1
|
Singh P, Borkar M, Doshi G. Network pharmacology approach to unravel the neuroprotective potential of natural products: a narrative review. Mol Divers 2025:10.1007/s11030-025-11198-3. [PMID: 40279084 DOI: 10.1007/s11030-025-11198-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 04/13/2025] [Indexed: 04/26/2025]
Abstract
Aging is a slow and irreversible biological process leading to decreased cell and tissue functions with higher risks of multiple age-related diseases, including neurodegenerative diseases. It is widely accepted that aging represents the leading risk factor for neurodegeneration. The pathogenesis of these diseases involves complex interactions of genetic mutations, environmental factors, oxidative stress, neuroinflammation, and mitochondrial dysfunction, which complicate treatment with traditional mono-targeted therapies. Network pharmacology can help identify potential gene or protein targets related to neurodegenerative diseases. Integrating advanced molecular profiling technologies and computer-aided drug design further enhances the potential of network pharmacology, enabling the identification of biomarkers and therapeutic targets, thus paving the way for precision medicine in neurodegenerative diseases. This review article delves into the application of network pharmacology in understanding and treating neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease, and spinal muscular atrophy. Overall, this article emphasizes the importance of addressing aging as a central factor in developing effective disease-modifying therapies, highlighting how network pharmacology can unravel the complex biological networks associated with aging and pave the way for personalized medical strategies.
Collapse
Affiliation(s)
- Pankaj Singh
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mithibai Campus, V. M. Road, Vile Parle (W), Mumbai, 400056, India
| | - Maheshkumar Borkar
- Department of Pharmaceutical Chemistry, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V. M. Road, Vile Parle (W), Mumbai, India
| | - Gaurav Doshi
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mithibai Campus, V. M. Road, Vile Parle (W), Mumbai, 400056, India.
| |
Collapse
|
2
|
Dolfini D, Imbriano C, Mantovani R. The role(s) of NF-Y in development and differentiation. Cell Death Differ 2025; 32:195-206. [PMID: 39327506 PMCID: PMC11802806 DOI: 10.1038/s41418-024-01388-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024] Open
Abstract
NF-Y is a conserved sequence-specific trimeric Transcription Factor -TF- binding to the CCAAT element. We review here the role(s) in development, from pre-implantation embryo to terminally differentiated tissues, by rationalizing and commenting on genetic, genomic, epigenetic and biochemical studies. This effort brings to light the impact of NF-YA isoforms on stemness and differentiation, as well as binding to distal vs promoter proximal sites and connections with selected TFs.
Collapse
Affiliation(s)
- Diletta Dolfini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Carol Imbriano
- Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, Modena, Italy
| | - Roberto Mantovani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy.
| |
Collapse
|
3
|
Singh R, Rathore AS, Dilnashin H, Keshri PK, Gupta NK, Prakash SAS, Zahra W, Singh S, Singh SP. HAT and HDAC: Enzyme with Contradictory Action in Neurodegenerative Diseases. Mol Neurobiol 2024; 61:9110-9124. [PMID: 38587698 DOI: 10.1007/s12035-024-04115-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 03/08/2024] [Indexed: 04/09/2024]
Abstract
In view of the increasing risk of neurodegenerative diseases, epigenetics plays a fundamental role in the field of neuroscience. Several modifications have been studied including DNA methylation, histone acetylation, histone phosphorylation, etc. Histone acetylation and deacetylation regulate gene expression, and the regular activity of histone acetyltransferases (HATs) and histone deacetylases (HDACs) provides regulatory stages for gene expression and cell cycle. Imbalanced homeostasis in these enzymes causes a detrimental effect on neurophysiological function. Intriguingly, epigenetic remodelling via histone acetylation in certain brain areas has been found to play a key role in the neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and Huntington's disease. It has been demonstrated that a number of HATs have a role in crucial brain processes such regulating neuronal plasticity and memory formation. The most recent therapeutic methods involve the use of small molecules known as histone deacetylase (HDAC) inhibitors that antagonize HDAC activity thereby increase acetylation levels in order to prevent the loss of HAT function in neurodegenerative disorders. The target specificity of the HDAC inhibitors now in use raises concerns about their applicability, despite the fact that this strategy has demonstrated promising therapeutic outcomes. The aim of this review is to summarize the cross-linking between histone modification and its regulation in the pathogenesis of neurological disorders. Furthermore, these findings also support the notion of new pharmacotherapies that target particular areas of the brain using histone deacetylase inhibitors.
