1
|
Cabrera-Alvargonzalez JJ, Davina-Nunez C, Rey-Cao S, Rodriguez Calviño L, Silva-Bea S, Gonzalez-Alonso E, Carballo-Fernandez R, Lameiro Vilariño C, Cortizo-Vidal S, Valiño-Prieto P, Rodriguez-Perez M, Pérez Castro S, López Miragaya I, Fernández-Nogueira A, Del Campo-Perez V, Regueiro-Garcia B. Comparative analysis of eleven SARS-CoV-2 immunoassays and neutralisation data: time to enhance standardisation and correlation of protection. Infect Dis (Lond) 2024; 56:1067-1079. [PMID: 39046827 DOI: 10.1080/23744235.2024.2382263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 06/25/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND To infer a reliable SARS-CoV-2 antibody protection level from a serological test, an appropriate quantitative threshold and solid equivalence across serological tests are needed. Additionally, tests should show a solid correlation with neutralising assays and with the protection observed in large population cohorts even against emerging variants. OBJECTIVES We studied convalescent and vaccinated populations using 11 commercial antibody assays. Results were compared to evaluate discrepancies across tests. Neutralisation capacity was measured in a subset of the samples with a lentiviral-based assay. METHODS Serum from convalescent (n = 121) and vaccinated individuals (n = 471, 260 with Comirnaty, 110 with Spikevax, and 96 with Vaxzevria) was assessed using 11 different assays, including two from Abbott, Euroimmun, Liaison, Roche, and Vircell, and one from Siemens. A spike protein-lentiviral vector with a fluorescent reporter was used for neutralisation assay of serum from convalescent (n = 26) and vaccinated (n = 39) individuals. RESULTS Positivity ranged between 81.3 and 94.3% after infection and 99.4 and 99.7% after vaccination, depending on the assay. Both cohorts showed a high level of qualitative agreement across tests (Fleiss' kappa = 0.598 and 0.719 for convalescent and vaccinated respectively). Spikevax vaccine recipients showed the highest level of antibodies in all tests. Effectiveness of each test predicting SARS-CoV-2 neutralising capacity depended on assay type and target, with CLIA and anti-S being more effective than ELISA and anti-N assays, respectively. CONCLUSIONS High-throughput immunoassays are good predictors of neutralising capacity. Updated targets and better standardisation would be required to find an effective correlate of protection, especially to account for antibodies against new variants.
Collapse
Affiliation(s)
- Jorge-Julio Cabrera-Alvargonzalez
- Microbiology and Infectology Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), Vigo, Spain
- Microbiology Department, Complexo Hospitalario Universitario de Vigo (CHUVI), SERGAS, Vigo, Spain
| | - Carlos Davina-Nunez
- Microbiology and Infectology Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), Vigo, Spain
- Faculty of Biology, Universidade de Vigo, Vigo, Spain
| | - Sonia Rey-Cao
- Microbiology and Infectology Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), Vigo, Spain
- Microbiology Department, Complexo Hospitalario Universitario de Vigo (CHUVI), SERGAS, Vigo, Spain
| | - Leticia Rodriguez Calviño
- Clinical Analysis Department, Complexo Hospitalario Universitario de Vigo (CHUVI), SERGAS, Vigo, Spain
| | - Sergio Silva-Bea
- Microbiology and Infectology Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), Vigo, Spain
| | - Elena Gonzalez-Alonso
- Microbiology and Infectology Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), Vigo, Spain
| | | | - Carmen Lameiro Vilariño
- Preventive Medicine Department, Complexo Hospitalario Universitario de Vigo (CHUVI), SERGAS, Vigo, Spain
| | - Sandra Cortizo-Vidal
- Microbiology Department, Complexo Hospitalario Universitario de Vigo (CHUVI), SERGAS, Vigo, Spain
| | - Pilar Valiño-Prieto
- Microbiology Department, Complexo Hospitalario Universitario de Vigo (CHUVI), SERGAS, Vigo, Spain
| | - Miriam Rodriguez-Perez
- Microbiology Department, Complexo Hospitalario Universitario de Vigo (CHUVI), SERGAS, Vigo, Spain
| | - Sonia Pérez Castro
- Microbiology and Infectology Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), Vigo, Spain
- Microbiology Department, Complexo Hospitalario Universitario de Vigo (CHUVI), SERGAS, Vigo, Spain
| | - Isabel López Miragaya
- Microbiology Department, Complexo Hospitalario Universitario de Vigo (CHUVI), SERGAS, Vigo, Spain
| | - Arturo Fernández-Nogueira
- Clinical Analysis Department, Complexo Hospitalario Universitario de Vigo (CHUVI), SERGAS, Vigo, Spain
| | - Victor Del Campo-Perez
- Preventive Medicine Department, Complexo Hospitalario Universitario de Vigo (CHUVI), SERGAS, Vigo, Spain
| | - Benito Regueiro-Garcia
- Microbiology and Infectology Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), Vigo, Spain
| |
Collapse
|
2
|
Zagorski K, Pandey K, Rajaiah R, Olwenyi OA, Bade AN, Acharya A, Johnston M, Filliaux S, Lyubchenko YL, Byrareddy SN. Modular nanoarray vaccine for SARS-CoV-2. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 46:102604. [PMID: 36113829 PMCID: PMC9468299 DOI: 10.1016/j.nano.2022.102604] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/19/2022]
