1
|
Li M, Liu B, Xian M, Wang S, Liu P. Bioinformatics combined with network pharmacology and experimental validation to identify key biomarkers of hepatocellular carcinoma and corresponding compounds in Radix Astragali and Pueraria Mirifica. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:5351-5371. [PMID: 39549064 DOI: 10.1007/s00210-024-03597-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 11/01/2024] [Indexed: 11/18/2024]
Abstract
The occurrence and death rates of primary hepatocellular carcinoma (HCC) are increasing, and there remains a shortage of effective oral medications with minimal side effects. We aim to identify potential biomarkers and compounds from Radix Astragali (RA) and Pueraria Mirifica (PM) to treat liver cancer and improve prognosis. Differentially expressed genes (DEGs) associated with HCC were identified by bioinformatics analysis of three datasets, GSE112791, GSE101685, and GSE45114. Using public databases to predict the bioactive components and possible targets of RA and PM. Target crossover from Gene Expression Omnibus (GEO) and public databases were used to identify potential biomarkers for HCC. Subsequently, validation and prognostic value analyses were performed using the Gene Expression Profile Interaction Analysis (GEPIA) platform. The Cytoscape software created a network of "compound targets" to pinpoint compounds linked to the biomarkers. Molecular docking techniques were utilized to validate the connection between these compounds and the identified biomarkers. Ultimately, the HepG2 liver cancer cell line was chosen to assess the inhibitory effect of Hederagenin (HDG) and to confirm the expression of ADH1B through Western blot analysis. In this study, four key biomarkers (NR1I2, ADH1B, NQO1, GHR) were identified. Molecular docking showed that these four core targets could form stable conformations with the corresponding compounds. As the drug concentration decreases, the inhibitory effect on HepG2 diminishes, and the survival rate of HepG2 cells significantly declines following the administration of 100 µmol/L HDG. Compared to the control, the expression of ADH1B protein is significantly increased in HepG2 cells treated with 100 µmol/L HDG. The study identified four key biomarkers (ADH1B, GHR, NQO1, NR1I2) that have prognostic ability for HCC. This study provides biomarkers and potential targeted monomeric medicines for treating HCC.
Collapse
Affiliation(s)
- Mohan Li
- Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Traditional Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
- Engineering and Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, China
| | - Bang Liu
- Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Traditional Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
- Engineering and Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, China
| | - Minghua Xian
- Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Traditional Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
- Engineering and Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, China
| | - Shumei Wang
- Guangdong Pharmaceutical University, Guangzhou, 510006, China.
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Traditional Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China.
- Engineering and Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, China.
- Traditional Chinese Medicine Resource Germplasm Bank Management Center, Yunfu, 527300, China.
| | - Peiyi Liu
- Huangpu People's Hospital of Zhongshan, Zhongshan, 528429, China
| |
Collapse
|
2
|
Modak D, Ghosh S, Sarkar S, Roy SK, Chakraborty A, Ray A, Patel CN, Georrge JJ, Thakur S, Bhattacharjee S. Unveiling the mechanism of amelioration of adjuvant-induced rheumatoid arthritis by Drynaria quercifolia rhizome extract using network pharmacology and gene expression-based studies. Sci Rep 2025; 15:11981. [PMID: 40199969 PMCID: PMC11978801 DOI: 10.1038/s41598-025-87461-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 01/20/2025] [Indexed: 04/10/2025] Open
Abstract
Rhizomes of Drynaria quercifolia have long been traditionally used to manage rheumatic pain. However, there is limited research supporting this traditional practice and insufficient evidence demonstrating the molecular mechanisms of action of plant-derived bioactives in rheumatoid arthritis (RA). The current study aims to identify the effective components in Drynaria quercifolia methanol rhizome extract (DME) and their probable pharmacological mechanisms in alleviating Rheumatoid Arthritis (RA) using network-pharmacology, molecular docking, molecular-dynamics simulations, and gene expression-based validation. Gas chromatography-mass spectrometry (GC-MS) based screening identified 41 volatile phytocomponents from DME having drug-like potentiality. Network pharmacology-based screening revealed 117 therapeutic targets for RA of which 11 have been identified as core targets. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis indicated that key target genes were mostly enriched in the inflammatory response associated with multiple signalling pathways. Molecular docking and molecular dynamics studies revealed that key target proteins like serine/threonine-protein kinase (AKT1), peroxisome proliferator-activated receptor alpha (PPARA), and peroxisome proliferator-activated receptor gamma (PPARG), exhibited strong binding affinity and stable interactions with multiple phytocomponents present in DME. For experimental verification FCA (Freund's complete adjuvant)-induced chronic arthritis model employed for further molecular investigation. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) results validated that DME significantly (p ≤ 0.05) regulate the expression of key identified target genes AKT and PPARG in experimental RA model. Moreover, this study further confirmed that DME significantly (p ≤ 0.05) downregulated pro-inflammatory mediators like COX-2, IL-6 and TNF-α at gene and protein levels and also normalized (p ≤ 0.05) different oxidative stress parameters in both the low and high dose groups of DME-treated arthritic animals. In conclusion, the network-based in silico approach indicated that the phytocomponents present in DME probably act in a synergistic way to modulate key identified targets associated with RA, which was further validated by experimental studies. Therefore, DME could be a potential alternative in immunomodulatory therapies to combat RA and related chronic inflammatory conditions.
Collapse
Affiliation(s)
- Debabrata Modak
- Cell and Molecular Biology Laboratory, Department of Zoology, University of North Bengal, Raja Rammohunpur, Darjeeling, 734013, West Bengal, India
- Department of Bioinformatics, University of North Bengal, Raja Rammohunpur, Darjeeling, 734013, West Bengal, India
| | - Subhajit Ghosh
- Department of Bioinformatics, University of North Bengal, Raja Rammohunpur, Darjeeling, 734013, West Bengal, India
| | - Sourav Sarkar
- Cell and Molecular Biology Laboratory, Department of Zoology, University of North Bengal, Raja Rammohunpur, Darjeeling, 734013, West Bengal, India
| | - Sudipta K Roy
- Cell and Molecular Biology Laboratory, Department of Zoology, University of North Bengal, Raja Rammohunpur, Darjeeling, 734013, West Bengal, India
| | - Ayan Chakraborty
- Virus Research and Diagnostic Laboratory, North Bengal Medical College and Hospital, Darjeeling, 734012, West Bengal, India
| | - Arpita Ray
- Genetics and Molecular Biology Laboratory, Department of Zoology, University of North Bengal, Darjeeling, 734013, West Bengal, India
| | - Chirag N Patel
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
- Biotechnology Research Center, Technology Innovation Institute, Abu Dhabi, United Arab Emirates
| | - John J Georrge
- Department of Bioinformatics, University of North Bengal, Raja Rammohunpur, Darjeeling, 734013, West Bengal, India
| | - Subarna Thakur
- Department of Bioinformatics, University of North Bengal, Raja Rammohunpur, Darjeeling, 734013, West Bengal, India.
| | - Soumen Bhattacharjee
- Cell and Molecular Biology Laboratory, Department of Zoology, University of North Bengal, Raja Rammohunpur, Darjeeling, 734013, West Bengal, India.
| |
Collapse
|
3
|
Song X, Zhu J, Sun F, Wang N, Qiu X, Zhu Q, Qi J, Wang X. Target-centric analysis of hepatitis B: identifying key molecules and pathways for treatment. Sci Rep 2024; 14:26858. [PMID: 39500944 PMCID: PMC11538522 DOI: 10.1038/s41598-024-76567-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/15/2024] [Indexed: 11/08/2024] Open
Abstract
Hepatitis B virus (HBV) poses a significant global health challenge, potentially leading to severe liver conditions, with currently limited effective treatment options available. Xiao-Chai-Hu-Tang (XCHT), a well-known Traditional Chinese Medicine (TCM) prescription, shows promise in clinical trials for treating HBV. Therefore, screening the complex components of XCHT, identifying the active compounds, and closely exploring the targets associated with hepatitis B may constitute an effective strategy for the development of new therapeutic drugs for the treatment of this disease. A systematic pharmacology and GEO chip analysis identified key targets and pathways for hepatitis B treatment and effective ingredients. Molecular docking and molecular dynamics simulation techniques were used to explore the affinity and stability of active compounds with core targets, while assessing the druggability and safety of the active compounds. The therapeutic effect of the active compound protoporphyrin in XCHT on hepatitis B were mediated through key targets such as AKT1, MAPK1, and LCK, as well as key signaling pathways like PI3K-Akt signaling pathway and Ras signaling pathway. Protoporphyrin effectively bond to active pockets of core targets and demonstrated favorable druggability and a high safety threshold. The study provided valuable insights into the development of effective treatments for hepatitis B.