Collapse
Affiliation(s)
- Richa Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi-221005 (U.P.), India
| | - Aaina Singh Rathore
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi-221005 (U.P.), India
| | - Hagera Dilnashin
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi-221005 (U.P.), India
| | - Priyanka Kumari Keshri
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi-221005 (U.P.), India
| | - Nitesh Kumar Gupta
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi-221005 (U.P.), India
| | - Singh Ankit Satya Prakash
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi-221005 (U.P.), India
| | - Walia Zahra
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi-221005 (U.P.), India
| | - Shekhar Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi-221005 (U.P.), India
| | - Surya Pratap Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi-221005 (U.P.), India.
| |
Collapse
|
4
|
López-Cerdán A, Andreu Z, Hidalgo MR, Soler-Sáez I, de la Iglesia-Vayá M, Mikozami A, Guerini FR, García-García F. An integrated approach to identifying sex-specific genes, transcription factors, and pathways relevant to Alzheimer's disease. Neurobiol Dis 2024; 199:106605. [PMID: 39009097 DOI: 10.1016/j.nbd.2024.106605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/06/2024] [Accepted: 07/11/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND Age represents a significant risk factor for the development of Alzheimer's disease (AD); however, recent research has documented an influencing role of sex in several features of AD. Understanding the impact of sex on specific molecular mechanisms associated with AD remains a critical challenge to creating tailored therapeutic interventions. METHODS The exploration of the sex-based differential impact on disease (SDID) in AD used a systematic review to first select transcriptomic studies of AD with data regarding sex in the period covering 2002 to 2021 with a focus on the primary brain regions affected by AD - the cortex (CT) and the hippocampus (HP). A differential expression analysis for each study and two tissue-specific meta-analyses were then performed. Focusing on the CT due to the presence of significant SDID-related alterations, a comprehensive functional characterization was conducted: protein-protein network interaction and over-representation analyses to explore biological processes and pathways and a VIPER analysis to estimate transcription factor activity. RESULTS We selected 8 CT and 5 HP studies from the Gene Expression Omnibus (GEO) repository for tissue-specific meta-analyses. We detected 389 significantly altered genes in the SDID comparison in the CT. Generally, female AD patients displayed more affected genes than males; we grouped said genes into six subsets according to their expression profile in female and male AD patients. Only subset I (repressed genes in female AD patients) displayed significant results during functional profiling. Female AD patients demonstrated more significant impairments in biological processes related to the regulation and organization of synapsis and pathways linked to neurotransmitters (glutamate and GABA) and protein folding, Aβ aggregation, and accumulation compared to male AD patients. These findings could partly explain why we observe more pronounced cognitive decline in female AD patients. Finally, we detected 23 transcription factors with different activation patterns according to sex, with some associated with AD for the first time. All results generated during this study are readily available through an open web resource Metafun-AD (https://bioinfo.cipf.es/metafun-ad/). CONCLUSION Our meta-analyses indicate the existence of differences in AD-related mechanisms in female and male patients. These sex-based differences will represent the basis for new hypotheses and could significantly impact precision medicine and improve diagnosis and clinical outcomes in AD patients.
Collapse
Affiliation(s)
- Adolfo López-Cerdán
- Computational Biomedicine Laboratory, Principe Felipe Research Center (CIPF), 46012, Valencia, Spain; Biomedical Imaging Unit FISABIO-CIPF, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana, 46012, Valencia, Spain
| | - Zoraida Andreu
- Foundation Valencian Institute of Oncology (FIVO), 46009, Valencia, Spain
| | - Marta R Hidalgo
- Computational Biomedicine Laboratory, Principe Felipe Research Center (CIPF), 46012, Valencia, Spain
| | - Irene Soler-Sáez
- Computational Biomedicine Laboratory, Principe Felipe Research Center (CIPF), 46012, Valencia, Spain
| | - María de la Iglesia-Vayá
- Biomedical Imaging Unit FISABIO-CIPF, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana, 46012, Valencia, Spain
| | - Akiko Mikozami
- Oral Health/Brain Health/Total health (OBT) Research Center, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | | | - Francisco García-García
- Computational Biomedicine Laboratory, Principe Felipe Research Center (CIPF), 46012, Valencia, Spain.