Abstract
The current vaccine development strategies for the COVID-19 pandemic utilize whole inactive or attenuated viruses, virus-like particles, recombinant proteins, and antigen-coding DNA and mRNA with various delivery strategies. While highly effective, these vaccine development strategies are time-consuming and often do not provide reliable protection for immunocompromised individuals, young children, and pregnant women. Here, we propose a novel modular vaccine platform to address these shortcomings using chemically synthesized peptides identified based on the validated bioinformatic data about the target. The vaccine is based on the rational design of an immunogen containing two defined B-cell epitopes from the spike glycoprotein of SARS-CoV-2 and the universal T-helper epitope PADRE. The epitopes were conjugated to short DNA probes and combined with a complementary scaffold strand, resulting in sequence-specific self-assembly. The immunogens were then formulated by conjugation to gold nanoparticles by three methods or by co-crystallization with epsilon inulin. BALB/C mice were immunized with each formulation, and the IgG immune responses and virus neutralizing titers were compared. The results demonstrate that this assembly is immunogenic and generates neutralizing antibodies against wildtype SARS-CoV-2 and the Delta variant.
Collapse
Affiliation(s)
- Karen Zagorski
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198-6025, United States.
| | - Kabita Pandey
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States; Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States.
| | - Rajesh Rajaiah
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States.
| | - Omalla A Olwenyi
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States; Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States.
| | - Aditya N Bade
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States.
| | - Arpan Acharya
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States.
| | - Morgan Johnston
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States.
| | - Shaun Filliaux
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198-6025, United States.
| | - Yuri L Lyubchenko
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198-6025, United States.
| | - Siddappa N Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States; Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States; Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, NE, United States; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States; Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
3
|
Jaago M, Rähni A, Pupina N, Pihlak A, Sadam H, Tuvikene J, Avarlaid A, Planken A, Planken M, Haring L, Vasar E, Baćević M, Lambert F, Kalso E, Pussinen P, Tienari PJ, Vaheri A, Lindholm D, Timmusk T, Ghaemmaghami AM, Palm K. Differential patterns of cross-reactive antibody response against SARS-CoV-2 spike protein detected for chronically ill and healthy COVID-19 naïve individuals. Sci Rep 2022; 12:16817. [PMID: 36207326 PMCID: PMC9540097 DOI: 10.1038/s41598-022-20849-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 09/20/2022] [Indexed: 11/18/2022] Open
Abstract
Immunity to previously encountered viruses can alter response to unrelated pathogens. We reasoned that similar mechanism may also involve SARS-CoV-2 and thereby affect the specificity and the quality of the immune response against the virus. Here, we employed high-throughput next generation phage display method to explore the link between antibody immune response to previously encountered antigens and spike (S) glycoprotein. By profiling the antibody response in COVID-19 naïve individuals with a diverse clinical history (including cardiovascular, neurological, or oncological diseases), we identified 15 highly antigenic epitopes on spike protein that showed cross-reactivity with antigens of seasonal, persistent, latent or chronic infections from common human viruses. We observed varying degrees of cross-reactivity of different viral antigens with S in an epitope-specific manner. The data show that pre-existing SARS-CoV-2 S1 and S2 cross-reactive serum antibody is readily detectable in pre-pandemic cohort. In the severe COVID-19 cases, we found differential antibody response to the 15 defined antigenic and cross-reactive epitopes on spike. We also noted that despite the high mutation rates of Omicron (B.1.1.529) variants of SARS-CoV-2, some of the epitopes overlapped with the described mutations. Finally, we propose that the resolved epitopes on spike if targeted by re-called antibody response from SARS-CoV-2 infections or vaccinations can function in chronically ill COVID-19 naïve/unvaccinated individuals as immunogenic targets to boost antibodies augmenting the chronic conditions. Understanding the relationships between prior antigen exposure at the antibody epitope level and the immune response to subsequent infections with viruses from a different strain is paramount to guiding strategies to exit the COVID-19 pandemic.