Collapse
Affiliation(s)
- Xinyu Song
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Jinlu Zhu
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Fengzhi Sun
- Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China
| | - Nonghan Wang
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Xiao Qiu
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Qingjun Zhu
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Jianhong Qi
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 211198, China.
| | - Xiaolong Wang
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
- Key Laboratory of TCM Classical Theory, Ministry of Education, Shandong University of TCM, Jinan, 250355, China.
- Shandong Provincial Key Laboratory of TCM for Basic Research, Shandong University of TCM, Jinan, 250355, China.
| |
Collapse
|
4
|
Yuan X, Huang H, Yu C, Tang Z, Li Y. Network pharmacology and experimental verification study on the mechanism of Hedyotis diffusa Willd in treating colorectal cancer. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6507-6521. [PMID: 38446216 DOI: 10.1007/s00210-024-03024-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 02/22/2024] [Indexed: 03/07/2024]
Abstract
This study aimed to evaluate the pharmacological mechanism of Hedyotis diffusa Willd against CRC (colorectal cancer) using network pharmacological analysis combined with experimental validation. The active components and potential targets of Hedyotis diffusa Willd were screened from the tax compliance management program public database using network pharmacology. The core anti-CRC targets were screened using a protein-protein interaction (PPI) network. The mRNA and protein expression of core target genes in normal colon and CRC tissues and their relationship with overall CRC survival were evaluated using The Cancer Genome Atlas (TCGA), Human Protein Atlas (HPA), and Gene Expression Profiling Interactive Analysis (GEPIA) databases. Functional and pathway enrichment analyses of the potential targets were performed using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). The first six core targets with stable binding were molecular-docked with the active components quercetin and β-sitosterol. Finally, the results of network pharmacology were verified using in vitro experiments. In total, 149 potential targets were identified by searching for seven types of active components and the intersection of all potential and CRC targets. PPI network analysis showed that ten target genes, including tumor protein p53 (TP53) and recombinant cyclin D1 (CCND1), were pivotal genes. GO enrichment analysis involved 2043 biological processes, 52 cellular components, and 191 molecular functions. KEGG enrichment analysis indicated that the anticancer effects of H. alba were mediated by tumor necrosis factor, interleukin-17, and nuclear factor-κB (NF-κB) signaling pathways. Validation of key targets showed that the validation results for most core genes were consistent with those in this study. Molecular docking revealed that the ten core target proteins could be well combined with quercetin and β-sitosterol and the structure remained stable after binding. The results of the in vitro experiment showed that β-sitosterol inhibited proliferation and induced apoptosis in SW620 cells. This study identified a potential target plant for CRC through network pharmacology and in vitro validation.
Collapse
Affiliation(s)
- Xiya Yuan
- Futian District, Shenzhen Hospital of Guangzhou University of Chinese Medicine, 6001 Beihuan Avenue, Shenzhen City, 518034, Guangdong, China
| | - Haifu Huang
- Futian District, Shenzhen Hospital of Guangzhou University of Chinese Medicine, 6001 Beihuan Avenue, Shenzhen City, 518034, Guangdong, China
| | - Changhui Yu
- Futian District, Shenzhen Hospital of Guangzhou University of Chinese Medicine, 6001 Beihuan Avenue, Shenzhen City, 518034, Guangdong, China
| | - Zhenhao Tang
- Futian District, Shenzhen Hospital of Guangzhou University of Chinese Medicine, 6001 Beihuan Avenue, Shenzhen City, 518034, Guangdong, China
| | - Yaoxuan Li
- Futian District, Shenzhen Hospital of Guangzhou University of Chinese Medicine, 6001 Beihuan Avenue, Shenzhen City, 518034, Guangdong, China.
| |
Collapse
|
5
|
Fatriani R, Pratiwi FAK, Annisa A, Septaningsih DA, Aziz SA, Miladiyah I, Kusumastuti SA, Nasution MAF, Ramadhan D, Kusuma WA. Unveiling the anti-obesity potential of Kemuning (Murraya paniculata): A network pharmacology approach. PLoS One 2024; 19:e0305544. [PMID: 39208245 PMCID: PMC11361609 DOI: 10.1371/journal.pone.0305544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/30/2024] [Indexed: 09/04/2024] Open
Abstract
Obesity has become a global issue that affects the emergence of various chronic diseases such as diabetes mellitus, dysplasia, heart disorders, and cancer. In this study, an integration method was developed between the metabolite profile of the active compound of Murraya paniculata and the exploration of the targeting mechanism of adipose tissue using network pharmacology, molecular docking, molecular dynamics simulation, and in vitro tests. Network pharmacology results obtained with the skyline query technique using a block-nested loop (BNL) showed that histone acetyltransferase p300 (EP300), peroxisome proliferator-activated receptor gamma (PPARG), and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PPARGC1A) are potential targets for treating obesity. Enrichment analysis of these three proteins revealed their association with obesity, thermogenesis, energy metabolism, adipocytokines, fat cell differentiation, and glucose homeostasis. Metabolite profiling of M. paniculata leaves revealed sixteen active compounds, ten of which were selected for molecular docking based on drug-likeness and ADME results. Molecular docking results between PPARG and EP300 with the ten active compounds showed a binding affinity value of ≤ -5.0 kcal/mol in all dockings, indicating strong binding. The stability of the protein-ligand complex resulting from docking was examined using molecular dynamics simulations, and we observed the best average root mean square deviation (RMSD) of 0.99 Å for PPARG with trans-3-indoleacrylic acid, which was lower than with the native ligand BRL (2.02 Å). Furthermore, the RMSD was 2.70 Å for EP300 and the native ligand 99E, and the lowest RMSD with the ligand (1R,9S)-5-[(E)-2-(4-Chlorophenyl)vinyl]-11-(5-pyrimidinylcarbonyl)-7,11-diazatricyclo[7.3.1.02,7]trideca-2,4-dien-6-one was 3.33 Å. The in vitro tests to validate the potential of M. paniculata in treating obesity showed that there was a significant decrease in PPARG and EP300 gene expressions in 3T3-L1 mature adipocytes treated with M. paniculata ethanolic extract starting at concentrations 62.5 μg/ml and 15.625 μg/ml, respectively. These results indicate that M. paniculata can potentially treat obesity by disrupting adipocyte maturation and influencing intracellular lipid metabolism.
Collapse
Affiliation(s)
- Rizka Fatriani
- Tropical Biopharmaca Research Center, IPB University, Bogor, Indonesia
| | | | - Annisa Annisa
- Department of Computer Science, Faculty of Mathematics and Natural Sciences, IPB University, Bogor, Indonesia
| | - Dewi Anggraini Septaningsih
- Department of Chemistry, Faculty of Military Mathematics and Natural Sciences, Republic of Indonesia Defense University, Bogor, Indonesia
| | - Sandra Arifin Aziz
- Department of Agronomy and Horticulture, Faculty of Agriculture, IPB University, Bogor, Indonesia
| | | | - Siska Andrina Kusumastuti
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | | | - Donny Ramadhan
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Wisnu Ananta Kusuma
- Tropical Biopharmaca Research Center, IPB University, Bogor, Indonesia
- Department of Computer Science, Faculty of Mathematics and Natural Sciences, IPB University, Bogor, Indonesia
| |
Collapse
|
6
|
Luo Y, Huang P, Chen J, Ma P. Integrating network pharmacology and experimental models to investigate the mechanisms of XCHD and YCSLS in preventing HUA progression via TLR4/MYD88/NF-κB signaling. Heliyon 2024; 10:e33416. [PMID: 39027534 PMCID: PMC11255667 DOI: 10.1016/j.heliyon.2024.e33416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 06/20/2024] [Accepted: 06/20/2024] [Indexed: 07/20/2024] Open
Abstract
With the alterations in dietary structure and the augmentation of the human living standard, hyperuricemia (HUA) has emerged as a significant factor impacting contemporary human health. It has also been scientifically validated as an independent risk determinant for the progression of renal disease. Existing literature indicates that XCHD (Xiao Chai Hu Decoction) and YCSLS (Yinchen Siling San) possess a capability to ameliorate UA levels and fortify renal function, yet a comprehensive understanding of their mechanisms of action remains elusive. This investigation is designed to elucidate the therapeutic efficacy and mechanistic underpinnings of XCHD/YCSLS on the renal tissues of HUA-afflicted rats, with the objective of fortifying the evidence base to advocate its clinical application. Our preliminary findings substantiated that XCHD and YCSLS impede HUA progression through the inhibition of inflammatory and oxidative stress pathways. Further, we synthesized data from publicly accessible repositories to forecast interactions between XCHD, YCSLS, and their prospective targets in HUA, including the associated signaling pathways. This approach facilitated the identification of shared targets of XCHD/YCSLS, and HUA, and the subsequent correlation analysis of these targets employing KEGG (Kyoto Encyclopedia of Genes and Genomes) and GO (Gene Ontology) methodologies. The findings indicate that the TLR4/MYD88/NF-κB signaling constitutes one of the potential crucial conduits engaged in XCHD and YCSLS-induced HUA mitigation. In conclusion, the analysis of WB and IHC from HUA rat models corroborated that XCHD and YCSLS do indeed attenuate the expression of TLR4/MYD88/NF-κB, reinforcing the hypothesized pivotal role of the its signaling cascade in HUA. This warrants subsequent scholarly exploration.