| |
Collapse
|
5
|
Nateghi B, Keraudren R, Boulay G, Bazin M, Goupil C, Canet G, Loiselle A, St-Amour I, Planel E, Soulet D, Hébert SS. Beneficial effects of miR-132/212 deficiency in the zQ175 mouse model of Huntington's disease. Front Neurosci 2024; 18:1421680. [PMID: 39170678 PMCID: PMC11337869 DOI: 10.3389/fnins.2024.1421680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/10/2024] [Indexed: 08/23/2024] Open
Abstract
Huntington's disease (HD) is a rare genetic neurodegenerative disorder caused by an expansion of CAG repeats in the Huntingtin (HTT) gene. One hypothesis suggests that the mutant HTT gene contributes to HD neuropathology through transcriptional dysregulation involving microRNAs (miRNAs). In particular, the miR-132/212 cluster is strongly diminished in the HD brain. This study explores the effects of miR-132/212 deficiency specifically in adult HD zQ175 mice. The absence of miR-132/212 did not impact body weight, body temperature, or survival rates. Surprisingly, miR-132/212 loss seemed to alleviate, in part, the effects on endogenous Htt expression, HTT inclusions, and neuronal integrity in HD zQ175 mice. Additionally, miR-132/212 depletion led to age-dependent improvements in certain motor functions. Transcriptomic analysis revealed alterations in HD-related networks in WT- and HD zQ175-miR-132/212-deficient mice, including significant overlap in BDNF and Creb1 signaling pathways. Interestingly, however, a higher number of miR-132/212 gene targets was observed in HD zQ175 mice lacking the miR-132/212 cluster, especially in the striatum. These findings suggest a nuanced interplay between miR-132/212 expression and HD pathogenesis, providing potential insights into therapeutic interventions. Further investigation is needed to fully understand the underlying mechanisms and therapeutic potential of modulating miR-132/212 expression during HD progression.
Collapse
Affiliation(s)
- Behnaz Nateghi
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, CHUL, Québec, QC, Canada
- Département de Psychiatrie et de Neurosciences, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Remi Keraudren
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, CHUL, Québec, QC, Canada
- Département de Psychiatrie et de Neurosciences, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Gabriel Boulay
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, CHUL, Québec, QC, Canada
- Département de Psychiatrie et de Neurosciences, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Marc Bazin
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, CHUL, Québec, QC, Canada
| | - Claudia Goupil
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, CHUL, Québec, QC, Canada
| | - Geoffrey Canet
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, CHUL, Québec, QC, Canada
| | - Andréanne Loiselle
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, CHUL, Québec, QC, Canada
| | - Isabelle St-Amour
- CERVO Brain Research Centre, Centre Intégré Universitaire de Santé et des Services Sociaux de la Capitale-Nationale, Québec, QC, Canada
| | - Emmanuel Planel
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, CHUL, Québec, QC, Canada
- Département de Psychiatrie et de Neurosciences, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Denis Soulet
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, CHUL, Québec, QC, Canada
- Faculté de Pharmacie, Université Laval, Québec, QC, Canada
| | - Sébastien S. Hébert
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, CHUL, Québec, QC, Canada
- Département de Psychiatrie et de Neurosciences, Faculté de Médecine, Université Laval, Québec, QC, Canada
| |
Collapse
|
6
|
Wilkerson MD, Hupalo D, Gray JC, Zhang X, Wang J, Girgenti MJ, Alba C, Sukumar G, Lott NM, Naifeh JA, Aliaga P, Kessler RC, Turner C, Pollard HB, Dalgard CL, Ursano RJ, Stein MB. Uncommon Protein-Coding Variants Associated With Suicide Attempt in a Diverse Sample of U.S. Army Soldiers. Biol Psychiatry 2024; 96:15-25. [PMID: 38141912 DOI: 10.1016/j.biopsych.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/02/2023] [Accepted: 12/05/2023] [Indexed: 12/25/2023]
Abstract
BACKGROUND Suicide is a societal and public health concern of global scale. Identifying genetic risk factors for suicide attempt can characterize underlying biology and enable early interventions to prevent deaths. Recent studies have described common genetic variants for suicide-related behaviors. Here, we advance this search for genetic risk by analyzing the association between suicide attempt and uncommon variation exome-wide in a large, ancestrally diverse sample. METHODS We sequenced whole genomes of 13,584 soldiers from the Army STARRS (Army Study to Assess Risk and Resilience in Servicemembers), including 979 individuals with a history of suicide attempt. Uncommon, nonsilent protein-coding variants were analyzed exome-wide for association with suicide attempt using gene-collapsed and single-variant analyses. RESULTS We identified 19 genes with variants enriched in individuals with history of suicide attempt, either through gene-collapsed or single-variant analysis (Bonferroni padjusted < .05). These genes were CIB2, MLF1, HERC1, YWHAE, RCN2, VWA5B1, ATAD3A, NACA, EP400, ZNF585A, LYST, RC3H2, PSD3, STARD9, SGMS1, ACTR6, RGS7BP, DIRAS2, and KRTAP10-1. Most genes had variants across multiple genomic ancestry groups. Seventeen of these genes were expressed in healthy brain tissue, with 9 genes expressed at the highest levels in the brain versus other tissues. Brains from individuals deceased from suicide aberrantly expressed RGS7BP (padjusted = .035) in addition to nominally significant genes including YWHAE and ACTR6, all of which have reported associations with other mental disorders. CONCLUSIONS These results advance the molecular characterization of suicide attempt behavior and support the utility of whole-genome sequencing for complementing the findings of genome-wide association studies in suicide research.