Collapse
Affiliation(s)
- Mariliis Jaago
- Protobios LLC, Tallinn, Estonia
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Annika Rähni
- Protobios LLC, Tallinn, Estonia
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | | | | | - Helle Sadam
- Protobios LLC, Tallinn, Estonia
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Jürgen Tuvikene
- Protobios LLC, Tallinn, Estonia
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
- DXLabs LLC, Tallinn, Estonia
| | - Annela Avarlaid
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Anu Planken
- North Estonia Medical Centre Foundation, Tallinn, Estonia
| | - Margus Planken
- North Estonia Medical Centre Foundation, Tallinn, Estonia
| | - Liina Haring
- Institute of Clinical Medicine, Psychiatry Clinic of Tartu University Hospital, University of Tartu, Tartu, Estonia
| | - Eero Vasar
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
- Center of Excellence for Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Miljana Baćević
- Dental Biomaterial Research Unit (d-BRU), Faculty of Medicine, University of Liege, Liege, Belgium
| | - France Lambert
- Department of Periodontology and Oral Surgery, Faculty of Medicine, University of Liege, Liege, Belgium
| | - Eija Kalso
- Department of Anaesthesiology, Intensive Care and Pain Medicine, Helsinki University Hospital, Helsinki, Finland
- SleepWell Research Programme, Department of Pharmacology, University of Helsinki, Helsinki, Finland
| | - Pirkko Pussinen
- Oral and Maxillofacial Diseases, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Pentti J Tienari
- Translational Immunology Research Program, Department of Neurology, Neurocenter, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Antti Vaheri
- Department of Virology, Medicum, University of Helsinki, Helsinki, Finland
| | - Dan Lindholm
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Tõnis Timmusk
- Protobios LLC, Tallinn, Estonia
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Amir M Ghaemmaghami
- Immunology and Immuno-Bioengineering Group, School of Life Science, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, United Kingdom
| | | |
Collapse
|
4
|
Wisnewski AV, Cantley L, Campillo Luna J, Liu J, Smith RF, Hager K, Redlich CA. Changes Over Time in COVID-19 Incidence, Vaccinations, Serum Spike IgG, and Viral Neutralizing Potential Among Individuals From a North American Gaming Venue: December 2020-August 2021. J Occup Environ Med 2022; 64:788-796. [PMID: 36054278 PMCID: PMC9426317 DOI: 10.1097/jom.0000000000002617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE This study aims to evaluate COVID-19 cases and vaccine responses among workers in the gaming/entertainment industry. METHODS Participants provided detailed information on occupational risk factors, demographics, COVID-19 history, and vaccination status through questionnaire. Enzyme-linked immunosorbent assays were used to measure serum antiviral antibodies and neutralizing capacity. RESULTS Five hundred-fifty individuals participated with n = 228 (41.5%) returning for follow-up. At least 71% of participants were fully vaccinated within 8 months of vaccine availability and COVID-19 rates declined concomitantly. Serum anti-spike IgG levels and neutralizing capacity were significantly (P < 0.001) associated COVID-19 history and vaccine type, but not occupational risk factors, and declined (on average 36%) within 5 months. Few vaccine nonresponders (n = 12) and "breakthrough" infections (n = 1) were noted. CONCLUSIONS COVID-19 vaccination was associated with a marked decrease in infections; however, individual humoral responses varied and declined significantly over time.
