1
|
Koss DJ, Todd O, Menon H, Anderson Z, Yang T, Findlay L, Graham B, Palmowski P, Porter A, Morrice N, Walker L, Attems J, Ghanem SS, El-Agnaf O, LeBeau FE, Erskine D, Outeiro TF. A reciprocal relationship between markers of genomic DNA damage and alpha-synuclein pathology in dementia with Lewy bodies. Mol Neurodegener 2025; 20:34. [PMID: 40114198 PMCID: PMC11927131 DOI: 10.1186/s13024-025-00813-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 02/11/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND DNA damage and DNA damage repair (DDR) dysfunction are insults with broad implications for cellular physiology and have been implicated in various neurodegenerative diseases. Alpha-synuclein (aSyn), a pre-synaptic and nuclear protein associated with neurodegenerative disorders known as synucleinopathies, has been associated with DNA double strand break (DSB) repair. However, although nuclear aSyn pathology has been observed in cortical tissue of dementia with Lewy body (DLB) cases, whether such nuclear pathology coincides with the occurrence of DNA damage has not previously been investigated. Moreover, the specific types of DNA damage elevated in DLB cases and the contribution of DNA damage towards Lewy body (LB) formation is unknown. METHODS DNA damage and aSyn pathology were assessed in fixed lateral temporal cortex from clinically and neuropathologically confirmed DLB cases and controls, as well as in cortical tissue from young 3-month-old presymptomatic A30P-aSyn mice. Frozen lateral temporal cortex from DLB and control cases was subject to nuclear isolation, western blotting, aSyn seed amplification and proteomic characterisation via mass spectrometry. RESULTS We detected seed-competent nuclear aSyn, and elevated nuclear serine-129 phosphorylation in DLB temporal cortex, alongside the accumulation of DSBs in neuronal and non-neuronal cellular populations. DNA damage was also present in cortical tissue from presymptomatic A30P mice, demonstrating it is an early insult closely associated with pathogenic aSyn. Strikingly, in postmortem DLB tissue, markers of genomic DNA damage-derived cytoplasmic DNA (CytoDNA) were evident within the majority of LBs examined. The observed cellular pathology was consistent with nuclear upregulation of associated DDR proteins, particularly those involved in base excision repair and DSB repair pathways. CONCLUSIONS Collectively our study demonstrates the accumulation of seed-competent pathological nuclear associated aSyn, alongside nuclear DNA damage and the potential involvement of DNA damage derived cytoDNA species in cytoplasmic aSyn pathology. Ultimately, our study supports the hypothesis of a reciprocal relationship between aSyn pathology and nuclear DNA damage and highlights a potential underlying role for DNA damage in pathological mechanisms relevant to DLB, as well as other synucleinopathies, opening novel possibilities for diagnosis and treatment.
Collapse
Affiliation(s)
- David J Koss
- Division of Neuroscience, School of Medicine, University of Dundee, Dundee, UK.
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, UK.
| | - Olivia Todd
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, UK
| | - Hariharan Menon
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, UK
| | - Zoe Anderson
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, UK
| | - Tamsin Yang
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, UK
| | - Lucas Findlay
- Division of Neuroscience, School of Medicine, University of Dundee, Dundee, UK
| | - Ben Graham
- Division of Neuroscience, School of Medicine, University of Dundee, Dundee, UK
| | - Pawel Palmowski
- Newcastle University Protein and Proteome Analysis Unit, Newcastle University, Newcastle Upon Tyne, UK
| | - Andrew Porter
- Newcastle University Protein and Proteome Analysis Unit, Newcastle University, Newcastle Upon Tyne, UK
| | - Nicola Morrice
- Division of Neuroscience, School of Medicine, University of Dundee, Dundee, UK
| | - Lauren Walker
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, UK
| | - Johannes Attems
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, UK
| | - Simona S Ghanem
- Neurological Disorders Research Centre, Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Omar El-Agnaf
- Neurological Disorders Research Centre, Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Fiona En LeBeau
- Faculty of Medical Sciences, Biosciences Institute, Newcastle University, Newcastle, UK
| | - Daniel Erskine
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, UK
| | - Tiago F Outeiro
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, UK.
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany.
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
- Scientific Employee With an Honorary Contract at Deutsches Zentrum Für Neurodegenerative Erkrankungen (DZNE), Göttingen, Germany.
| |
Collapse
|
2
|
Horan-Portelance L, Iba M, Acri DJ, Gibbs JR, Cookson MR. Imaging spatial transcriptomics reveals molecular patterns of vulnerability to pathology in a transgenic α-synucleinopathy model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.31.606032. [PMID: 39372781 PMCID: PMC11451628 DOI: 10.1101/2024.07.31.606032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
In Parkinson's disease and dementia with Lewy bodies, aggregated and phosphorylated α-synuclein pathology appears in select neurons throughout cortical and subcortical regions, but little is currently known about why certain populations are selectively vulnerable. Here, using imaging spatial transcriptomics (IST) coupled with downstream immunofluorescence for α-synuclein phosphorylated at Ser129 (pSyn) in the same tissue sections, we identified neuronal subtypes in the cortex and hippocampus of transgenic human α-synuclein-overexpressing mice that preferentially developed pSyn pathology. Additionally, we investigated the transcriptional underpinnings of this vulnerability, pointing to expression of Plk2, which phosphorylates α-synuclein at Ser129, and human SNCA (hSNCA), as key to pSyn pathology development. Finally, we performed differential expression analysis, revealing gene expression changes broadly downstream of hSNCA overexpression, as well as pSyn-dependent alterations in mitochondrial and endolysosomal genes. Overall, this study yields new insights into the formation of α-synuclein pathology and its downstream effects in a synucleinopathy mouse model.
Collapse
Affiliation(s)
- Liam Horan-Portelance
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michiyo Iba
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dominic J. Acri
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - J. Raphael Gibbs
- Computational Biology Group, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark R. Cookson
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
3
|
Martínez-Drudis L, Bérard M, Musiol D, Rivest S, Oueslati A. Pharmacological inhibition of PLK2 kinase activity mitigates cognitive decline but aggravates APP pathology in a sex-dependent manner in APP/PS1 mouse model of Alzheimer's disease. Heliyon 2024; 10:e39571. [PMID: 39498012 PMCID: PMC11532864 DOI: 10.1016/j.heliyon.2024.e39571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 11/07/2024] Open
Abstract
Converging evidence from clinical and experimental studies suggest the potential significance of Polo-like kinase 2 (PLK2) in regulating the phosphorylation and toxicity of the Alzheimer's disease (AD)-related protein, amyloid precursor protein (APP). These findings have prompted various experimental trials aimed at inhibiting PLK2 kinase activity in different transgenic mouse models of AD. While positive impacts on cognitive decline were reported in these studies, the cellular effects remained controversial. In the present study, we sought to assess the cognitive and cellular consequences of chronic PLK2 inhibitor treatment in the APP/PS1 transgenic mouse model of AD. First, we confirmed that inhibiting PLK2 prevented cognitive decline in a sex-dependent manner, particularly by enhancing working memory in male APP/PS1 mice. Surprisingly, cellular analysis revealed that treatment with PLK2 inhibitor increased the load of amyloid plaques and elevated levels of soluble amyloid β (Aβ) 40 and Aβ42 in the cortex, as well as insoluble Aβ42 in the hippocampus of female mice, without affecting APP pathology in males. These results underscore the potential of PLK2 inhibition to mitigate cognitive symptoms in males. However, paradoxically, it intensifies amyloid pathology in females by enhancing APP amyloidogenic processing, creating a controversial aspect to its therapeutic impact. Overall, these data highlight the sex-dependent nature of the effects of PLK2 inhibition, which may also be influenced by the genetic background of the transgenic mouse model utilized.