Collapse
Affiliation(s)
- Yining Luo
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ping Huang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jiaxue Chen
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ping Ma
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| |
Collapse
|
7
|
Zhang Q, Bi Y, Zhang B, Jiang Q, Mou CK, Lei L, Deng Y, Li Y, Yu J, Liu W, Zhao J. Current landscape of fecal microbiota transplantation in treating depression. Front Immunol 2024; 15:1416961. [PMID: 38983862 PMCID: PMC11231080 DOI: 10.3389/fimmu.2024.1416961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 06/07/2024] [Indexed: 07/11/2024] Open
Abstract
Depression, projected to be the predominant contributor to the global disease burden, is a complex condition with diverse symptoms including mood disturbances and cognitive impairments. Traditional treatments such as medication and psychotherapy often fall short, prompting the pursuit of alternative interventions. Recent research has highlighted the significant role of gut microbiota in mental health, influencing emotional and neural regulation. Fecal microbiota transplantation (FMT), the infusion of fecal matter from a healthy donor into the gut of a patient, emerges as a promising strategy to ameliorate depressive symptoms by restoring gut microbial balance. The microbial-gut-brain (MGB) axis represents a critical pathway through which to potentially rectify dysbiosis and modulate neuropsychiatric outcomes. Preclinical studies reveal that FMT can enhance neurochemicals and reduce inflammatory markers, thereby alleviating depressive behaviors. Moreover, FMT has shown promise in clinical settings, improving gastrointestinal symptoms and overall quality of life in patients with depression. The review highlights the role of the gut-brain axis in depression and the need for further research to validate the long-term safety and efficacy of FMT, identify specific therapeutic microbial strains, and develop targeted microbial modulation strategies. Advancing our understanding of FMT could revolutionize depression treatment, shifting the paradigm toward microbiome-targeting therapies.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Xianning Medical College, Hubei University of Science & Technology, Xianning, Hubei, China
| | - Yajun Bi
- Department of Pediatrics, Dalian Municipal Women and Children’s Medical Center (Group), Dalian Medical University, Dalian, Liaoning, China
| | - Boyu Zhang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qiong Jiang
- Xianning Medical College, Hubei University of Science & Technology, Xianning, Hubei, China
| | - Chao Kam Mou
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lelin Lei
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yibo Deng
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yutong Li
- Wuhan Britain-China School, Wuhan, Hubei, China
| | - Jing Yu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Liu
- Department of Public Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jinzhu Zhao
- Division of Child Healthcare, Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
8
|
Liu Q, Luo Z, Sun M, Li W, Liu S. Mechanistic exploration and experimental validation of the Xiaochaihu decoction for the treatment of breast cancer by network pharmacology. Aging (Albany NY) 2024; 16:7979-7999. [PMID: 38742934 PMCID: PMC11132012 DOI: 10.18632/aging.205798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 03/29/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND Xiaochaihu (XCH) decoction is a traditional Chinese prescription that has been recorded in the pharmacopeia of the People's Republic of China. In China, the XCH decoction is used clinically to treat a variety of tumors, including breast cancer. However, its potential mechanism of action is still undefined. METHODS The chemical compounds in the XCH decoction were identified via Q Exactive Orbitrap LC-MS/MS. Then, we screened the active ingredients and targets in the XCH decoction from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). Next, Cytoscape and Metascape were used to construct an active ingredient-target-disease network, which included a protein-protein interaction (PPI) network, GO enrichment analysis, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Finally, we used molecular docking and in vitro experiments to verify the results of network pharmacology analysis. RESULTS More than 70 major compounds were identified by Q Exactive Orbitrap LC-MS/MS analysis from the XCH decoction. A total of 162 active ingredients and 153 targets related to the XCH decoction and breast cancer were identified, and a compound-target-disease network was constructed. GO and KEGG analyses revealed that the XCH decoction regulated the drug response, apoptosis process, cancer pathway, and PI3K/Akt signaling pathway. Molecular docking and experimental validation indicated that the XCH decoction suppressed proliferation and induced apoptosis in breast cancer cells by regulating the expression of apoptosis-related proteins and inhibiting the PI3K/Akt pathway. CONCLUSIONS This study suggested that the XCH decoction can be used to treat breast cancer by inhibiting cell proliferation, inducing apoptosis and downregulating the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Qinglong Liu
- Department of Pharmacy, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Zehua Luo
- Department of Pharmacy, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Mei Sun
- Department of Pharmacy, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Wenjun Li
- Department of Pharmacy, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Songqing Liu
- Department of Pharmacy, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| |
Collapse
|
9
|
Khan MRUZ, Trivedi V. Molecular modelling, docking and network analysis of phytochemicals from Haritaki churna: role of protein cross-talks for their action. J Biomol Struct Dyn 2024; 42:4297-4312. [PMID: 37288779 DOI: 10.1080/07391102.2023.2220036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 05/26/2023] [Indexed: 06/09/2023]
Abstract
Phytochemicals are bioactive agents present in medicinal plants with therapeutic values. Phytochemicals isolated from plants target multiple cellular processes. In the current work, we have used fractionation techniques to identify 13 bioactive polyphenols in ayurvedic medicine Haritaki Churna. Employing the advanced spectroscopic and fractionation, structure of bioactive polyphenols was determined. Blasting the phytochemical structure allow us to identify a total of 469 protein targets from Drug bank and Binding DB. Phytochemicals with their protein targets from Drug bank was used to create a phytochemical-protein network comprising of 394 nodes and 1023 edges. It highlights the extensive cross-talk between protein target corresponding to different phytochemicals. Analysis of protein targets from Binding data bank gives a network comprised of 143 nodes and 275 edges. Taking the data together from Drug bank and binding data, seven most prominent drug targets (HSP90AA1, c-Src kinase, EGFR, Akt1, EGFR, AR, and ESR-α) were found to be target of the phytochemicals. Molecular modelling and docking experiment indicate that phytochemicals are fitting nicely into active site of the target proteins. The binding energy of the phytochemicals were better than the inhibitors of these protein targets. The strength and stability of the protein ligand complexes were further confirmed using molecular dynamic simulation studies. Further, the ADMET profiles of phytochemicals extracted from HCAE suggests that they can be potential drug targets. The phytochemical cross-talk was further proven by choosing c-Src as a model. HCAE down regulated c-Src and its downstream protein targets such as Akt1, cyclin D1 and vimentin. Hence, network analysis followed by molecular docking, molecular dynamics simulation and in-vitro studies clearly highlight the role of protein network and subsequent selection of drug candidate based on network pharmacology.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Md Rafi Uz Zama Khan
- Malaria Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati, Assam, India
| | - Vishal Trivedi
- Malaria Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati, Assam, India
| |
Collapse
|
10
|
Zhang F, Chu M, Liu J, Zhao Q, Zhu Y, Wu X. Shikonin Suppresses Cell Tumorigenesis in Gastric Cancer Associated with the Inhibition of c-Myc and Yap-1. Comb Chem High Throughput Screen 2024; 27:1919-1929. [PMID: 37957853 DOI: 10.2174/0113862073254088231020082912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 11/15/2023]
Abstract
AIM The study aimed to study the potential roles and mechanisms of shikonin in gastric cancer by network pharmacology and biological experiments. METHODS The key genes and targets of shikonin in gastric cancer were predicted by network pharmacology and molecular docking study. The effect of shikonin on the proliferation, migration, and invasion of gastric cancer cells was detected by the CCK8 method, and wound healing and transwell assays. The expression levels of c-Myc and Yap-1 were detected via western blotting in gastric cancer cells after shikonin intervention. RESULTS The results of network pharmacology revealed the key target genes of shikonin on gastric cancer cells to be c-Myc, Yap-1, AKT1, etc. GO and KEGG analysis showed regulation of cell migration, proliferation, adhesion, and other biological processes, including the PI3K-Akt signaling pathway, HIF-1 signaling pathway, necroptosis, and other cancer pathways. Molecular docking showed shikonin to be most closely combined with protooncogenes c-Myc and Yap-1. In vitro experiments showed that the proliferation rate, migration, and invasion ability of the gastric cancer cell group decreased significantly after shikonin intervention for 24h. The expression levels of c-Myc and Yap-1 in gastric cancer cells were found to be significantly decreased after shikonin intervention. CONCLUSION This study showed protooncogenes c-Myc and Yap-1 to be the core target genes of shikonin on gastric cancer cells. Shikonin may suppress gastric cancer cells by inhibiting the protooncogenes c-Myc and Yap-1. This suggests that shikonin may be a good candidate for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Fei Zhang
- The First Clinical Medical College, Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, China
| | - Mingliang Chu
- The First Clinical Medical College, Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, China
| | - Jiemin Liu
- Department of Endoscopy, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Qi Zhao
- The Second Clinical Medical College, Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, China
| | - Yanqiu Zhu
- The First Clinical Medical College, Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, China
| | - Xuefang Wu
- Department of Pathology, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| |
Collapse
|
11
|
Hao L, Wang C, Wang H, Zhou M, Wang Y, Hu H. Dietary of different forms of Humulus scandens on growth performance and intestinal bacterial communities in piglets. Transl Anim Sci 2023; 8:txad139. [PMID: 38221957 PMCID: PMC10782920 DOI: 10.1093/tas/txad139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/21/2023] [Indexed: 01/16/2024] Open
Abstract
The present study was aimed at elucidating the effects of feeding different forms of Humulus scandens (Hu) on performance and bacterial communities in piglets. A total of 160 piglets were divided into four groups: (1) a control (CG, basal diet); (2) a basal diet with Hu pulp (HS), basal diet + Hu pulp; (3) a basal diet with Hu juice (HSJ), basal diet + Hu juice; and (4) a basal diet with Hu residue (HSR), basal diet + Hu residue. Results showed that HS, HSJ, and HSR supplementation led to rich average daily gain (ADG) and poor feed conversion ratio (FCR) during 28 to 70 d of age, increased 120 d body weight (BW), average daily feed intake (ADFI) and ADG and decreased FCR during 71 to 120 d of age. Three experiment groups presented greater (P < 0.05) IgA, IgG, and IgM and lower (P < 0.05) glucose, and blood urea nitrogen. The content of diamine oxidase significantly decreased (P < 0.05) in HS group. The crude protein and crude fiber digestibility were improved (P < 0.05) in HS group and the Ca digestibility was increased (P < 0.05) in HS and HSJ groups. HSR supplementation improved the abundance of Firmicutes and decreased the abundance of Bacteroidetes. Hu supplementation with different forms increased the proportion of Lactobacillus in cecum content. These results indicated that supplemental feeding of Hu with different forms improved serum immunity, nutrient digestibility, and bacterial communities in piglets, promoting growth and development, which may be regarded as a reference for developing novel feed resources for piglets.