Collapse
Affiliation(s)
- Matthew D Wilkerson
- Center for Military Precision Health, Uniformed Services University, Bethesda, Maryland; Department of Anatomy, Physiology, and Genetics, Uniformed Services University, Bethesda, Maryland
| | - Daniel Hupalo
- Center for Military Precision Health, Uniformed Services University, Bethesda, Maryland
| | - Joshua C Gray
- Department of Medical and Clinical Psychology, Uniformed Services University, Bethesda, Maryland
| | - Xijun Zhang
- Center for Military Precision Health, Uniformed Services University, Bethesda, Maryland
| | - Jiawei Wang
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Matthew J Girgenti
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Camille Alba
- Center for Military Precision Health, Uniformed Services University, Bethesda, Maryland
| | - Gauthaman Sukumar
- Center for Military Precision Health, Uniformed Services University, Bethesda, Maryland
| | - Nathaniel M Lott
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, Maryland
| | - James A Naifeh
- Center for the Study of Traumatic Stress, Department of Psychiatry, Uniformed Services University, Bethesda, Maryland
| | - Pablo Aliaga
- Center for the Study of Traumatic Stress, Department of Psychiatry, Uniformed Services University, Bethesda, Maryland
| | - Ronald C Kessler
- Department of Health Care Policy, Harvard Medical School, Boston, Massachusetts
| | - Clesson Turner
- Department of Pediatrics, Uniformed Services University, Bethesda, Maryland
| | - Harvey B Pollard
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University, Bethesda, Maryland
| | - Clifton L Dalgard
- Center for Military Precision Health, Uniformed Services University, Bethesda, Maryland; Department of Anatomy, Physiology, and Genetics, Uniformed Services University, Bethesda, Maryland
| | - Robert J Ursano
- Center for the Study of Traumatic Stress, Department of Psychiatry, Uniformed Services University, Bethesda, Maryland
| | - Murray B Stein
- Department of Psychiatry, University of California San Diego, La Jolla, California; Herbert Wertheim School of Public Health, University of California San Diego, La Jolla, California; VA San Diego Healthcare System, San Diego, California.
| |
Collapse
|
7
|
Dias Pinto JR, Faustinoni Neto B, Sanches Fernandes JM, Kerkis I, Araldi RP. How does the age of control individuals hinder the identification of target genes for Huntington's disease? Front Genet 2024; 15:1377237. [PMID: 38978875 PMCID: PMC11228582 DOI: 10.3389/fgene.2024.1377237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 06/03/2024] [Indexed: 07/10/2024] Open
Abstract
Several studies have compared the transcriptome across various brain regions in Huntington's disease (HD) gene-positive and neurologically normal individuals to identify potential differentially expressed genes (DEGs) that could be pharmaceutical or prognostic targets for HD. Despite adhering to technical recommendations for optimal RNA-Seq analysis, none of the genes identified as upregulated in these studies have yet demonstrated success as prognostic or therapeutic targets for HD. Earlier studies included samples from neurologically normal individuals older than the HD gene-positive group. Considering the gradual transcriptional changes induced by aging in the brain, we posited that utilizing samples from older controls could result in the misidentification of DEGs. To validate our hypothesis, we reanalyzed 146 samples from this study, accessible on the SRA database, and employed Propensity Score Matching (PSM) to create a "virtual" control group with a statistically comparable age distribution to the HD gene-positive group. Our study underscores the adverse impact of using neurologically normal individuals over 75 as controls in gene differential expression analysis, resulting in false positives and negatives. We conclusively demonstrate that using such old controls leads to the misidentification of DEGs, detrimentally affecting the discovery of potential pharmaceutical and prognostic markers. This underscores the pivotal role of considering the age of control samples in RNA-Seq analysis and emphasizes its inclusion in evaluating best practices for such investigations. Although our primary focus is HD, our findings suggest that judiciously selecting age-appropriate control samples can significantly improve best practices in differential expression analysis.