Collapse
Affiliation(s)
- Laura Martínez-Drudis
- CHU de Québec-Université Laval Research Center, Neuroscience Axis, 2705 Boulevard Laurier, Quebec City, Canada
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Morgan Bérard
- CHU de Québec-Université Laval Research Center, Neuroscience Axis, 2705 Boulevard Laurier, Quebec City, Canada
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Dylan Musiol
- CHU de Québec-Université Laval Research Center, Neuroscience Axis, 2705 Boulevard Laurier, Quebec City, Canada
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Serge Rivest
- CHU de Québec-Université Laval Research Center, Neuroscience Axis, 2705 Boulevard Laurier, Quebec City, Canada
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Abid Oueslati
- CHU de Québec-Université Laval Research Center, Neuroscience Axis, 2705 Boulevard Laurier, Quebec City, Canada
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| |
Collapse
|
4
|
Liekniņa I, Reimer L, Panteļejevs T, Lends A, Jaudzems K, El-Turabi A, Gram H, Hammi A, Jensen PH, Tārs K. Structural basis of epitope recognition by anti-alpha-synuclein antibodies MJFR14-6-4-2. NPJ Parkinsons Dis 2024; 10:206. [PMID: 39463404 PMCID: PMC11514253 DOI: 10.1038/s41531-024-00822-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 10/19/2024] [Indexed: 10/29/2024] Open
Abstract
Alpha-synuclein (α-syn) inclusions in the brain are hallmarks of so-called Lewy body diseases. Lewy bodies contain mainly aggregated α-syn together with some other proteins. Monomeric α-syn lacks a well-defined three-dimensional structure, but it can aggregate into oligomeric and fibrillar amyloid species, which can be detected using specific antibodies. Here we investigate the aggregate specificity of monoclonal MJFR14-6-4-2 antibodies. We conclude that partial masking of epitope in unstructured monomer in combination with a high local concentration of epitopes is the main reason for MJFR14-6-4-2 selectivity towards aggregates. Based on the structural insight, we produced mutant α-syn that when fibrillated is unable to bind MJFR14-6-4-2. Using these fibrils as a tool for seeding cellular α-syn aggregation, provides superior signal/noise ratio for detection of cellular α-syn aggregates by MJFR14-6-4-2. Our data provide a molecular level understanding of specific recognition of toxic amyloid oligomers, which is critical for the development of inhibitors against synucleinopathies.
Collapse
Affiliation(s)
- Ilva Liekniņa
- Latvian Biomedical Research and Study Centre, Ratsupites 1, k-1, LV-1067, Riga, Latvia
| | - Lasse Reimer
- University of Aarhus, Danish Research Institute of Translational Neuroscience DANDRITE and Department of Biomedicine, Aarhus, Denmark
| | - Teodors Panteļejevs
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006, Riga, Latvia
| | - Alons Lends
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006, Riga, Latvia
| | - Kristaps Jaudzems
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006, Riga, Latvia
- University of Latvia, Jelgavas 1, LV-1004, Riga, Latvia
| | - Aadil El-Turabi
- University of Oxford, Jenner Institute, Nuffield Department of Medicine, OX3 7DQ, Oxford, UK
| | - Hjalte Gram
- University of Aarhus, Danish Research Institute of Translational Neuroscience DANDRITE and Department of Biomedicine, Aarhus, Denmark
| | - Anissa Hammi
- University of Aarhus, Danish Research Institute of Translational Neuroscience DANDRITE and Department of Biomedicine, Aarhus, Denmark
| | - Poul Henning Jensen
- University of Aarhus, Danish Research Institute of Translational Neuroscience DANDRITE and Department of Biomedicine, Aarhus, Denmark.
| | - Kaspars Tārs
- Latvian Biomedical Research and Study Centre, Ratsupites 1, k-1, LV-1067, Riga, Latvia.
- University of Latvia, Jelgavas 1, LV-1004, Riga, Latvia.
| |
Collapse
|
5
|
Hassanzadeh K, Liu J, Maddila S, Mouradian MM. Posttranslational Modifications of α-Synuclein, Their Therapeutic Potential, and Crosstalk in Health and Neurodegenerative Diseases. Pharmacol Rev 2024; 76:1254-1290. [PMID: 39164116 PMCID: PMC11549938 DOI: 10.1124/pharmrev.123.001111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 07/28/2024] [Accepted: 08/09/2024] [Indexed: 08/22/2024] Open
Abstract
α-Synuclein (α-Syn) aggregation in Lewy bodies and Lewy neurites has emerged as a key pathogenetic feature in Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. Various factors, including posttranslational modifications (PTMs), can influence the propensity of α-Syn to misfold and aggregate. PTMs are biochemical modifications of a protein that occur during or after translation and are typically mediated by enzymes. PTMs modulate several characteristics of proteins including their structure, activity, localization, and stability. α-Syn undergoes various posttranslational modifications, including phosphorylation, ubiquitination, SUMOylation, acetylation, glycation, O-GlcNAcylation, nitration, oxidation, polyamination, arginylation, and truncation. Different PTMs of a protein can physically interact with one another or work together to influence a particular physiological or pathological feature in a process known as PTMs crosstalk. The development of detection techniques for the cooccurrence of PTMs in recent years has uncovered previously unappreciated mechanisms of their crosstalk. This has led to the emergence of evidence supporting an association between α-Syn PTMs crosstalk and synucleinopathies. In this review, we provide a comprehensive evaluation of α-Syn PTMs, their impact on misfolding and pathogenicity, the pharmacological means of targeting them, and their potential as biomarkers of disease. We also highlight the importance of the crosstalk between these PTMs in α-Syn function and aggregation. Insight into these PTMS and the complexities of their crosstalk can improve our understanding of the pathogenesis of synucleinopathies and identify novel targets of therapeutic potential. SIGNIFICANCE STATEMENT: α-Synuclein is a key pathogenic protein in Parkinson's disease and other synucleinopathies, making it a leading therapeutic target for disease modification. Multiple posttranslational modifications occur at various sites in α-Synuclein and alter its biophysical and pathological properties, some interacting with one another to add to the complexity of the pathogenicity of this protein. This review details these modifications, their implications in disease, and potential therapeutic opportunities.
