenez
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Cinantya Aulia Putri
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia
| | | | - Aliffa Yusti Sadila
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Nabilla Hapsari Wijaya
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia
| |
Collapse
|
19
|
Complete Genome Sequence of Bacillus velezensis GMEKP1, Isolated from a Natural Bamboo Hive of Stingless Bees. Microbiol Resour Announc 2021; 10:e0065921. [PMID: 34734764 PMCID: PMC8567790 DOI: 10.1128/mra.00659-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report the complete genome sequence and annotation of Bacillus velezensis GMEKP1, which was isolated from a hive of stingless bees (Trigona laeviceps). This bacterium has a circular 4,014,839-nucleotide chromosome and two circular plasmids. Genome-mining analysis of the whole-genome sequence revealed that GMEKP1 has 12 biosynthetic gene clusters, dominated by genes encoding polyketide synthase hybrids.
Collapse
|
20
|
Scale-up production of and dietary supplementation with the recombinant antimicrobial peptide tilapia piscidin 4 to improve growth performance in Gallus gallus domesticus. PLoS One 2021; 16:e0253661. [PMID: 34166442 PMCID: PMC8224963 DOI: 10.1371/journal.pone.0253661] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 06/10/2021] [Indexed: 12/31/2022] Open
Abstract
Antimicrobial peptides (AMPs) are short and positively charged peptides with broad-spectrum antimicrobial activities. AMPs have been investigated as potential antibiotic alternatives to improve growth performance and prevent pathogen infection in the poultry industry. The antimicrobial peptide tilapia piscidin 4 (TP4) was derived from Oreochromis niloticus, possesses antimicrobial activities and immunomodulatory properties, promotes intestinal health, and protects against pathogen infection. The codon-optimized sequence of TP4 was introduced into the pPICZαA vector and transformed into Pichia pastoris. Large-scale expression was induced following culture with methanol in a 500-liter fermenter. Freeze drying of fermented rTP4 broth and then rTP4 evaluation as a feed additive for Gallus gallus domesticus were performed. The in vitro antimicrobial activity of recombinant TP4 (rTP4) against gram-positive and gram-negative pathogens was evaluated. Evaluation of the effect of temperature on the antimicrobial activity of rTP4 showed its high stability at high temperatures. rTP4 significantly enhanced the phagocytic activity of macrophage cells, indicating that rTP4 has a remarkable ability to stimulate macrophages. rTP4 was used as a dietary supplement at 0.75, 1.5, 3.0, 6.0 and 12% in G. g. domesticus for five weeks, and growth performance, gut microbiota composition, and histology were assessed. The 3.0% rTP4 supplement group showed a significant increase in weight gain ratio and feed efficiency compared to those of the basal broiler diet group. Crude rTP4 was expressed by yeast to significantly promote growth efficiency and resistance against pathogens in G. g. domesticus, which could indicate its use as a suitable alternative to antibiotics as feed additives in the poultry industry.
Collapse
|