Collapse
Affiliation(s)
- Lihong Hao
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250000, China
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250000, China
| | - Cheng Wang
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250000, China
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250000, China
| | - Huaizhong Wang
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250000, China
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250000, China
| | - Meng Zhou
- Business Environment Promotion Department, Jinan Enterprise Service Center, Central, Jinan 250000, China
| | - Yong Wang
- Environmental Protection Equipment Department, Jinan Department of Husbandry Extension, Changqing, Jinan 250000, China
| | - Hongmei Hu
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250000, China
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250000, China
| |
Collapse
|
12
|
Duan B, Hu Q, Ding F, Huang F, Wang W, Yin N, Liu Z, Zhang S, He D, Lu Q. The effect and mechanism of Huangqin-Baishao herb pair in the treatment of dextran sulfate sodium-induced ulcerative colitis. Heliyon 2023; 9:e23082. [PMID: 38144295 PMCID: PMC10746484 DOI: 10.1016/j.heliyon.2023.e23082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 10/03/2023] [Accepted: 11/27/2023] [Indexed: 12/26/2023] Open
Abstract
Background The haungqing (Scutellariae Radix) and baishao (Paeoniae Radix Alba) herb pair (HBHP) is a common prescribed herbal formula or is added to other traditional Chinese medicine (TCM) prescriptions to treat ulcerative colitis (UC). However, the underlying mechanism is unclear. Purpose Elucidate the efficacy and potential mechanism of HBHP against UC. Methods First, The UC model of mice induced by dextran sulfate sodium (DSS) was established. The mice were randomly divided into Control group, DSS group, SASP group (390 mg/kg), and HPHP group (1.95 g/kg), with 8 mice per group. Drugs were administrated via oral gavage for 7 days. Then, Disease activity index (DAI), length of the colon, histopathology, and changes in inflammatory cytokines in colonic tissues were analyzed to assess the effect of HBHP on UC. Besides, Network pharmacology was applied to identify the active compounds, core targets of HBHP in the treatment of UC, and the corresponding signaling pathways to explore the underlying mechanisms. Finally, Western blot (WB), immunohistochemistry (IHC) and molecular docking were performed to validate the results. Results HBHP significantly reduced DAI score and decreased colon length shortening in DSS-induced UC mice. The administration of HBHP was able to effectively alleviated mucosal ulceration and epithelial destruction. In addition, HBHP treatment obviously - reduced the expressions of TNF-α, IL-6, and IL-1β in colon tissues (p < 0.05 or p < 0.01). 35 bioactive compounds and 290 HBHP targets related to UC were obtained. Among them 3 key active compounds (baicalein, panicolin, and norwogonin) with higher degree values in the drug-compound-target network and 21 hub genes (STAT3, JAK2, SRC, AKT1, PIK3CA, and VEGFA, etc.) were identified. KEGG enrichment analysis suggested that HBHP's mechanisms mainly involve the JAK-STAT pathway. Abnormal activation of JAK/STAT signaling is believed to be involved in the pathogeneses of UC. Notably, WB and IHC showed that HBHP significantly down-regulated the protein expression levels of p-JAK2 (p < 0.05) and p-STAT3 (p < 0.05 or p < 0.01). JAK2 and STAT3 might be core targets for the action of HBHP; this possibility was also supported by molecular docking. Conclusions HBHP could alleviate DSS-induced UC, reduce tissue inflammation, and its mechanism might primarily be achieved by inhibiting JAK2/STAT3 signaling pathway. Meanwhile, our work revealed that network pharmacology combined with experimental verification is a cogent means of studying the mechanism of TCM.
Collapse
Affiliation(s)
- Bailu Duan
- Postdoctoral Research Station, General Hospital of Central Theater Command of PLA, Wuhan, 430070, China
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Qiong Hu
- First People's Hospital of Jiangxia District, Wuhan City & Union Jiangnan Hospital, HUST, Wuhan, 430200, China
| | - Fengmin Ding
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Fang Huang
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Wei Wang
- Postdoctoral Research Station, General Hospital of Central Theater Command of PLA, Wuhan, 430070, China
- Department of Orthopedics, Hubei Provincial Hospital of TCM Affiliated to Hubei University of Chinese Medicine, Wuhan, 430061, China
| | - Nina Yin
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Zhe Liu
- Postdoctoral Research Station, General Hospital of Central Theater Command of PLA, Wuhan, 430070, China
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Song Zhang
- Postdoctoral Research Station, General Hospital of Central Theater Command of PLA, Wuhan, 430070, China
| | - Dongchu He
- Postdoctoral Research Station, General Hospital of Central Theater Command of PLA, Wuhan, 430070, China
| | - Qiping Lu
- Postdoctoral Research Station, General Hospital of Central Theater Command of PLA, Wuhan, 430070, China
- Department of General Surgery, General Hospital of Central Theater Command of PLA, Wuhan, 430070, China
| |
Collapse
|
13
|
Feng L, Zhu S, Ma J, Hong Y, Wan M, Qiu Q, Li H, Li J. Integrated bioinformatics analysis and network pharmacology to explore the potential mechanism of Patrinia heterophylla Bunge against acute promyelocytic leukemia. Medicine (Baltimore) 2023; 102:e35151. [PMID: 37800842 PMCID: PMC10553026 DOI: 10.1097/md.0000000000035151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/18/2023] [Indexed: 10/07/2023] Open
Abstract
INTRODUCTION Current treatment with arsenic trioxide and all-trans retinoic acid has greatly improved the therapeutic efficacy and prognosis of acute promyelocytic leukemia (APL), but may cause numerous adverse effects. Patrinia heterophylla Bunge (PHEB), commonly known as "Mu-Tou-Hui" in China, is effective in treating leukemia. However, no studies have reported the use of PHEB for APL treatment. In this study, we aimed to investigate the potential anticancer mechanism of PHEB against APL. METHODS Public databases were used to search for bioactive compounds in PHEB, their potential targets, differentially expressed genes associated with APL, and therapeutic targets for APL. The core targets and signaling pathways of PHEB against APL were identified by the protein-protein interaction network, Kaplan-Meier curves, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway enrichment, and compound-target-pathway network analysis. Molecular docking was performed to predict the binding activity between the most active compounds and the key targets. RESULTS Quercetin and 2 other active components of PHEB may exert anti-APL effects through proteoglycans in cancer, estrogen signaling, and acute myeloid leukemia pathways. We also identified 6 core targets of the bioactive compounds of PHEB, including protein tyrosine phosphatase receptor type C, proto-oncogene tyrosine-protein kinase Src, mitogen-activated protein kinase phosphatase 3 (MAPK3), matrix metalloproteinase-9, vascular endothelial growth factor receptor-2, and myeloperoxidase, most of which were validated to improve the 5-year survival of patients. Molecular docking results showed that the active compound bound well to key targets. CONCLUSION The results not only predict the active ingredients and potential molecular mechanisms of PHEB against APL, but also help to guide further investigation into the anti-APL application of PHEB.