Collapse
Affiliation(s)
- Kambiz Hassanzadeh
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, New Jersey
| | - Jun Liu
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, New Jersey
| | - Santhosh Maddila
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, New Jersey
| | - M Maral Mouradian
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, New Jersey
| |
Collapse
|
6
|
Kapucu FE, Tujula I, Kulta O, Sukki L, Ryynänen T, Gram H, Vuolanto V, Vinogradov A, Kreutzer J, Jensen PH, Kallio P, Narkilahti S. Human tripartite cortical network model for temporal assessment of alpha-synuclein aggregation and propagation in Parkinson's Disease. NPJ Parkinsons Dis 2024; 10:138. [PMID: 39069518 DOI: 10.1038/s41531-024-00750-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 07/11/2024] [Indexed: 07/30/2024] Open
Abstract
Previous studies have shown that aggregated alpha-synuclein (α-s) protein, a key pathological marker of Parkinson's disease (PD), can propagate between cells, thus participating in disease progression. This prion-like propagation has been widely studied using in vivo and in vitro models, including rodent and human cell cultures. In this study, our focus was on temporal assessment of functional changes during α-s aggregation and propagation in human induced pluripotent stem cell (hiPSC)-derived neuronal cultures and in engineered networks. Here, we report an engineered circular tripartite human neuronal network model in a microfluidic chip integrated with microelectrode arrays (MEAs) as a platform to study functional markers during α-s aggregation and propagation. We observed progressive aggregation of α-s in conventional neuronal cultures and in the exposed (proximal) compartments of circular tripartite networks following exposure to preformed α-s fibrils (PFF). Furthermore, aggregated forms propagated to distal compartments of the circular tripartite networks through axonal transport. We observed impacts of α-s aggregation on both the structure and function of neuronal cells, such as in presynaptic proteins, mitochondrial motility, calcium oscillations and neuronal activity. The model enabled an assessment of the early, middle, and late phases of α-s aggregation and its propagation during a 13-day follow-up period. While our temporal analysis suggested a complex interplay of structural and functional changes during the in vitro propagation of α-s aggregates, further investigation is required to elucidate the underlying mechanisms. Taken together, this study demonstrates the technical potential of our introduced model for conducting in-depth analyses for revealing such mechanisms.
Collapse
Affiliation(s)
- Fikret Emre Kapucu
- Neuro Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
| | - Iisa Tujula
- Neuro Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Oskari Kulta
- Neuro Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Lassi Sukki
- Micro- and Nanosystems Research Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Tomi Ryynänen
- Micro- and Nanosystems Research Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Hjalte Gram
- Danish Research Institute of Translational Neuroscience - DANDRITE and Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Valtteri Vuolanto
- Neuro Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Andrey Vinogradov
- Neuro Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Joose Kreutzer
- Micro- and Nanosystems Research Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Poul Henning Jensen
- Danish Research Institute of Translational Neuroscience - DANDRITE and Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Pasi Kallio
- Micro- and Nanosystems Research Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Susanna Narkilahti
- Neuro Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
7
|
Ramalingam N, Haass C, Dettmer U. Physiological roles of α-synuclein serine-129 phosphorylation - not an oxymoron. Trends Neurosci 2024; 47:480-490. [PMID: 38862330 PMCID: PMC11999472 DOI: 10.1016/j.tins.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/16/2024] [Accepted: 05/06/2024] [Indexed: 06/13/2024]
Abstract
α-Synuclein (αS) is an abundant presynaptic protein that regulates neurotransmission. It is also a key protein implicated in a broad class of neurodegenerative disorders termed synucleinopathies, including Parkinson's disease (PD) and Lewy body dementia (LBD). Pathological αS deposits in these diseases, Lewy bodies (LBs)/neurites (LNs), contain about 90% of αS in its phospho-serine129 (pS129) form. Therefore, pS129 is widely used as a surrogate marker of pathology. However, recent findings demonstrate that pS129 is also physiologically triggered by neuronal activity to positively regulate synaptic transmission. In this opinion article, we contrast the literature on pathological and physiological pS129, with a special focus on the latter. We emphasize that pS129 is ambiguous and knowledge about the context is necessary to correctly interpret changes in pS129.
Collapse
Affiliation(s)
- Nagendran Ramalingam
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | - Christian Haass
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany; Chair of Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-University, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Ulf Dettmer
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
8
|
El-Gamal R, Elfarrash S, El-Nablaway M, Salem AA, Zaraei SO, Anbar HS, Shoma A, El-Gamal MI. Anti-proliferative activity of RIHMS-Qi-23 against MCF-7 breast cancer cell line is through inhibition of cell proliferation and senescence but not inhibition of targeted kinases. BMC Cancer 2023; 23:1053. [PMID: 37919708 PMCID: PMC10621201 DOI: 10.1186/s12885-023-11547-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 10/18/2023] [Indexed: 11/04/2023] Open
Abstract
BACKGROUND Breast cancer is the most common malignancy globally, and is considered a major cause of cancer-related death. Tremendous effort is exerted to identify an optimal anticancer drug with limited side effects. The quinoline derivative RIMHS-Qi-23 had a wide-spectrum antiproliferative activity against various types of cancer cells. METHODS In the current study, the effect of RIMHS-Qi-23 was tested on MCF-7 breast cancer cell line to evaluate its anticancer efficacy in comparison to the reference compound doxorubicin. RESULTS Our data suggest an anti-proliferative effect of RIMHS-Qi-23 on the MCF-7 cell line with superior potency and selectivity compared to doxorubicin. Our mechanistic study suggested that the anti-proliferative effect of RIMHS-Qi-23 against MCF-7 cell line is not through targeted kinase inhibition but through other molecular machinery targeting cell proliferation and senescence such as cyclophlin A, p62, and LC3. CONCLUSION RIMHS-Qi-23 is exerting an anti-proliferative effect that is more potent and selective than doxorubicin.
Collapse
Affiliation(s)
- Randa El-Gamal
- Department of Medical Biochemistry & Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt.
- Medical Experimental Research Center (MERC), Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt.
- Department of Medical Biochemistry, Faculty of Medicine, Horus University, New Damietta, Egypt.
- Department of Medical Biochemistry, Faculty of Medicine, University of Mansoura, Mansoura, Al-Daqahlia Governorate, 35516, Arab Republic of Egypt.
| | - Sara Elfarrash
- Medical Experimental Research Center (MERC), Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Mohammad El-Nablaway
- Department of Medical Biochemistry & Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, PO Box 71666, Riydah, 11597, Kingdom of Saudi Arabia
| | - Asmaa Ahmed Salem
- Department of Clinical Oncology and Nuclear Medicine, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Seyed-Omar Zaraei
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Hanan S Anbar
- Department of Clinical Pharmacy and Pharmacotherapeutics, Dubai Pharmacy College for Girls, Dubai, 19099, United Arab Emirates
| | - Ashraf Shoma
- Department of General Surgery, Mansoura Faculty of Medicine, Mansoura University Hospital, Mansoura, 35516, Egypt
| | - Mohammed I El-Gamal
- Department of Medical Biochemistry, Faculty of Medicine, University of Mansoura, Mansoura, Al-Daqahlia Governorate, 35516, Arab Republic of Egypt.