Collapse
|
5
|
Characterization and Utilization of Disulfide-Bonded SARS-CoV-2 Receptor Binding Domain of Spike Protein Synthesized by Wheat Germ Cell-Free Production System. Viruses 2022; 14:v14071461. [PMID: 35891441 PMCID: PMC9321213 DOI: 10.3390/v14071461] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 02/05/2023] Open
Abstract
The spike protein (SP) of SARS-CoV-2 is an important target for COVID-19 therapeutics and vaccines as it binds to the ACE2 receptor and enables viral infection. Rapid production and functional characterization of properly folded SP is of the utmost importance for studying the immunogenicity and receptor-binding activity of this protein considering the emergence of highly infectious viral variants. In this study, we attempted to express the receptor-binding region (RBD) of SARS-CoV-2 SP containing disulfide bonds using the wheat germ cell-free protein synthesis system. By adding protein disulfide isomerase (PDI) and endoplasmic reticulum oxidase (ERO1α) to the translational reaction mixture, we succeeded in synthesizing a functionally intact RBD protein that can interact with ACE2. Using this RBD protein, we have developed a high-throughput AlphaScreen assay to evaluate the RBD–ACE2 interaction, which can be applied for drug screening and mutation analysis. Thus, our method sheds new light on the structural and functional properties of SARS-CoV-2 SP and has the potential to contribute to the development of new COVID-19 therapeutics.
Collapse
|
6
|
Abd El-Baky N, Amara AAAF. Depending on Epitope Profile of COVID-19 mRNA Vaccine Recipients: Are They More Efficient Against the Arising Viral Variants? An Opinion Article. Front Med (Lausanne) 2022; 9:903876. [PMID: 35795625 PMCID: PMC9251123 DOI: 10.3389/fmed.2022.903876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/01/2022] [Indexed: 12/02/2022] Open
Affiliation(s)
- Nawal Abd El-Baky
- Department of Protein Research, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
| | - Amro Abd Al Fattah Amara
- Department of Protein Research, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
| |
Collapse
|
7
|
Wang Z, Zhao S, Lin X, Chen G, Kang J, Ma Z, Wang Y, Li Z, Xiao X, He A, Xiang D. Application of Organoids in Carcinogenesis Modeling and Tumor Vaccination. Front Oncol 2022; 12:855996. [PMID: 35371988 PMCID: PMC8968694 DOI: 10.3389/fonc.2022.855996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 02/17/2022] [Indexed: 12/12/2022] Open
Abstract
Organoids well recapitulate organ-specific functions from their tissue of origin and remain fundamental aspects of organogenesis. Organoids are widely applied in biomedical research, drug discovery, and regenerative medicine. There are various cultivated organoid systems induced by adult stem cells and pluripotent stem cells, or directly derived from primary tissues. Researchers have drawn inspiration by combination of organoid technology and tissue engineering to produce organoids with more physiological relevance and suitable for translational medicine. This review describes the value of applying organoids for tumorigenesis modeling and tumor vaccination. We summarize the application of organoids in tumor precision medicine. Extant challenges that need to be conquered to make this technology be more feasible and precise are discussed.