Collapse
Affiliation(s)
- Liya Feng
- Department of Basic Medical Sciences, College of Medicine, Longdong University, Qingyang, Gansu, P. R. China
| | - Sha Zhu
- Gansu Province Medical Genetics Center, Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, Gansu, P. R. China
| | - Jian Ma
- Key Lab of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, P. R. China
| | - Yali Hong
- Department of Basic Medical Sciences, College of Medicine, Longdong University, Qingyang, Gansu, P. R. China
| | - Meixia Wan
- Department of Basic Medical Sciences, College of Medicine, Longdong University, Qingyang, Gansu, P. R. China
| | - Qian Qiu
- Department of Basic Medical Sciences, College of Medicine, Longdong University, Qingyang, Gansu, P. R. China
| | - Hongjing Li
- Department of Basic Medical Sciences, College of Medicine, Longdong University, Qingyang, Gansu, P. R. China
| | - Juan Li
- Department of Basic Medical Sciences, College of Medicine, Longdong University, Qingyang, Gansu, P. R. China
| |
Collapse
|
14
|
Zhang Y, Xu L, Li L. The feasibility of using the compound kushen injection to treat cervical cancer based on network pharmacology and transcriptomics. Medicine (Baltimore) 2023; 102:e35135. [PMID: 37682145 PMCID: PMC10489532 DOI: 10.1097/md.0000000000035135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 08/17/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND To investigate the molecular targets and mechanisms of compound kushen injection (CKI) in the prevention and treatment of cervical cancer based on network pharmacology and transcriptomics. METHODS In this study, we used network pharmacology methods to screen for effective compounds, integrated the results of network pharmacology and RNA-seq to comprehensively screen and predict target genes, analyze the biological functions and signaling pathways of target genes, and construct a PPI network to screen for hub genes. The results were further verified by biological experiments, molecular docking, RT-PCR, and western blot analysis. RESULTS The results showed that the hub genes CXCL2, anti-vascular endothelial growth factor, hexokinase 2 are therapeutic targets of CKI for the treatment of Cervical Cancer. These targets were significantly enriched in pathways mainly including pathways in cancer, cell cycle, MAPK signaling pathways, etc. In vitro cell experiments showed that CKI could effectively inhibit the proliferation of cancer cells, promote apoptosis, and induce cell cycle arrest. RT-PCR and western blot experiments showed that the expression of hub genes was significantly decreased. The compounds have good binding activity to hub genes. CONCLUSION CKI, based on its active ingredients and through multiple targets and multiple pathways, can stop the growth of cervical cancer cells at a certain phase of the cell cycle and cause apoptosis, which proved CKI's effect in treating cervical cancer.
Collapse
Affiliation(s)
- Yiting Zhang
- Department of Gynecology, Zhaoqing First People’s Hospital, Zhaoqing, China
| | - Linjing Xu
- Department of Gynecology, Zhaoqing First People’s Hospital, Zhaoqing, China
| | - Ling Li
- Department of Gynecology, Zhaoqing First People’s Hospital, Zhaoqing, China
| |
Collapse
|
15
|
Karhana S, Dabral S, Garg A, Bano A, Agarwal N, Khan MA. Network pharmacology and molecular docking analysis on potential molecular targets and mechanism of action of BRAF inhibitors for application in wound healing. J Cell Biochem 2023. [PMID: 37334778 DOI: 10.1002/jcb.30430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 06/20/2023]
Abstract
Topical application of BRAF inhibitors has been shown to accelerate wound healing in murine models, which can be extrapolated into clinical applications. The aim of the study was to identify suitable pharmacological targets of BRAF inhibitors and elucidate their mechanisms of action for therapeutic applicability in wound healing, by employing bioinformatics tools including network pharmacology and molecular docking. The potential targets for BRAF inhibitors were obtained from SwissTargetPrediction, DrugBank, CTD, Therapeutic Target Database, and Binding Database. Targets of wound healing were obtained using online databases DisGeNET and OMIM (Online Mendelian Inheritance in Man). Common targets were found by using the online GeneVenn tool. Common targets were then imported to STRING to construct interaction networks. Topological parameters were assessed using Cytoscape and core targets were identified. FunRich was employed to uncover the signaling pathways, cellular components, molecular functions, and biological processes in which the core targets participate. Finally, molecular docking was performed using MOE software. Key targets for the therapeutic application of BRAF inhibitors for wound healing are peroxisome proliferator-activated receptor γ, matrix metalloproteinase 9, AKT serine/threonine kinase 1, mammalian target of rapamycin, and Ki-ras2 Kirsten rat sarcoma viral oncogene homolog. The most potent BRAF inhibitors that can be exploited for their paradoxical activity for wound healing applications are Encorafenib and Dabrafenib. By using network pharmacology and molecular docking, it can be predicted that the paradoxical activity of BRAF inhibitors can be used for their potential application in wound healing.
Collapse
Affiliation(s)
- Sonali Karhana
- Centre for Translational & Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Swarna Dabral
- Centre for Translational & Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Aakriti Garg
- Centre for Translational & Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Aysha Bano
- Centre for Translational & Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Nidhi Agarwal
- Centre for Translational & Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Mohd Ashif Khan
- Centre for Translational & Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| |
Collapse
|
16
|
Chen M, Cheng H, Chen X, Gu J, Su W, Cai G, Yan Y, Wang C, Xia X, Zhang K, Zhang M, Jiang H, Chen Y, Yao L. The activation of histone deacetylases 4 prevented endothelial dysfunction: A crucial mechanism of HuangqiGuizhiWuwu Decoction in improving microcirculation dysfunction in diabetes. JOURNAL OF ETHNOPHARMACOLOGY 2023; 307:116240. [PMID: 36764560 DOI: 10.1016/j.jep.2023.116240] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/18/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The regulation of epigenetic factors is considered a crucial target for solving complex chronic diseases such as cardio-cerebrovascular diseases. HuangqiGuizhiWuwu Decoction (HGWWD), a classic Chinese prescription, is mainly used to treat various vascular diseases. Although our previous studies reported that HGWWD could effectively prevent vascular dysfunction in diabetic rodent models, the precise mechanism is still elusive. AIM OF THE STUDY In this study, we investigated the epigenetic mechanisms of modulating the damage of vascular endothelial cells in diabetes by HGWWD. METHODS We first analyzed common active components of HGWWD by using HPLC-Q-TOF-MS/MS analysis, and predicted the isoforms of histone deacetylase (HDAC) that can potentially combine the above active components by systems pharmacology. Next, we screened the involvement of specific HDAC isoforms in the protective effect of HGWWD on vascular injury by using pharmacological blockade combined with the evaluation of vascular function in vivo and in vitro. RESULTS Firstly, HDAC1, HDAC2, HDAC3, HDAC4, HDAC6, HDAC7, SIRT2, and SIRT3 have been implicated with the possibility of binding to the thirty-one common active components in HGWWD. Furthermore, the protective effect of HGWWD is reversed by both TSA (HDAC inhibitor) and MC1568 (class II HDAC inhibitor) on vascular impairment accompanied by reduced aortic HDAC activity in STZ mice. Finally, inhibition of HDAC4 blocked the protective effect of HGWWD on microvascular and endothelial dysfunction in diabetic mice. CONCLUSIONS These results prove the key role of HDAC4 in diabetes-induced microvascular dysfunction and underlying epigenetic mechanisms for the protective effect of HGWWD in diabetes.