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates.
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates.
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
9
|
Ramezani M, Wagenknecht-Wiesner A, Wang T, Holowka DA, Eliezer D, Baird BA. Alpha synuclein modulates mitochondrial Ca 2+ uptake from ER during cell stimulation and under stress conditions. NPJ Parkinsons Dis 2023; 9:137. [PMID: 37741841 PMCID: PMC10518018 DOI: 10.1038/s41531-023-00578-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/08/2023] [Indexed: 09/25/2023] Open
Abstract
Alpha synuclein (a-syn) is an intrinsically disordered protein prevalent in neurons, and aggregated forms are associated with synucleinopathies including Parkinson's disease (PD). Despite the biomedical importance and extensive studies, the physiological role of a-syn and its participation in etiology of PD remain uncertain. We showed previously in model RBL cells that a-syn colocalizes with mitochondrial membranes, depending on formation of N-terminal helices and increasing with mitochondrial stress1. We have now characterized this colocalization and functional correlates in RBL, HEK293, and N2a cells. We find that expression of a-syn enhances stimulated mitochondrial uptake of Ca2+ from the ER, depending on formation of its N-terminal helices but not on its disordered C-terminal tail. Our results are consistent with a-syn acting as a tether between mitochondria and ER, and we show increased contacts between these two organelles using structured illumination microscopy. We tested mitochondrial stress caused by toxins related to PD, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP/MPP+) and carbonyl cyanide m-chlorophenyl hydrazone (CCCP) and found that a-syn prevents recovery of stimulated mitochondrial Ca2+ uptake. The C-terminal tail, and not N-terminal helices, is involved in this inhibitory activity, which is abrogated when phosphorylation site serine-129 is mutated (S129A). Correspondingly, we find that MPTP/MPP+ and CCCP stress is accompanied by both phosphorylation (pS129) and aggregation of a-syn. Overall, our results indicate that a-syn can participate as a tethering protein to modulate Ca2+ flux between ER and mitochondria, with potential physiological significance. A-syn can also prevent cellular recovery from toxin-induced mitochondrial dysfunction, which may represent a pathological role of a-syn in the etiology of PD.
Collapse
Affiliation(s)
- Meraj Ramezani
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | | | - Tong Wang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - David A Holowka
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - David Eliezer
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, 10065, USA.
| | - Barbara A Baird
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
10
|
Ekmark-Lewén S, Aniszewska A, Molisak A, Gumucio A, Lindström V, Kahle P, Nordström E, Möller C, Fälting J, Lannfelt L, Bergström J, Ingelsson M. Reduction of brain stem pathology and transient amelioration of early cognitive symptoms in transgenic mice treated with a monoclonal antibody against α-synuclein oligomers/protofibrils. AGING BRAIN 2023; 4:100086. [PMID: 37559953 PMCID: PMC10407822 DOI: 10.1016/j.nbas.2023.100086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/05/2023] [Accepted: 07/08/2023] [Indexed: 08/11/2023] Open
Abstract
Immunotherapy against alpha-synuclein (α-syn) is a promising novel treatment strategy for Parkinson's disease (PD) and related α-synucleinopathies. We have previously shown that systemic treatment with the monoclonal oligomer/protofibril-selective antibody mAb47 targeting cytotoxic α-syn leads to reduced central nervous system levels of such species as well as an indication of reduced late-stage symptoms in aged (Thy-1)-h[A30P] α-syn transgenic mice. Here, we performed an early-onset long-term treatment study with this antibody to evaluate effects on brain pathology and behavioral outcomes in the same mouse model. Compared to the placebo group, the treatment strongly reduced phosphorylated α-syn (pS129 α-syn) pathology in the upper brain stem. Moreover, a preserved recognition memory and risk assessment behavior could be seen in antibody-treated mice at six months of age, even although these effects were no longer significant at eleven months of age. Importantly, no evidence of inflammatory responses or other potential toxic effects was seen with the treatment. Taken together, this study supports the strategy to target α-syn oligomers/protofibrils with monoclonal antibodies to counteract early symptoms and slow down the progression of PD and other α-synucleinopathies.
Collapse
Affiliation(s)
- S. Ekmark-Lewén
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Uppsala University, Uppsala, Sweden
| | - A. Aniszewska
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Uppsala University, Uppsala, Sweden
| | - A. Molisak
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Uppsala University, Uppsala, Sweden
| | - A. Gumucio
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Uppsala University, Uppsala, Sweden
| | - V. Lindström
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Uppsala University, Uppsala, Sweden
| | - P.J. Kahle
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research and German Center for Neurodegenerative Diseases, Tübingen, Germany
| | | | | | | | - L. Lannfelt
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Uppsala University, Uppsala, Sweden
- BioArctic AB, Stockholm, Sweden
| | - J. Bergström
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Uppsala University, Uppsala, Sweden
| | - M. Ingelsson
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Uppsala University, Uppsala, Sweden
- Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, Departments of Medicine and Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
11
|
Ramezani M, Wagenknecht-Wiesner A, Wang T, Holowka DA, Eliezer D, Baird BA. Alpha Synuclein Modulates Mitochondrial Ca 2+ Uptake from ER During Cell Stimulation and Under Stress Conditions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.23.537965. [PMID: 37163091 PMCID: PMC10168219 DOI: 10.1101/2023.04.23.537965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Alpha synuclein (a-syn) is an intrinsically disordered protein prevalent in neurons, and aggregated forms are associated with synucleinopathies including Parkinson' disease (PD). Despite the biomedical importance and extensive studies, the physiological role of a-syn and its participation in etiology of PD remain uncertain. We showed previously in model RBL cells that a-syn colocalizes with mitochondrial membranes, depending on formation of N-terminal helices and increasing with mitochondrial stress. 1 We have now characterized this colocalization and functional correlates in RBL, HEK293, and N2a cells. We find that expression of a-syn enhances stimulated mitochondrial uptake of Ca 2+ from the ER, depending on formation of its N-terminal helices but not on its disordered C-terminal tail. Our results are consistent with a-syn acting as a tether between mitochondria and ER, and we show increased contacts between these two organelles using structured illumination microscopy. We tested mitochondrial stress caused by toxins related to PD, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP/MPP+) and carbonyl cyanide m-chlorophenyl hydrazone (CCCP), and found that a-syn prevents recovery of stimulated mitochondrial Ca 2+ uptake. The C-terminal tail, and not N-terminal helices, is involved in this inhibitory activity, which is abrogated when phosphorylation site serine-129 is mutated (S129A). Correspondingly, we find that MPTP/MPP+ and CCCP stress is accompanied by both phosphorylation (pS129) and aggregation of a-syn. Overall, our results indicate that a-syn can participate as a tethering protein to modulate Ca 2+ flux between ER and mitochondria, with potential physiological significance. A-syn can also prevent cellular recovery from toxin-induced mitochondrial dysfunction, which may represent a pathological role of a-syn in the etiology of PD.