Collapse
Affiliation(s)
- João Rafael Dias Pinto
- BioDecision Analytics Ltda., São Paulo, Brazil
- Post-Graduation Program in Structural and Functional Biology, Paulista School of Medicine (EPM), Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | | | | | - Irina Kerkis
- Genetics Laboratory, Instituto Butantan, São Paulo, Brazil
| | - Rodrigo Pinheiro Araldi
- BioDecision Analytics Ltda., São Paulo, Brazil
- Post-Graduation Program in Structural and Functional Biology, Paulista School of Medicine (EPM), Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| |
Collapse
|
8
|
Wang S, Fang X, Wen X, Yang C, Yang Y, Zhang T. Prioritization of risk genes for Alzheimer's disease: an analysis framework using spatial and temporal gene expression data in the human brain based on support vector machine. Front Genet 2023; 14:1190863. [PMID: 37867597 PMCID: PMC10587557 DOI: 10.3389/fgene.2023.1190863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/26/2023] [Indexed: 10/24/2023] Open
Abstract
Background: Alzheimer's disease (AD) is a complex disorder, and its risk is influenced by multiple genetic and environmental factors. In this study, an AD risk gene prediction framework based on spatial and temporal features of gene expression data (STGE) was proposed. Methods: We proposed an AD risk gene prediction framework based on spatial and temporal features of gene expression data. The gene expression data of providers of different tissues and ages were used as model features. Human genes were classified as AD risk or non-risk sets based on information extracted from relevant databases. Support vector machine (SVM) models were constructed to capture the expression patterns of genes believed to contribute to the risk of AD. Results: The recursive feature elimination (RFE) method was utilized for feature selection. Data for 64 tissue-age features were obtained before feature selection, and this number was reduced to 19 after RFE was performed. The SVM models were built and evaluated using 19 selected and full features. The area under curve (AUC) values for the SVM model based on 19 selected features (0.740 [0.690-0.790]) and full feature sets (0.730 [0.678-0.769]) were very similar. Fifteen genes predicted to be risk genes for AD with a probability greater than 90% were obtained. Conclusion: The newly proposed framework performed comparably to previous prediction methods based on protein-protein interaction (PPI) network properties. A list of 15 candidate genes for AD risk was also generated to provide data support for further studies on the genetic etiology of AD.
Collapse
Affiliation(s)
- Shiyu Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Xixian Fang
- Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Xiang Wen
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Beijing, China
| | - Congying Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Ying Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Tianxiao Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, China
- National Anti-Drug Laboratory Shaanxi Regional Center, Xi’an, China
| |
Collapse
|
9
|
Angelopoulou E, Pyrgelis ES, Ahire C, Suman P, Mishra A, Piperi C. Functional Implications of Protein Arginine Methyltransferases (PRMTs) in Neurodegenerative Diseases. BIOLOGY 2023; 12:1257. [PMID: 37759656 PMCID: PMC10525691 DOI: 10.3390/biology12091257] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
During the aging of the global population, the prevalence of neurodegenerative diseases will be continuously growing. Although each disorder is characterized by disease-specific protein accumulations, several common pathophysiological mechanisms encompassing both genetic and environmental factors have been detected. Among them, protein arginine methyltransferases (PRMTs), which catalyze the methylation of arginine of various substrates, have been revealed to regulate several cellular mechanisms, including neuronal cell survival and excitability, axonal transport, synaptic maturation, and myelination. Emerging evidence highlights their critical involvement in the pathophysiology of neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), frontotemporal dementia-amyotrophic lateral sclerosis (FTD-ALS) spectrum, Huntington's disease (HD), spinal muscular atrophy (SMA) and spinal and bulbar muscular atrophy (SBMA). Underlying mechanisms include the regulation of gene transcription and RNA splicing, as well as their implication in various signaling pathways related to oxidative stress responses, apoptosis, neuroinflammation, vacuole degeneration, abnormal protein accumulation and neurotransmission. The targeting of PRMTs is a therapeutic approach initially developed against various forms of cancer but currently presents a novel potential strategy for neurodegenerative diseases. In this review, we discuss the accumulating evidence on the role of PRMTs in the pathophysiology of neurodegenerative diseases, enlightening their pathogenesis and stimulating future research.
Collapse
Affiliation(s)
- Efthalia Angelopoulou
- 1st Department of Neurology, Medical School, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece; (E.A.); (E.-S.P.)
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Efstratios-Stylianos Pyrgelis
- 1st Department of Neurology, Medical School, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece; (E.A.); (E.-S.P.)
| | - Chetana Ahire
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, Kamrup 781101, Assam, India; (C.A.); (P.S.)
| | - Prachi Suman
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, Kamrup 781101, Assam, India; (C.A.); (P.S.)
| | - Awanish Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, Kamrup 781101, Assam, India; (C.A.); (P.S.)