Collapse
Affiliation(s)
- Meijiang Chen
- School of Pharmaceutical Sciences, South China Research Center for Acupuncture and Moxibustion, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China.
| | - Hong Cheng
- School of Pharmaceutical Sciences, South China Research Center for Acupuncture and Moxibustion, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China.
| | - Xinyi Chen
- School of Pharmaceutical Sciences, South China Research Center for Acupuncture and Moxibustion, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China.
| | - Jiangyong Gu
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China.
| | - Weiwei Su
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed TCM, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China.
| | - Gaize Cai
- School of Pharmaceutical Sciences, South China Research Center for Acupuncture and Moxibustion, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China.
| | - Yue Yan
- School of Pharmaceutical Sciences, South China Research Center for Acupuncture and Moxibustion, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China.
| | - Chen Wang
- School of Pharmaceutical Sciences, South China Research Center for Acupuncture and Moxibustion, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China.
| | - Xiaoye Xia
- School of Pharmaceutical Sciences, South China Research Center for Acupuncture and Moxibustion, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China.
| | - Kaitong Zhang
- School of Pharmaceutical Sciences, South China Research Center for Acupuncture and Moxibustion, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China.
| | - Meng Zhang
- Research Institute of Acupuncture and Moxibustion, Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China.
| | - Haiqiang Jiang
- Research Institute of Acupuncture and Moxibustion, Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China.
| | - Yongjun Chen
- Research Institute of Acupuncture and Moxibustion, Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China.
| | - Lin Yao
- School of Pharmaceutical Sciences, South China Research Center for Acupuncture and Moxibustion, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China; Research Institute of Acupuncture and Moxibustion, Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China.
| |
Collapse
|
17
|
Vaithiyalingam M, Sumathi DL, Sabarathinam S. Isolation and In silico Study of Curcumin from Curcuma longa and Its Anti-Diabetic Activity. Appl Biochem Biotechnol 2023; 195:947-957. [PMID: 36242725 DOI: 10.1007/s12010-022-04173-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2022] [Indexed: 01/24/2023]
Abstract
Natural products have been widely used for the management of various diseases that affect human health. Natural products are chemical substances that can be extracted with solvents and isolated by column chromatography techniques from the plant source. The development of new drugs from natural products is still challenging, and the most extensively studied plant material is turmeric, Curcuma longa, which is the chief source of curcumin. Curcumin is a bright yellow solid. In our present study, we have taken Curcuma longa, which is defatted with hexane, followed by being extracted with methanol as a solvent. The turmeric methanolic extract is taken for the isolation of curcumin. This was carried out and confirmed by spectroscopy techniques including 1H NMR, 13C NMR, ESI-HRMS, and FT-IR. The compound in silico ADME properties estimate falls within an acceptable range, and a molecular docking analysis shows that it has a higher binding affinity than reference standards. Based on the findings, it can be said that curcumin, a natural substance, has good therapeutic qualities when it is isolated.
Collapse
Affiliation(s)
- Mariyappan Vaithiyalingam
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, 603203, Tamilnadu, India
| | - Dhivya Loganathan Sumathi
- APJ Kalam Research Lab, Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur - 603 203, Kancheepuram, Tamil Nadu, India
| | - Sarvesh Sabarathinam
- Drug Testing Laboratory, Interdisciplinary Institute of Indian System of Medicine (IIISM), SRM Institute of Science and Technology, CV Raman Research Park, Kattankulathur, 603 203, Tamil Nadu, Kancheepuram, India.
| |
Collapse
|
18
|
V VR, Ramu A, Chinnappan J, Velmurugan P, Pathak R, Pashameah RA, A Oyouni AA, M Al-Amer O, I Alasseiri M, Hamadi A, A Alanazi M, Sathiamoorthi T. Interleukin-10 as Covid-19 biomarker targeting KSK and its analogues: Integrated network pharmacology. PLoS One 2023; 18:e0282263. [PMID: 36989283 PMCID: PMC10057793 DOI: 10.1371/journal.pone.0282263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 02/11/2023] [Indexed: 03/30/2023] Open
Abstract
COVID-19 caused by the SARS-CoV-2 virus is widespread in all regions, and it disturbs host immune system functioning leading to extreme inflammatory reaction and hyperactivation of the immune response. Kabasura Kudineer (KSK) is preventive medicine against viral infections and a potent immune booster for inflammation-related diseases. We hypothesize that KSK and KSK similar plant compounds, might prevent or control the COVID-19 infection in the human body. 1,207 KSK and KSK similar compounds were listed and screened via the Swiss ADME tool and PAINS Remover; 303 compounds were filtered including active and similar drug compounds. The targets were retrieved from similar drugs of the active compounds of KSK. Finally, 573 genes were listed after several screening steps. Next, network analysis was performed to finalize the potential target gene: construction of protein-protein interaction of 573 genes using STRING, identifying top hub genes in Cytoscape plug-ins (MCODE and cytoHubba). These ten hub genes play a crucial role in the inflammatory response. Target-miRNA interaction was also constructed using the miRNet tool to interpret miRNAs of the target genes and their functions. Functional annotation was done via DAVID to gain a complete insight into the mechanism of the enriched pathways and other diseases related to the given target genes. In Molecular Docking analysis, IL10 attained top rank in Target-miRNA interaction and also the gene formed prominent exchanges with an excellent binding score (> = -8.0) against 19 compounds. Among them, Guggulsterone has an acute affinity score of -8.8 for IL10 and exhibits anti-inflammatory and immunomodulatory properties. Molecular Dynamics simulation study also performed for IL10 and the interacting ligand compounds using GROMACS. Finally, Guggulsterone will be recommended to enhance immunity against several inflammatory diseases, including COVID19.
Collapse
Affiliation(s)
- Vidhya Rajalakshmi V
- Anthropology and Health Informatics Lab, Department of Bioinformatics, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Akilandeswari Ramu
- Anthropology and Health Informatics Lab, Department of Bioinformatics, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Jayaprakash Chinnappan
- Anthropology and Health Informatics Lab, Department of Bioinformatics, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Palanivel Velmurugan
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Selaiyur, Chennai, Tamilnadu, India
| | - Rajiv Pathak
- Department of Biotechnology, Himalayan Whitehouse International College, Kathmandu, Nepal
| | - Rami Adel Pashameah
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Atif Abdulwahab A Oyouni
- Department of Biology, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia
- Genome and Biotechnology Unit, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Osama M Al-Amer
- Genome and Biotechnology Unit, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Mohammed I Alasseiri
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Abdullah Hamadi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Mansuor A Alanazi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | | |
Collapse
|
19
|
Murali M, Nair B, Radhakrishnan VV, Presanna AT, Nath LR. Evaluation of the Nimbamrithadhi Panchathiktha Kashayam against SARS CoV-2 based on Network Pharmacology and Molecular Docking analysis. Comb Chem High Throughput Screen 2023; 26:436-447. [PMID: 35598237 DOI: 10.2174/1386207325666220519112846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/22/2022] [Accepted: 03/31/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Nimbamrithadhi Panchathiktha Kashayam (NPK) is an Ayurvedic formulation of potent plant ingredients with immune-modulating effects and anti-viral activities. OBJECTIVES The present study is intended to identify the key target involved in immune and inflammatory response against SARS-COV-2 via network pharmacology and also investigates the potent phytoconstituent within NPK in combating or modulating target response via molecular docking. METHODS Active phytoconstituents of NPK were filtered based on overall bioavailability and druglikeness by Lipinski's and ADMETOX prediction. RESULTS Results indicate that IRF 7 can be selected as an efficient target in regulating immunomodulatory and anti-viral activity via network pharmacology. Molecular docking studies show that apigenin (22.22 Kcal /mol), thiamine (24.89 Kcal /mol) and esculetin (25.21 Kcal /mol) within Nimbamrithadhi Panchathiktha Kashayam(NPK) possess better binding affinity in comparison with standard drug gemcitabine (14.56 Kcal /mol). Even though docking score is more for Esculetin and Thiamine, Apigenin within Solanum Virgianum (Yellow nightshade) and Azadirachta Indica (Neem) is considered as the active phytoconstituent in modulating immune responses and anti-viral activities based on the number and nature of amino acid interaction. CONCLUSION To the best of our knowledge, no scientific validation has been done on NPK against COVID-19. The study indicates that NPK can be a better alternative prophylaxis strategy against SARS-COV-2 infection if further validated via suitable preclinical studies.
Collapse
Affiliation(s)
- Maneesha Murali
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682 041, India
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682 041, India
| | - Bhagyalakshmi Nair
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi-682 041, India
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682 041, India
| | - Vishnu V Radhakrishnan
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682 041, India
| | - Aneesh T Presanna
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682 041, India
| | - Lekshmi R Nath
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682 041, India
| |
Collapse
|
20
|
Yagüe E, Sun H, Hu Y. East Wind, West Wind: Toward the modernization of traditional Chinese medicine. Front Neurosci 2022; 16:1057817. [PMID: 36440293 PMCID: PMC9685990 DOI: 10.3389/fnins.2022.1057817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/27/2022] [Indexed: 08/16/2023] Open
Abstract
Traditional Chinese medicine (TCM) has used herbal remedies for more than 2,000 years. The use of complimentary therapies has increased dramatically during the last years, especially in the West, and the incorporation and modernization of TCM in current medical practice is gaining momentum. We reflect on the main bottlenecks in the modernization of arcane Chinese herbal medicine: lack of standardization, safety concerns and poor quality of clinical trials, as well as the ways these are being overcome. Progress in these areas will facilitate the implementation of an efficacy approach, in which only successful clinical trials lead to the molecular characterization of active compounds and their mechanism of action. Traditional pharmacological methodologies will produce novel leads and drugs, and we describe TCM successes such as the discovery of artemisinin as well as many others still in the pipeline. Neurodegenerative diseases, such as Parkinson's and Alzheimer's disease, cancer and cardiovascular disease are the main cause of mortality in the Western world and, with an increasing old population in South East Asia, this trend will also increase in the Far East. TCM has been used for long time for treating these diseases in China and other East Asian countries. However, the holistic nature of TCM requires a paradigm shift. By changing our way of thinking, from "one-target, one-drug" to "network-target, multiple-component-therapeutics," network pharmacology, together with other system biology methodologies, will pave the way toward TCM modernization.