Collapse
Affiliation(s)
- Meraj Ramezani
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853
| | | | - Tong Wang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853
| | - David A. Holowka
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853
| | - David Eliezer
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065
| | - Barbara A. Baird
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853
| |
Collapse
|
12
|
Ren M, Yang Y, Heng KHY, Ng LY, Chong CYY, Ng YT, Gorur-Shandilya S, Lee RMQ, Lim KL, Zhang J, Koh TW. MED13 and glycolysis are conserved modifiers of α-synuclein-associated neurodegeneration. Cell Rep 2022; 41:111852. [PMID: 36543134 DOI: 10.1016/j.celrep.2022.111852] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 10/04/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
α-Synuclein (α-syn) is important in synucleinopathies such as Parkinson's disease (PD). While genome-wide association studies (GWASs) of synucleinopathies have identified many risk loci, the underlying genes have not been shown for most loci. Using Drosophila, we screened 3,471 mutant chromosomes for genetic modifiers of α-synuclein and identified 12 genes. Eleven modifiers have human orthologs associated with diseases, including MED13 and CDC27, which lie within PD GWAS loci. Drosophila Skd/Med13 and glycolytic enzymes are co-upregulated by α-syn-associated neurodegeneration. While elevated α-syn compromises mitochondrial function, co-expressing skd/Med13 RNAi and α-syn synergistically increase the ratio of oxidized-to-reduced glutathione. The resulting neurodegeneration can be suppressed by overexpressing a glycolytic enzyme or treatment with deferoxamine, suggesting that compensatory glycolysis is neuroprotective. In addition, the functional relationship between α-synuclein, MED13, and glycolytic enzymes is conserved between flies and mice. We propose that hypoxia-inducible factor and MED13 are part of a druggable pathway for PD.
Collapse
Affiliation(s)
- Mengda Ren
- Temasek Life Sciences Laboratory, Singapore 117604, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308207, Singapore; National Neuroscience Institute, Singapore 308433, Singapore
| | - Ying Yang
- Department of Pathology, Zhejiang University First Affiliated Hospital and School of Medicine, Hangzhou, Zhejiang 310002, China
| | | | - Lu Yi Ng
- Temasek Life Sciences Laboratory, Singapore 117604, Singapore
| | | | - Yan Ting Ng
- Temasek Life Sciences Laboratory, Singapore 117604, Singapore
| | | | - Rachel Min Qi Lee
- Temasek Life Sciences Laboratory, Singapore 117604, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Kah Leong Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308207, Singapore; National Neuroscience Institute, Singapore 308433, Singapore
| | - Jing Zhang
- Department of Pathology, Zhejiang University First Affiliated Hospital and School of Medicine, Hangzhou, Zhejiang 310002, China; China National Health and Disease Human Brain Tissue Resource Center, Hangzhou, Zhejiang 310002, China
| | - Tong-Wey Koh
- Temasek Life Sciences Laboratory, Singapore 117604, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore.
| |
Collapse
|
13
|
Croft CL, Paterno G, Vause AR, Rowe LA, Ryu DH, Goodwin MS, Moran CA, Cruz PE, Giasson BI, Golde TE. Optical pulse labeling studies reveal exogenous seeding slows α-synuclein clearance. NPJ Parkinsons Dis 2022; 8:173. [PMID: 36535953 PMCID: PMC9763367 DOI: 10.1038/s41531-022-00434-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 11/17/2022] [Indexed: 12/23/2022] Open
Abstract
The accumulation of α-synuclein (α-syn) in intracellular formations known as Lewy bodies (LBs) is associated with several neurodegenerative diseases including Parkinson's disease and Lewy Body Dementia. There is still limited understanding of how α-syn and LB formation is associated with cellular dysfunction and degeneration in these diseases. To examine the clearance and production dynamics of α-syn we transduced organotypic murine brain slice cultures (BSCs) with recombinant adeno-associated viruses (rAAVs) to express Dendra2-tagged human wild-type (WT) and mutant A53T α-syn, with and without the addition of exogenous α-syn fibrillar seeds and tracked them over several weeks in culture using optical pulse labeling. We found that neurons expressing WT or mutant A53T human α-syn show similar rates of α-syn turnover even when insoluble, phosphorylated Ser129 α-syn has accumulated. Taken together, this data reveals α-syn aggregation and overexpression, pSer129 α-syn, nor the A53T mutation affect α-syn dynamics in this system. Prion-type seeding with exogenous α-syn fibrils significantly slows α-syn turnover, in the absence of toxicity but is associated with the accumulation of anti-p62 immunoreactivity and Thiazin Red positivity. Prion-type induction of α-syn aggregation points towards a potential protein clearance deficit in the presence of fibrillar seeds and the ease of this system to explore precise mechanisms underlying these processes. This system facilitates the exploration of α-syn protein dynamics over long-term culture periods. This platform can further be exploited to provide mechanistic insight on what drives this slowing of α-syn turnover and how therapeutics, other genes or different α-syn mutations may affect α-syn protein dynamics.