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
10
|
Speidell A, Bin Abid N, Yano H. Brain-Derived Neurotrophic Factor Dysregulation as an Essential Pathological Feature in Huntington's Disease: Mechanisms and Potential Therapeutics. Biomedicines 2023; 11:2275. [PMID: 37626771 PMCID: PMC10452871 DOI: 10.3390/biomedicines11082275] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is a major neurotrophin whose loss or interruption is well established to have numerous intersections with the pathogenesis of progressive neurological disorders. There is perhaps no greater example of disease pathogenesis resulting from the dysregulation of BDNF signaling than Huntington's disease (HD)-an inherited neurodegenerative disorder characterized by motor, psychiatric, and cognitive impairments associated with basal ganglia dysfunction and the ultimate death of striatal projection neurons. Investigation of the collection of mechanisms leading to BDNF loss in HD highlights this neurotrophin's importance to neuronal viability and calls attention to opportunities for therapeutic interventions. Using electronic database searches of existing and forthcoming research, we constructed a literature review with the overarching goal of exploring the diverse set of molecular events that trigger BDNF dysregulation within HD. We highlighted research that investigated these major mechanisms in preclinical models of HD and connected these studies to those evaluating similar endpoints in human HD subjects. We also included a special focus on the growing body of literature detailing key transcriptomic and epigenetic alterations that affect BDNF abundance in HD. Finally, we offer critical evaluation of proposed neurotrophin-directed therapies and assessed clinical trials seeking to correct BDNF expression in HD individuals.
Collapse
Affiliation(s)
- Andrew Speidell
- Department of Neurological Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; (A.S.); (N.B.A.)
| | - Noman Bin Abid
- Department of Neurological Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; (A.S.); (N.B.A.)
| | - Hiroko Yano
- Department of Neurological Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; (A.S.); (N.B.A.)
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
11
|
Liu B, Li H, Zhou J, Wang L, Fang J, Pu Z, Xue T. LINC00943 regulates miR-1252-5p/YWHAH axis to promote tumor proliferation and metastasis in lung adenocarcinoma. Heliyon 2023; 9:e16736. [PMID: 37332930 PMCID: PMC10272330 DOI: 10.1016/j.heliyon.2023.e16736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/20/2023] Open
Abstract
Lung cancer is the most common malignant tumor worldwide. In recent years, the incidence of lung adenocarcinoma (LAD) has increased significantly, with an unfavorable 5-year survival rate. Long non-coding RNAs (lncRNAs) have been shown to play a significant role in the emergence, growth, and metastasis of tumors. However, the functional role and mechanism of LINC00943 in LAD progression have not yet been investigated. Aberrant expressions of LINC00943, miR-1252-5p, and YWHAH were determined by RT-qPCR and Western blot analyses. The binding relationship between miR-1252-5p and LINC00943 or YWHAH was examined by Pearson's correlation analysis, RNA pull-down, and dual-luciferase reporter assays. MTT assay was conducted to measure cell viability and colony formation assay was performed to evaluate cell proliferation potential. Transwell assay was used to investigate cell migration and invasion and flow cytometry was applied to evaluate cell apoptosis. We found that LINC00943 was highly expressed in LAD tissue samples and cell lines and was a reliable biomarker with high sensitivity, and specificity (P < 0.0001; AUC: 0.8966) for LAD detection. LINC00943 was mainly localized in the cytoplasm. In vitro, LINC00943 promoted LAD cell proliferation, migration, and invasion; however, silencing LINC00943 inhibited LAD tumor metastasis. Mechanistically, LINC00943 was competitively bound with miR-1252-5p to enhance YWHAH expression. Moreover, LINC00943 silencing sponged miR-1252-5p to inhibit YWHAH, thereby retraining LAD cell malignant behaviors. In summary, LINC00943 facilitates LAD cell malignancy through sponging miR-1252-5p to upregulate YWHAH. LINC00943 is a novel lncRNA that serves as an oncogene and might be used as a prognostic biomarker for LAD.
Collapse
|
12
|
Bhattacharjee S, Iyer EPR, Iyer SC, Nanda S, Rubaharan M, Ascoli GA, Cox DN. The Zinc-BED Transcription Factor Bedwarfed Promotes Proportional Dendritic Growth and Branching through Transcriptional and Translational Regulation in Drosophila. Int J Mol Sci 2023; 24:6344. [PMID: 37047316 PMCID: PMC10094446 DOI: 10.3390/ijms24076344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
Dendrites are the primary points of sensory or synaptic input to a neuron and play an essential role in synaptic integration and neural function. Despite the functional importance of dendrites, relatively less is known about the underlying mechanisms regulating cell type-specific dendritic patterning. Herein, we have dissected the functional roles of a previously uncharacterized gene, CG3995, in cell type-specific dendritic development in Drosophila melanogaster. CG3995, which we have named bedwarfed (bdwf), encodes a zinc-finger BED-type protein that is required for proportional growth and branching of dendritic arbors. It also exhibits nucleocytoplasmic expression and functions in both transcriptional and translational cellular pathways. At the transcriptional level, we demonstrate a reciprocal regulatory relationship between Bdwf and the homeodomain transcription factor (TF) Cut. We show that Cut positively regulates Bdwf expression and that Bdwf acts as a downstream effector of Cut-mediated dendritic development, whereas overexpression of Bdwf negatively regulates Cut expression in multidendritic sensory neurons. Proteomic analyses revealed that Bdwf interacts with ribosomal proteins and disruption of these proteins resulted in phenotypically similar dendritic hypotrophy defects as observed in bdwf mutant neurons. We further demonstrate that Bdwf and its ribosomal protein interactors are required for normal microtubule and F-actin cytoskeletal architecture. Finally, our findings reveal that Bdwf is required to promote protein translation and ribosome trafficking along the dendritic arbor. These findings shed light on the complex, combinatorial, and multi-functional roles of transcription factors (TFs) in directing the diversification of cell type-specific dendritic development.