Collapse
Affiliation(s)
- Ernesto Yagüe
- Division of Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - He Sun
- The State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tasly Academy, Tasly Holding Group Co., Ltd., Tianjin, China
| | - Yunhui Hu
- Cloudphar Pharmaceuticals Co., Ltd., Shenzhen, China
| |
Collapse
|
21
|
Elucidation of Prebiotics, Probiotics, Postbiotics, and Target from Gut Microbiota to Alleviate Obesity via Network Pharmacology Study. Cells 2022; 11:cells11182903. [PMID: 36139478 PMCID: PMC9496669 DOI: 10.3390/cells11182903] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/14/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
The metabolites produced by the gut microbiota have been reported as crucial agents against obesity; however, their key targets have not been revealed completely in complex microbiome systems. Hence, the aim of this study was to decipher promising prebiotics, probiotics, postbiotics, and more importantly, key target(s) via a network pharmacology approach. First, we retrieved the metabolites related to gut microbes from the gutMGene database. Then, we performed a meta-analysis to identify metabolite-related targets via the similarity ensemble approach (SEA) and SwissTargetPrediction (STP), and obesity-related targets were identified by DisGeNET and OMIM databases. After selecting the overlapping targets, we adopted topological analysis to identify core targets against obesity. Furthermore, we employed the integrated networks to microbiota-substrate-metabolite-target (MSMT) via R Package. Finally, we performed a molecular docking test (MDT) to verify the binding affinity between metabolite(s) and target(s) with the Autodock 1.5.6 tool. Based on holistic viewpoints, we performed a filtering step to discover the core targets through topological analysis. Then, we implemented protein-protein interaction (PPI) networks with 342 overlapping target, another subnetwork was constructed with the top 30% degree centrality (DC), and the final core networks were obtained after screening the top 30% betweenness centrality (BC). The final core targets were IL6, AKT1, and ALB. We showed that the three core targets interacted with three other components via the MSMT network in alleviating obesity, i.e., four microbiota, two substrates, and six metabolites. The MDT confirmed that equol (postbiotics) converted from isoflavone (prebiotics) via Lactobacillus paracasei JS1 (probiotics) can bind the most stably on IL6 (target) compared with the other four metabolites (3-indolepropionic acid, trimethylamine oxide, butyrate, and acetate). In this study, we demonstrated that the promising substate (prebiotics), microbe (probiotics), metabolite (postbiotics), and target are suitable for obsesity treatment, providing a microbiome basis for further research.
Collapse
|
22
|
Network Pharmacology and Molecular Docking on the Molecular Mechanism of Jiawei-Huang Lian-Gan Jiang Decoction in the Treatment of Colorectal Adenomas. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8211941. [PMID: 35899228 PMCID: PMC9313928 DOI: 10.1155/2022/8211941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 12/01/2022]
Abstract
Purpose Jiawei-Huang Lian-Gan Jiang decoction (JWHLGJD) was developed to treat and prevent the patients with colorectal adenomas (CRA) in China. This study is aimed to discover JWHLGJD's active compounds and demonstrate mechanisms of JWHLGJD against CRA through network pharmacology and molecular docking techniques. Methods All the components of JWHLGJD were retrieved from the pharmacology database of Traditional Chinese Medicine Systems Pharmacology (TCMSP). The GeneCards database, the Online Mendelian Inheritance in Man database (OMIM), the DrugBank database, and PharmGKB were used to obtain the genes matching the targets. Cytoscape created the compound-target network. The network of target protein-protein interactions (PPI) was constructed using the STRING database. Gene Ontology (GO) functional and the Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathways involved in the targets were analyzed by using the DAVID database. Cytoscape created the component-target-pathway (C-T-P) network. AutoDock Vina software was used to verify the molecular docking of JWHLGJD components and key targets. Core genes linked with survival and tumor microenvironment were analyzed through the Kaplan–Meier plotter and TIMER 2.0 databases, respectively. Results Compound-target network mainly contained 38 compounds and 130 targets of the JWHLGJD associated with CRA. TP53, MAPK1, JUN, HSP90AA1, and AKT1 were identified as core targets by the PPI network. KEGG pathway shows that the pathways in cancer, lipids, and atherosclerosis, PI3K-Akt signaling pathway and MAPK signaling pathway, are the most relevant pathways to CRA. The C-T-P network suggests that the active component in JWHLGJD is capable of regulating target genes of these related pathways. The results of molecular docking showed that berberine and stigmasterol were the top two compounds of JWHLGJD, which had high affinity with TP53 and MAPK1, respectively. And, MAPK1 exerted a more significant effect on the prognosis of adenocarcinoma, for it was highly associated with various immune cells. Conclusion Findings in this study provided light on JWHLGJD's active components, prospective targets, and molecular mechanism. It also gave a potential way to uncovering the scientific underpinning and therapeutic mechanism of traditional Chinese medicine (TCM) formulas.
Collapse
|
23
|
Oh KK, Adnan M, Cho DH. New Insight into Drugs to Alleviate Atopic March via Network Pharmacology-Based Analysis. Curr Issues Mol Biol 2022; 44:2257-2274. [PMID: 35678682 PMCID: PMC9164039 DOI: 10.3390/cimb44050153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/14/2022] [Accepted: 05/16/2022] [Indexed: 12/26/2022] Open
Abstract
In the present study, a subject of atopic dermatitis (AD) is exposed progressively to allergic rhinitis (AR) and asthma (AS), which is defined as atopic march (AM). However, both the targets and compounds against AM are still largely unknown. Hence, we investigated the overlapping targets related directly to the occurrence and development of AD, AR, and AS through public databases (DisGeNET, and OMIM). The final overlapping targets were considered as key targets of AM, which were visualized by a Venn diagram. The protein-protein interaction (PPI) network was constructed using R package software. We retrieved the association between targets and ligands via scientific journals, and the ligands were filtered by physicochemical properties. Lastly, we performed a molecular docking test (MDT) to identify the significant ligand on each target. A total of 229 overlapping targets were considered as AM causal elements, and 210 out of them were interconnected with each other. We adopted 65 targets representing the top 30% highest in degree centrality among 210 targets. Then, we obtained 20 targets representing the top 30% greatest in betweenness centrality among 65 targets. The network analysis unveiled key targets against AM, and the MDT confirmed the affinity between significant compounds and targets. In this study, we described the significance of the eight uppermost targets (CCL2, CTLA4, CXCL8, ICAM1, IL10, IL17A, IL1B, and IL2) and eight ligands (Bindarit, CTLA-4 inhibitor, Danirixin, A-205804, AX-24 HCl, Y-320, T-5224, and Apilimod) against AM, providing a scientific basis for further experiments.
Collapse
Affiliation(s)
| | | | - Dong-Ha Cho
- Department of Bio-Health Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Korea; (K.-K.O.); (M.A.)
| |
Collapse
|
24
|
Molecular Pathways Involved in the Anti-Cancer Activity of Flavonols: A Focus on Myricetin and Kaempferol. Int J Mol Sci 2022; 23:ijms23084411. [PMID: 35457229 PMCID: PMC9026553 DOI: 10.3390/ijms23084411] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/04/2022] [Accepted: 04/14/2022] [Indexed: 12/22/2022] Open
Abstract
Natural compounds have always represented valuable allies in the battle against several illnesses, particularly cancer. In this field, flavonoids are known to modulate a wide panel of mechanisms involved in tumorigenesis, thus rendering them worthy candidates for both cancer prevention and treatment. In particular, it was reported that flavonoids regulate apoptosis, as well as hamper migration and proliferation, crucial events for the progression of cancer. In this review, we collect recent evidence concerning the anti-cancer properties of the flavonols myricetin and kaempferol, discussing their mechanisms of action to give a thorough overview of their noteworthy capabilities, which are comparable to those of their most famous analogue, namely quercetin. On the whole, these flavonols possess great potential, and hence further study is highly advised to allow a proper definition of their pharmaco-toxicological profile and assess their potential use in protocols of chemoprevention and adjuvant therapies.