Collapse
Affiliation(s)
- Cara L. Croft
- grid.83440.3b0000000121901201UK Dementia Research Institute, UCL Institute of Neurology, University College London, London, UK ,grid.15276.370000 0004 1936 8091Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL USA ,grid.15276.370000 0004 1936 8091Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL USA ,grid.15276.370000 0004 1936 8091McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL USA ,grid.451388.30000 0004 1795 1830The Francis Crick Institute, London, UK
| | - Giavanna Paterno
- grid.15276.370000 0004 1936 8091Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL USA ,grid.15276.370000 0004 1936 8091Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL USA
| | - Ava R. Vause
- grid.15276.370000 0004 1936 8091Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL USA ,grid.15276.370000 0004 1936 8091Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL USA
| | - Lyla A. Rowe
- grid.83440.3b0000000121901201UK Dementia Research Institute, UCL Institute of Neurology, University College London, London, UK ,grid.451388.30000 0004 1795 1830The Francis Crick Institute, London, UK
| | - Daniel H. Ryu
- grid.15276.370000 0004 1936 8091Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL USA ,grid.15276.370000 0004 1936 8091Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL USA
| | - Marshall S. Goodwin
- grid.15276.370000 0004 1936 8091Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL USA ,grid.15276.370000 0004 1936 8091Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL USA ,grid.15276.370000 0004 1936 8091McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL USA
| | - Corey A. Moran
- grid.15276.370000 0004 1936 8091Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL USA ,grid.15276.370000 0004 1936 8091Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL USA
| | - Pedro E. Cruz
- grid.15276.370000 0004 1936 8091Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL USA ,grid.15276.370000 0004 1936 8091Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL USA ,grid.15276.370000 0004 1936 8091McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL USA
| | - Benoit I. Giasson
- grid.15276.370000 0004 1936 8091Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL USA ,grid.15276.370000 0004 1936 8091Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL USA ,grid.15276.370000 0004 1936 8091McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL USA
| | - Todd E. Golde
- grid.15276.370000 0004 1936 8091Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL USA ,grid.15276.370000 0004 1936 8091Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL USA ,grid.15276.370000 0004 1936 8091McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL USA ,grid.189967.80000 0001 0941 6502Department of Pharmacology and Chemical Biology, Department of Neurology, Emory Center for Neurodegenerative Disease, Emory University, Atlanta, GA USA
| |
Collapse
|
14
|
Mutation of Tyrosine Sites in the Human Alpha-Synuclein Gene Induces Neurotoxicity in Transgenic Mice with Soluble Alpha-Synuclein Oligomer Formation. Cells 2022; 11:cells11223673. [PMID: 36429099 PMCID: PMC9688722 DOI: 10.3390/cells11223673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/11/2022] [Accepted: 11/13/2022] [Indexed: 11/22/2022] Open
Abstract
Overexpression of α-synuclein with tyrosine mutated to phenylalanine at position 125 leads to a severe phenotype with motor impairment and neuropathology in Drosophila. Here, we hypothesized that tyrosine mutations would similarly lead to impaired motor performance with neuropathology in a rodent model. In transgenic mice (ASO), tyrosines at positions 125, 133, and 136 in human α-synuclein were mutated to phenylalanine and cloned into a Thy1.2 expression vector, which was used to create transgenic mouse lines on a mixed genetic background TgN(Thy-1-SNCA-YF)4Emfu (YF). The YF mice had a decreased lifespan and displayed a dramatic motor phenotype with paralysis of both hind- and forelegs. Post-translational modification of α-synuclein due to phosphorylation of serine 129 is often seen in inclusions in the brains of patients with α-synucleinopathies. We observed a slight but significant increase in phosphorylation of serine 129 in the cytosol in YF mice compared to age-matched human α-synuclein transgenic mice (ASO). Conversely, significantly decreased phosphorylation of serine 129 was seen in synaptosomes of YF mice that also contained higher amounts of soluble oligomers. YF mice deposited full-length α-synuclein aggregates in neurons widespread in the CNS with the main occurrence in the forebrain structures of the cerebral cortex, the basal ganglia, and limbic structures. Full-length α-synuclein labeling was also prominent in many nuclear regions of the brain stem, deep cerebellar nuclei, and cerebellar cortex. The study shows that the substitution of tyrosines to phenylalanine in α-synuclein at positions 125, 133, and 136 leads to severe toxicity in vivo. An insignificant change upon tyrosine substitution suggests that the phosphorylation of serine 129 is not the cause of the toxicity.
Collapse
|
15
|
Reimer L, Gram H, Jensen NM, Betzer C, Yang L, Jin L, Shi M, Boudeffa D, Fusco G, De Simone A, Kirik D, Lashuel HA, Zhang J, Jensen PH. Protein kinase R dependent phosphorylation of α-synuclein regulates its membrane binding and aggregation. PNAS NEXUS 2022; 1:pgac259. [PMID: 36712380 PMCID: PMC9802061 DOI: 10.1093/pnasnexus/pgac259] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/07/2022] [Indexed: 11/18/2022]
Abstract
Aggregated α-synuclein (α-syn) accumulates in the neuronal Lewy body (LB) inclusions in Parkinson's disease (PD) and LB dementia. Yet, under nonpathological conditions, monomeric α-syn is hypothesized to exist in an equilibrium between disordered cytosolic- and partially α-helical lipid-bound states: a feature presumably important in synaptic vesicle release machinery. The exact underlying role of α-syn in these processes, and the mechanisms regulating membrane-binding of α-syn remains poorly understood. Herein we demonstrate that Protein kinase R (PKR) can phosphorylate α-syn at several Ser/Thr residues located in the membrane-binding region that is essential for α-syn's vesicle-interactions. α-Syn phosphorylated by PKR or α-syn isolated from PKR overexpressing cells, exhibit decreased binding to lipid membranes. Phosphorylation of Thr64 and Thr72 appears as the major contributor to this effect, as the phosphomimetic Thr64Glu/Thr72Glu-α-syn mutant displays reduced overall attachment to brain vesicles due to a decrease in vesicle-affinity of the last two thirds of α-syn's membrane binding region. This allows enhancement of the "double-anchor" vesicle-binding mechanism that tethers two vesicles and thus promote the clustering of presynaptic vesicles in vitro. Furthermore, phosphomimetic Thr64Glu/Thr72Glu-α-syn inhibits α-syn oligomerization and completely abolishes nucleation, elongation, and seeding of α-syn fibrillation in vitro and in cells, and prevents trans-synaptic spreading of aggregated α-syn pathology in organotypic hippocampal slice cultures. Overall, our findings demonstrate that normal and abnormal functions of α-syn, like membrane-binding, synaptic vesicle clustering and aggregation can be regulated by phosphorylation, e.g., via PKR. Mechanisms that could potentially be modulated for the benefit of patients suffering from α-syn aggregate-related diseases.
Collapse
Affiliation(s)
| | - Hjalte Gram
- Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, 8000 Aarhus C, Denmark,Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Nanna Møller Jensen
- Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, 8000 Aarhus C, Denmark,Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Cristine Betzer
- Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, 8000 Aarhus C, Denmark,Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Li Yang
- Department of Pathology, University of Washington School of Medicine, Seattle WA 98195, USA
| | - Lorrain Jin
- Department of Pathology, University of Washington School of Medicine, Seattle WA 98195, USA
| | - Min Shi
- Department of Pathology, University of Washington School of Medicine, Seattle WA 98195, USA
| | - Driss Boudeffa
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences Brain Mind Institute, Station 19, 1015 Lausanne, Switzerland
| | - Giuliana Fusco
- Centre for Misfolding Diseases,Department of Chemistry, University of Cambridge, CB2 1EW, UK
| | | | - Deniz Kirik
- Brain Repair and Imaging in Neural Systems, Department of Experimental Medical Science, Lund University, 22184 Lund, Sweden
| | - Hilal A Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences Brain Mind Institute, Station 19, 1015 Lausanne, Switzerland
| | - Jing Zhang
- Department of Pathology, University of Washington School of Medicine, Seattle WA 98195, USA,Department of Pathology, Zhejiang University School of Medicine and the First Affiliated Hospital, 310003 Hangzhou, China
| | - Poul Henning Jensen
- Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, 8000 Aarhus C, Denmark,Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
16
|
Lashuel HA, Mahul-Mellier AL, Novello S, Hegde RN, Jasiqi Y, Altay MF, Donzelli S, DeGuire SM, Burai R, Magalhães P, Chiki A, Ricci J, Boussouf M, Sadek A, Stoops E, Iseli C, Guex N. Revisiting the specificity and ability of phospho-S129 antibodies to capture alpha-synuclein biochemical and pathological diversity. NPJ Parkinsons Dis 2022; 8:136. [PMID: 36266318 PMCID: PMC9584898 DOI: 10.1038/s41531-022-00388-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/30/2022] [Indexed: 11/08/2022] Open
Abstract
Antibodies against phosphorylated alpha-synuclein (aSyn) at S129 have emerged as the primary tools to investigate, monitor, and quantify aSyn pathology in the brain and peripheral tissues of patients with Parkinson's disease and other neurodegenerative diseases. Herein, we demonstrate that the co-occurrence of multiple pathology-associated C-terminal post-translational modifications (PTMs) (e.g., phosphorylation at Tyrosine 125 or truncation at residue 133 or 135) differentially influences the detection of pS129-aSyn species by pS129-aSyn antibodies. These observations prompted us to systematically reassess the specificity of the most commonly used pS129 antibodies against monomeric and aggregated forms of pS129-aSyn in mouse brain slices, primary neurons, mammalian cells and seeding models of aSyn pathology formation. We identified two antibodies that are insensitive to pS129 neighboring PTMs. Although most pS129 antibodies showed good performance in detecting aSyn aggregates in cells, neurons and mouse brain tissue containing abundant aSyn pathology, they also showed cross-reactivity towards other proteins and often detected non-specific low and high molecular weight bands in aSyn knock-out samples that could be easily mistaken for monomeric or high molecular weight aSyn species. Our observations suggest that not all pS129 antibodies capture the biochemical and morphological diversity of aSyn pathology, and all should be used with the appropriate protein standards and controls when investigating aSyn under physiological conditions. Finally, our work underscores the need for more pS129 antibodies that are not sensitive to neighboring PTMs and more thorough characterization and validation of existing and new antibodies.