Collapse
Affiliation(s)
| | | | | | - Sumit Nanda
- Center for Neural Informatics, Structures, and Plasticity, Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA 22030, USA
| | - Myurajan Rubaharan
- Neuroscience Institute, Georgia State University, Atlanta, GA 30302, USA
| | - Giorgio A. Ascoli
- Center for Neural Informatics, Structures, and Plasticity, Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA 22030, USA
| | - Daniel N. Cox
- Neuroscience Institute, Georgia State University, Atlanta, GA 30302, USA
| |
Collapse
|
13
|
Zhang X, Zhao Z, Wu Q, Wang L, Li L, Wang M, Ren Y, Pan L, Tang H, Li F. Single-cell analysis reveals changes in BCG vaccine-injected mice modeling tuberculous meningitis brain infection. Cell Rep 2023; 42:112177. [PMID: 36862557 DOI: 10.1016/j.celrep.2023.112177] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 09/28/2022] [Accepted: 02/13/2023] [Indexed: 03/03/2023] Open
Abstract
Tuberculous meningitis (TBM) is the most severe and deadly manifestation of tuberculosis. Neurological complications are observed in up to 50% of patients affected. Here, attenuated Mycobacterium bovis are injected into the cerebellum of mice, and histopathological images and cultured colonies confirm successful brain infection. Then, whole-brain tissue is dissected for 10X Genomics single-cell sequencing, and we acquire 15 cell types. Transcriptional changes of inflammation processes are found in multiple cell types. Specifically, Stat1 and IRF1 are shown to mediate inflammation in macrophages and microglia. For neurons, decreased oxidative phosphorylation activity in neurons is observed, which corresponds to TBM clinical symptoms of neurodegeneration. Finally, ependymal cells present prominent transcriptional changes, and decreased FERM domain containing 4A (Frmd4a) may contribute to TBM clinical symptoms of hydrocephalus and neurodegeneration. This study shows a single-cell transcriptome of M. bovis infection in mice and improves the understanding of brain infection and neurological complications in TBM.
Collapse
Affiliation(s)
- Xiaolin Zhang
- Department of Respiratory Disease and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Zhangyan Zhao
- Department of Respiratory Disease and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Qingguo Wu
- Department of Respiratory Disease and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Lei Wang
- Department of Respiratory Disease and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Liqun Li
- Department of Respiratory Disease and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Mei Wang
- Department of Respiratory Disease and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Yang Ren
- Department of Respiratory Disease and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Lei Pan
- Department of Respiratory Disease and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Haicheng Tang
- Department of Respiratory Disease and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China.
| | - Feng Li
- Department of Respiratory Disease and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China; Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China.
| |
Collapse
|
14
|
Bhattacharjee S, Iyer EPR, Iyer SC, Nanda S, Rubaharan M, Ascoli GA, Cox DN. The Zinc-BED transcription factor Bedwarfed promotes proportional dendritic growth and branching through transcriptional and translational regulation in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.15.528686. [PMID: 36824896 PMCID: PMC9948997 DOI: 10.1101/2023.02.15.528686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Dendrites are the primary points of sensory or synaptic inputs to a neuron and play an essential role in synaptic integration and neural function. Despite the functional importance of dendrites, relatively less is known about the underlying mechanisms regulating cell-type specific dendritic patterning. Herein, we have dissected functional roles of a previously uncharacterized gene, CG3995 , in cell-type specific dendritic development in Drosophila melanogaster . CG3995 , which we have named bedwarfed ( bdwf ), encodes a zinc-finger BED-type protein which is required for proportional growth and branching of dendritic arbors, exhibits nucleocytoplasmic expression, and functions in both transcriptional and translational cellular pathways. At the transcriptional level, we demonstrate a reciprocal regulatory relationship between Bdwf and the homeodomain transcription factor (TF) Cut. We show that Cut positively regulates Bdwf expression and that Bdwf acts as a downstream effector of Cut-mediated dendritic development, whereas overexpression of Bdwf negatively regulates Cut expression in multidendritic sensory neurons. Proteomic analyses revealed that Bdwf interacts with ribosomal proteins and disruption of these proteins produced phenotypically similar dendritic hypotrophy defects as observed in bdwf mutant neurons. We further demonstrate that Bdwf and its ribosomal protein interactors are required for normal microtubule and F-actin cytoskeletal architecture. Finally, our findings reveal that Bdwf is required to promote protein translation and ribosome trafficking along the dendritic arbor. Taken together, these results provide new insights into the complex, combinatorial and multi-functional roles of transcription factors (TFs) in directing diversification of cell-type specific dendritic development.