Collapse
Affiliation(s)
- Zeyu Wang
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shasha Zhao
- State Key Laboratory of Oncogenes and Related Genes, the Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaolin Lin
- Department of Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guanglong Chen
- Department of General Surgery, Zhengzhou University, Affiliated Cancer Hospital (Henan Cancer Hospital), Zhengzhou, China
| | - Jiawei Kang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | | | - Yiming Wang
- Shanghai OneTar Biomedicine, Shanghai, China
| | - Zhi Li
- Department of General Surgery, Zhengzhou University, Affiliated Cancer Hospital (Henan Cancer Hospital), Zhengzhou, China
| | - Xiuying Xiao
- Department of Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Aina He
- Department of Oncology, The Sixth People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Dongxi Xiang
- State Key Laboratory of Oncogenes and Related Genes, Department of Biliary-Pancreatic Surgery, The Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Nitahara Y, Nakagama Y, Kaku N, Candray K, Michimuko Y, Tshibangu-Kabamba E, Kaneko A, Yamamoto H, Mizobata Y, Kakeya H, Yasugi M, Kido Y. High-Resolution Linear Epitope Mapping of the Receptor Binding Domain of SARS-CoV-2 Spike Protein in COVID-19 mRNA Vaccine Recipients. Microbiol Spectr 2021; 9:e0096521. [PMID: 34756082 PMCID: PMC8579840 DOI: 10.1128/spectrum.00965-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/21/2021] [Indexed: 12/14/2022] Open
Abstract
The prompt rollout of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mRNA vaccine is facilitating population immunity, which is becoming more dominant than natural infection-mediated immunity. In the midst of coronavirus disease 2019 (COVID-19) vaccine deployment, understanding the epitope profiles of vaccine-elicited antibodies will be the first step in assessing the functionality of vaccine-induced immunity. In this study, the high-resolution linear epitope profiles of Pfizer-BioNTech COVID-19 mRNA vaccine recipients and COVID-19 patients were delineated by using microarrays mapped with overlapping peptides of the receptor binding domain (RBD) of the SARS-CoV-2 spike protein. The vaccine-induced antibodies targeting the RBD had a broader distribution across the RBD than that induced by the natural infection. Half-maximal neutralization titers were measured in vitro by live virus neutralization assays. As a result, relatively lower neutralizability was observed in vaccine recipient sera, when normalized to a total anti-RBD IgG titer. However, mutation panel assays targeting the SARS-CoV-2 variants of concern have shown that the vaccine-induced epitope variety, rich in breadth, may grant resistance against future viral evolutionary escapes, serving as an advantage of vaccine-induced immunity. IMPORTANCE Establishing vaccine-based population immunity has been the key factor in attaining herd protection. Thanks to expedited worldwide research efforts, the potency of mRNA vaccines against the coronavirus disease 2019 (COVID-19) is now incontestable. The next debate is regarding the coverage of SARS-CoV-2 variants. In the midst of vaccine deployment, it is of importance to describe the similarities and differences between the immune responses of COVID-19 vaccine recipients and naturally infected individuals. In this study, we demonstrated that the antibody profiles of vaccine recipients are richer in variety, targeting a key protein of the invading virus, than those of naturally infected individuals. Vaccine-elicited antibodies included more nonneutralizing antibodies than infection-elicited antibodies, and their breadth in antibody variations suggested possible resilience against future SARS-CoV-2 variants. The antibody profile achieved by vaccinations in naive individuals provides important insight into the first step toward vaccine-based population immunity.
Collapse
Affiliation(s)
- Yuko Nitahara
- Department of Parasitology & Research Center for Infectious Disease Sciences, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Yu Nakagama
- Department of Parasitology & Research Center for Infectious Disease Sciences, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Natsuko Kaku
- Department of Parasitology & Research Center for Infectious Disease Sciences, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Katherine Candray
- Department of Parasitology & Research Center for Infectious Disease Sciences, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Yu Michimuko
- Department of Parasitology & Research Center for Infectious Disease Sciences, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Evariste Tshibangu-Kabamba
- Department of Parasitology & Research Center for Infectious Disease Sciences, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Akira Kaneko
- Department of Parasitology & Research Center for Infectious Disease Sciences, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Hiromasa Yamamoto
- Department of Traumatology and Critical Care Medicine, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Yasumitsu Mizobata
- Department of Traumatology and Critical Care Medicine, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Hiroshi Kakeya
- Department of Infection Control Science, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Mayo Yasugi
- Department of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka, Japan
- Osaka International Research Center for Infectious Diseases, Osaka Prefecture University, Izumisano, Osaka, Japan
- Asian Health Science Research Institute, Osaka Prefecture University, Izumisano, Osaka, Japan
| | - Yasutoshi Kido
- Department of Parasitology & Research Center for Infectious Disease Sciences, Graduate School of Medicine, Osaka City University, Osaka, Japan
| |
Collapse
|