Collapse
Affiliation(s)
- Hilal A Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland.
| | - Anne-Laure Mahul-Mellier
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Salvatore Novello
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Ramanath Narayana Hegde
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Yllza Jasiqi
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Melek Firat Altay
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Sonia Donzelli
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Sean M DeGuire
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Ritwik Burai
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Pedro Magalhães
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Anass Chiki
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Jonathan Ricci
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Manel Boussouf
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Ahmed Sadek
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Erik Stoops
- ADx NeuroSciences, Technologiepark 94, Ghent, Belgium
| | - Christian Iseli
- Bioinformatics Competence Center, Ecole Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
- Bioinformatics Competence Center, University of Lausanne, 1015, Lausanne, Switzerland
| | - Nicolas Guex
- Bioinformatics Competence Center, Ecole Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
- Bioinformatics Competence Center, University of Lausanne, 1015, Lausanne, Switzerland
| |
Collapse
|
17
|
Inhibition of PLK2 activity affects APP and tau pathology and improves synaptic content in a sex-dependent manner in a 3xTg mouse model of Alzheimer's disease. Neurobiol Dis 2022; 172:105833. [PMID: 35905928 DOI: 10.1016/j.nbd.2022.105833] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 07/14/2022] [Accepted: 07/22/2022] [Indexed: 11/23/2022] Open
Abstract
Converging lines of evidence suggest that abnormal accumulation of the kinase Polo-like kinase 2 (PLK2) might play a role in the pathogenesis of Alzheimer's disease (AD), possibly through its role in regulating the amyloid β (Aβ) cascade. In the present study, we investigated the effect of inhibiting PLK2 kinase activity in in vitro and in vivo models of AD neuropathology. First, we confirmed that PLK2 overexpression modulated APP and Tau protein levels and phosphorylation in cell culture, in a kinase activity dependent manner. Furthermore, a transient treatment of triple transgenic mouse model of AD (3xTg-AD) with a potent and specific PLK2 pharmacological inhibitor (PLK2i #37) reduced some neuropathological aspects in a sex-dependent manner. In 3xTg-AD males, treatment with PLK2i #37 led to lower Tau burden, higher synaptic protein content, and prevented learning and memory deficits. In contrast, treated females showed an exacerbation of Tau pathology, associated with a reduction in amyloid plaque accumulation. Overall, our findings suggest that PLK2 inhibition alters key components of AD neuropathology in a sex-dependent manner and might display a therapeutic potential for the treatment for AD and related dementia.
Collapse
|
18
|
Nahacka Z, Novak J, Zobalova R, Neuzil J. Miro proteins and their role in mitochondrial transfer in cancer and beyond. Front Cell Dev Biol 2022; 10:937753. [PMID: 35959487 PMCID: PMC9358137 DOI: 10.3389/fcell.2022.937753] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/04/2022] [Indexed: 11/24/2022] Open
Abstract
Mitochondria are organelles essential for tumor cell proliferation and metastasis. Although their main cellular function, generation of energy in the form of ATP is dispensable for cancer cells, their capability to drive their adaptation to stress originating from tumor microenvironment makes them a plausible therapeutic target. Recent research has revealed that cancer cells with damaged oxidative phosphorylation import healthy (functional) mitochondria from surrounding stromal cells to drive pyrimidine synthesis and cell proliferation. Furthermore, it has been shown that energetically competent mitochondria are fundamental for tumor cell migration, invasion and metastasis. The spatial positioning and transport of mitochondria involves Miro proteins from a subfamily of small GTPases, localized in outer mitochondrial membrane. Miro proteins are involved in the structure of the MICOS complex, connecting outer and inner-mitochondrial membrane; in mitochondria-ER communication; Ca2+ metabolism; and in the recycling of damaged organelles via mitophagy. The most important role of Miro is regulation of mitochondrial movement and distribution within (and between) cells, acting as an adaptor linking organelles to cytoskeleton-associated motor proteins. In this review, we discuss the function of Miro proteins in various modes of intercellular mitochondrial transfer, emphasizing the structure and dynamics of tunneling nanotubes, the most common transfer modality. We summarize the evidence for and propose possible roles of Miro proteins in nanotube-mediated transfer as well as in cancer cell migration and metastasis, both processes being tightly connected to cytoskeleton-driven mitochondrial movement and positioning.