Collapse
|
25
|
Liu C, Fan F, Zhong L, Su J, Zhang Y, Tu Y. Elucidating the material basis and potential mechanisms of Ershiwuwei Lvxue Pill acting on rheumatoid arthritis by UPLC-Q-TOF/MS and network pharmacology. PLoS One 2022; 17:e0262469. [PMID: 35130279 PMCID: PMC8820630 DOI: 10.1371/journal.pone.0262469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/23/2021] [Indexed: 11/18/2022] Open
Abstract
Ershiwuwei Lvxue Pill (ELP, མགྲིན་མཚལ་ཉེར་ལྔ།), a traditional Tibetan medicine preparation, has been used hundreds of years for the clinical treatment of rheumatoid arthritis (RA) in the highland region of Tibet, China. Nevertheless, its chemical composition and therapeutic mechanism are unclear. This study aimed to uncover the potentially effective components of ELP and the pharmacological mechanisms against RA by combing UPLC-Q-TOF/MS and network pharmacology. In this study, 96 compounds of ELP were identified or tentatively characterized based on UPLC-Q-TOF/MS analysis. Then, a total of 22 potential bioactive compounds were screened by TCMSP with oral bioavailability and drug-likeness. Preliminarily, 10 crucial targets may be associated with RA through protein-protein interaction network analysis. The functional enrichment analysis indicated that ELP exerted anti-RA effects probably by synergistically regulating many biological pathways, such as PI3K-Akt, Cytokine-cytokine receptor interaction, JAK-STAT, MAPK, TNF, and Toll-like receptor signaling pathway. In addition, good molecular docking scores were highlighted between five promising bioactive compounds (ellagic acid, quercetin, kaempferol, galangin, coptisine) and five core targets (PTGS2, STAT3, VEGFA, MAPK3, TNF). Overall, ELP can exert its anti-RA activity via multicomponent, multitarget, and multichannel mechanisms of action. However, further studies are needed to validate the biological processes and effect pathways of ELP.
Collapse
Affiliation(s)
- Chuan Liu
- School of Food and Bioengineering, Xihua University, Chengdu, China
| | - Fangfang Fan
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lu Zhong
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinsong Su
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi Zhang
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ya Tu
- Development Research Center of Traditional Chinese Medicine, China Academy of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
26
|
Taylor-Swanson L, Altschuler D, Taromina K, Anderson B, Bensky D, Cohen M, Huang H, Ma S, Majd I, Mitchell C, Schnyer RN, Conboy L. SEAttle-based Research of Chinese Herbs for COVID-19 Study: A Whole Health Perspective on Chinese Herbal Medicine for Symptoms that may be Related to COVID-19. Glob Adv Health Med 2022; 11:21649561211070483. [PMID: 35096490 PMCID: PMC8793385 DOI: 10.1177/21649561211070483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/14/2021] [Indexed: 12/24/2022] Open
Abstract
Introduction East Asian Medicine (EAM) is a Whole System medicine that includes Chinese herbal medicine (CHM). Chinese herbal medicine has been utilized to reduce symptom burden in infectious disease, with notable theoretical reformulations during pandemics of the 3rd, 13th, and 17th centuries. Today, Licensed Acupuncturists trained in CHM have utilized it to treat symptoms and sequelae of COVID-19. However, little is known about its use or efficacy by the public and health practitioners. Understanding and evaluating whole medicine systems of healthcare is inherently complex; there is international consensus for a descriptive, pragmatic approach. We are conducting a feasibility pilot study using a prospective, pragmatic, observational design using Whole Health and Whole Person perspectives. The complexity of COVID-19 reflects the impact on multiple homeoregulatory systems and provides a unique opportunity to assess the impact of interventions such as EAM on whole health. Observation of these EAM encounters will provide valuable qualitative and quantitative data on the interface of an extant Whole System medicine with a novel complex illness as a precursor to a randomized clinical trial. Methods This ongoing study observes a CHM clinic offering telehealth consultations to a diverse patient population since April, 2020. Patients who report symptoms potentially related to COVID-19 disease are consented for standardized collection and analysis of demographic and clinical data from each clinical encounter. Results To date, 61 patients engaged in 195 consultations (mean 3.3) with 49 reporting symptom resolution sufficient to complete treatment, and 4 withdrawals. Just over half (62%) were female, with an average age of 45.7 years. A wide variety of CHM formulas and EAM dietary and lifestyle modifications were provided. Discussion Adequate recruitment and retention suggest feasibility of the intervention and data collection. The rich dataset may facilitate the construction of Whole Health models of CHM’s clinical impact, as well as integrative inquiry into CHM’s effects on symptoms.
Collapse
Affiliation(s)
| | | | | | - Belinda Anderson
- College of Health Professions, Pace University, One Pace Plaza, New York, NY, USA
| | - Daniel Bensky
- Seattle Institute of East Asian Medicine, Seattle, WA, USA
| | - Misha Cohen
- California Institute of Integral Studies, ACTCM, San Francisco, CA, USA
| | - Helen Huang
- Massachusetts College of Pharmacy and Health Sciences, NESA, Worcester MA, USA
| | - Shouchun Ma
- Seattle Institute of East Asian Medicine, Seattle, WA, USA
| | - Iman Majd
- Osher Center for Integrative Medicine, University of Washington, Department of Family Medicine, Seattle, WA, USA
| | - Craig Mitchell
- Seattle Institute of East Asian Medicine, Seattle, WA, USA
| | | | - Lisa Conboy
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
27
|
Xu X, Ruan X, Ju R, Wang Z, Yang Y, Cheng J, Gu M, Mueck AO. Progesterone Receptor Membrane Component-1 May Promote Survival of Human Brain Microvascular Endothelial Cells in Alzheimer's Disease. Am J Alzheimers Dis Other Demen 2022; 37:15333175221109749. [PMID: 35730360 PMCID: PMC10581101 DOI: 10.1177/15333175221109749] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Cerebrovascular changes occur in Alzheimer's disease (AD). The progesterone receptor membrane component-1 (PGRMC1) is a well identified hormone receptor with multiple functions in AD. This study aims to explore the involvement of PGRMC1 in the regulation of vascular endothelial function, providing new therapy options for AD. Single-cell sequencing revealed that the expression of PGRMC1 is lower in AD. By bioinformatics analysis, we found PGRMC1 was associated with regulation of cell proliferation, angiogenesis and etc. To understand the functional significance of PGRMC1, knockdown and overexpression were performed using human brain microvascular endothelial cells (HBMVECs), respectively. Cell proliferation assay, migration assay, tube formation assay were performed in experiments. We demonstrated that the overexpression of PGRMC1 promoted the cellular processes associated with endothelia cell proliferation, migration, and angiogenesis, significantly. In conclusion, PGRMC1 may contribute to the modulation of HBMVECs function in AD. This finding may offer novel targets for AD treatment.
Collapse
Affiliation(s)
- Xin Xu
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China; Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Xiangyan Ruan
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China; Beijing Maternal and Child Health Care Hospital, Beijing, China
- Research Centre for Women’s Health and University Women’s Hospital of Tuebingen, University of Tuebingen, Tuebingen, Germany
| | - Rui Ju
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China; Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Zhikun Wang
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China; Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Yu Yang
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China; Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Jiaojiao Cheng
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China; Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Muqing Gu
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China; Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Alfred O. Mueck
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China; Beijing Maternal and Child Health Care Hospital, Beijing, China
- Research Centre for Women’s Health and University Women’s Hospital of Tuebingen, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
28
|
Investigating the Mechanism of Scutellariae barbata Herba in the Treatment of Colorectal Cancer by Network Pharmacology and Molecular Docking. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:3905367. [PMID: 34381520 PMCID: PMC8352706 DOI: 10.1155/2021/3905367] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/11/2021] [Accepted: 07/22/2021] [Indexed: 12/24/2022]
Abstract
Background Colorectal cancer (CRC) is one of the most common gastrointestinal tumors, which accounts for approximately 10% of all diagnosed cancers and cancer deaths worldwide per year. Scutellariae barbatae Herba (SBH) is one of the most frequently used traditional Chinese medicine (TCM) in the treatment of CRC. Although many experiments have been carried out to explain the mechanisms of SBH, the mechanisms of SBH have not been illuminated fully. Thus, we constructed a network pharmacology and molecular docking to investigate the mechanisms of SBH. Methods We adopted active constituent prescreening, target predicting, protein-protein interaction (PPI) analysis, Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, differentially expressed gene analysis, and molecular docking to establish a system pharmacology database of SBH against CRC. Results A total of 64 active constituents of SBH were obtained and 377 targets were predicted, and the result indicated that quercetin, luteolin, wogonin, and apigenin were the main active constituents of SBH. Glucocorticoid receptor (NR3C1), pPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoform (PIK3CA), cellular tumor antigen p53 (TP53), transcription factor AP-1 (JUN), mitogen-activated protein kinase 1 (MAPK1), Myc protooncogene protein (MYC), cyclin-dependent kinase 1 (CDK1), and broad substrate specificity ATP-binding cassette transporter ABCG2 (ABCG2) were the major targets of SBH in the treatment of CRC. GO analysis illustrated that the core biological process regulated by SBH was the regulation of the cell cycle. Thirty pathways were presented and 8 pathways related to CRC were involved. Molecular docking presented the binding details of 3 key targets with 6 active constituents. Conclusions The mechanisms of SBH against CRC depend on the synergistic effect of multiple active constituents, multiple targets, and multiple pathways.
Collapse
|