Collapse
Affiliation(s)
- Zuzana Nahacka
- Laboratory of Molecular Therapy, Institute of Biotechnology, Czech Academy of Sciences, Prague, Czechia
- *Correspondence: Zuzana Nahacka, ; Jiri Neuzil,
| | - Jaromir Novak
- Laboratory of Molecular Therapy, Institute of Biotechnology, Czech Academy of Sciences, Prague, Czechia
- Faculty of Science, Charles University, Prague, Czechia
| | - Renata Zobalova
- Laboratory of Molecular Therapy, Institute of Biotechnology, Czech Academy of Sciences, Prague, Czechia
| | - Jiri Neuzil
- Laboratory of Molecular Therapy, Institute of Biotechnology, Czech Academy of Sciences, Prague, Czechia
- School of Pharmacy and Medical Science, Griffith University, Southport, QLD, Australia
- *Correspondence: Zuzana Nahacka, ; Jiri Neuzil,
| |
Collapse
|
19
|
Zhang C, Ni C, Lu H. Polo-Like Kinase 2: From Principle to Practice. Front Oncol 2022; 12:956225. [PMID: 35898867 PMCID: PMC9309260 DOI: 10.3389/fonc.2022.956225] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/14/2022] [Indexed: 11/21/2022] Open
Abstract
Polo-like kinase (PLK) 2 is an evolutionarily conserved serine/threonine kinase that shares the n-terminal kinase catalytic domain and the C-terminal Polo Box Domain (PBD) with other members of the PLKs family. In the last two decades, mounting studies have focused on this and tried to clarify its role in many aspects. PLK2 is essential for mitotic centriole replication and meiotic chromatin pairing, synapsis, and crossing-over in the cell cycle; Loss of PLK2 function results in cell cycle disorders and developmental retardation. PLK2 is also involved in regulating cell differentiation and maintaining neural homeostasis. In the process of various stimuli-induced stress, including oxidative and endoplasmic reticulum, PLK2 may promote survival or apoptosis depending on the intensity of stimulation and the degree of cell damage. However, the role of PLK2 in immunity to viral infection has been studied far less than that of other family members. Because PLK2 is extensively and deeply involved in normal physiological functions and pathophysiological mechanisms of cells, its role in diseases is increasingly being paid attention to. The effect of PLK2 in inhibiting hematological tumors and fibrotic diseases, as well as participating in neurodegenerative diseases, has been gradually recognized. However, the research results in solid organ tumors show contradictory results. In addition, preliminary studies using PLK2 as a disease predictor and therapeutic target have yielded some exciting and promising results. More research will help people better understand PLK2 from principle to practice.
Collapse
Affiliation(s)
- Chuanyong Zhang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Chuangye Ni
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Hao Lu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
- *Correspondence: Hao Lu,
| |
Collapse
|
20
|
Kawahata I, Finkelstein DI, Fukunaga K. Pathogenic Impact of α-Synuclein Phosphorylation and Its Kinases in α-Synucleinopathies. Int J Mol Sci 2022; 23:ijms23116216. [PMID: 35682892 PMCID: PMC9181156 DOI: 10.3390/ijms23116216] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/29/2022] [Accepted: 05/31/2022] [Indexed: 12/30/2022] Open
Abstract
α-Synuclein is a protein with a molecular weight of 14.5 kDa and consists of 140 amino acids encoded by the SNCA gene. Missense mutations and gene duplications in the SNCA gene cause hereditary Parkinson’s disease. Highly phosphorylated and abnormally aggregated α-synuclein is a major component of Lewy bodies found in neuronal cells of patients with sporadic Parkinson’s disease, dementia with Lewy bodies, and glial cytoplasmic inclusion bodies in oligodendrocytes with multiple system atrophy. Aggregated α-synuclein is cytotoxic and plays a central role in the pathogenesis of the above-mentioned synucleinopathies. In a healthy brain, most α-synuclein is unphosphorylated; however, more than 90% of abnormally aggregated α-synuclein in Lewy bodies of patients with Parkinson’s disease is phosphorylated at Ser129, which is presumed to be of pathological significance. Several kinases catalyze Ser129 phosphorylation, but the role of phosphorylation enzymes in disease pathogenesis and their relationship to cellular toxicity from phosphorylation are not fully understood in α-synucleinopathy. Consequently, this review focuses on the pathogenic impact of α-synuclein phosphorylation and its kinases during the neurodegeneration process in α-synucleinopathy.
Collapse
Affiliation(s)
- Ichiro Kawahata
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
- Correspondence: (I.K.); (K.F.); Tel.: +81-22-795-6838 (I.K.); +81-22-795-6836 (K.F.); Fax: +81-22-795-6835 (I.K. & K.F.)
| | - David I. Finkelstein
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3010, Australia;
| | - Kohji Fukunaga
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
- BRI Pharma Inc., Sendai 982-0804, Japan
- Correspondence: (I.K.); (K.F.); Tel.: +81-22-795-6838 (I.K.); +81-22-795-6836 (K.F.); Fax: +81-22-795-6835 (I.K. & K.F.)
| |
Collapse
|
21
|
Dent SE, King DP, Osterberg VR, Adams EK, Mackiewicz MR, Weissman TA, Unni VK. Phosphorylation of the aggregate-forming protein alpha-synuclein on serine-129 inhibits its DNA-bending properties. J Biol Chem 2021; 298:101552. [PMID: 34973339 PMCID: PMC8800120 DOI: 10.1016/j.jbc.2021.101552] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 01/08/2023] Open
Abstract
Alpha-synuclein (aSyn) is a vertebrate protein, normally found within the presynaptic nerve terminal and nucleus, which is known to form somatic and neuritic aggregates in certain neurodegenerative diseases. Disease-associated aggregates of aSyn are heavily phosphorylated at serine-129 (pSyn), while normal aSyn protein is not. Within the nucleus, aSyn can directly bind DNA, but the mechanism of binding and the potential modulatory roles of phosphorylation are poorly understood. Here we demonstrate using a combination of electrophoretic mobility shift assay and atomic force microscopy approaches that both aSyn and pSyn can bind DNA within the major groove, in a DNA length-dependent manner and with little specificity for DNA sequence. Our data are consistent with a model in which multiple aSyn molecules bind a single 300 base pair (bp) DNA molecule in such a way that stabilizes the DNA in a bent conformation. We propose that serine-129 phosphorylation decreases the ability of aSyn to both bind and bend DNA, as aSyn binds 304 bp circular DNA forced into a bent shape, but pSyn does not. Two aSyn paralogs, beta- and gamma-synuclein, also interact with DNA differently than aSyn, and do not stabilize similar DNA conformations. Our work suggests that reductions in aSyn's ability to bind and bend DNA induced by serine-129 phosphorylation may be important for modulating aSyn's known roles in DNA metabolism, including the regulation of transcription and DNA repair.
Collapse
Affiliation(s)
- Sydney E Dent
- Jungers Center for Neurosciences Research, Department of Neurology, Oregon Health & Science University, Portland, Oregon, 97239, USA
| | - Dennisha P King
- Jungers Center for Neurosciences Research, Department of Neurology, Oregon Health & Science University, Portland, Oregon, 97239, USA
| | - Valerie R Osterberg
- Jungers Center for Neurosciences Research, Department of Neurology, Oregon Health & Science University, Portland, Oregon, 97239, USA
| | - Eleanor K Adams
- Department of Chemistry, Portland State University, Portland, Oregon, 97239, USA
| | - Marilyn R Mackiewicz
- Department of Chemistry, Portland State University, Portland, Oregon, 97239, USA
| | - Tamily A Weissman
- Department of Biology, Lewis & Clark College, Portland, Oregon, 97219, USA
| | - Vivek K Unni
- Jungers Center for Neurosciences Research, Department of Neurology, Oregon Health & Science University, Portland, Oregon, 97239, USA; OHSU Parkinson Center, Oregon Health & Science University, Portland, Oregon, 97239, USA.
| |
Collapse
|