Collapse
Affiliation(s)
| | | | | | - Sumit Nanda
- Center for Neural Informatics, Structures, & Plasticity, Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA, 22030, USA
| | | | - Giorgio A. Ascoli
- Center for Neural Informatics, Structures, & Plasticity, Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA, 22030, USA
| | - Daniel N. Cox
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
15
|
Roshan SA, Elangovan G, Gunaseelan D, Jayachandran SK, Kandasamy M, Anusuyadevi M. Pathogenomic Signature and Aberrant Neurogenic Events in Experimental Cerebral Ischemic Stroke: A Neurotranscriptomic-Based Implication for Dementia. J Alzheimers Dis 2023; 94:S289-S308. [PMID: 36776051 PMCID: PMC10473090 DOI: 10.3233/jad-220831] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2022] [Indexed: 02/12/2023]
Abstract
BACKGROUND Cerebral ischemic stroke is caused due to neurovascular damage or thrombosis, leading to neuronal dysfunction, neuroinflammation, neurodegeneration, and regenerative failure responsible for neurological deficits and dementia. The valid therapeutic targets against cerebral stroke remain obscure. Thus, insight into neuropathomechanisms resulting from the aberrant expression of genes appears to be crucial. OBJECTIVE In this study, we have elucidated how neurogenesis-related genes are altered in experimental stroke brains from the available transcriptome profiles in correlation with transcriptome profiles of human postmortem stroke brain tissues. METHODS The transcriptome datasets available on the middle cerebral artery occlusion (MCAo) rat brains were obtained from the Gene Expression Omnibus, National Center for Biotechnology Information. Of the available datasets, 97 samples were subjected to the meta-analysis using the network analyst tool followed by Cytoscape-based enrichment mapping analysis. The key differentially expressed genes (DEGs) were validated and compared with transcriptome profiling of human stroke brains. RESULTS Results revealed 939 genes are differently expressed in the brains of the MCAo rat model of stroke, in which 30 genes are key markers of neural stem cells, and regulators of neurogenic processes. Its convergence with DEGs from human stroke brains has revealed common targets. CONCLUSION This study has established a panel of highly important DEGs to signify the potential therapeutic targets for neuroregenerative strategy against pathogenic events associated with cerebral stroke. The outcome of the findings can be translated to mitigate neuroregeneration failure seen in various neurological and metabolic disease manifestations with neurocognitive impairments.
Collapse
Affiliation(s)
- Syed Aasish Roshan
- Molecular Neuro-Gerontology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Gayathri Elangovan
- Molecular Neuro-Gerontology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Dharani Gunaseelan
- Molecular Neuro-Gerontology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Swaminathan K. Jayachandran
- Drug Discovery and Molecular Cardiology Laboratory, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Mahesh Kandasamy
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
- University Grants Commission-Faculty Recharge Program (UGC-FRP), New Delhi, India
| | - Muthuswamy Anusuyadevi
- Molecular Neuro-Gerontology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| |
Collapse
|
16
|
Pellegrini M, Bergonzoni G, Perrone F, Squitieri F, Biagioli M. Current Diagnostic Methods and Non-Coding RNAs as Possible Biomarkers in Huntington's Disease. Genes (Basel) 2022; 13:2017. [PMID: 36360254 PMCID: PMC9689996 DOI: 10.3390/genes13112017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
Whether as a cause or a symptom, RNA transcription is recurrently altered in pathologic conditions. This is also true for non-coding RNAs, with regulatory functions in a variety of processes such as differentiation, cell identity and metabolism. In line with their increasingly recognized roles in cellular pathways, RNAs are also currently evaluated as possible disease biomarkers. They could be informative not only to follow disease progression and assess treatment efficacy in clinics, but also to aid in the development of new therapeutic approaches. This is especially important for neurological and genetic disorders, where the administration of appropriate treatment during the disease prodromal stage could significantly delay, if not halt, disease progression. In this review we focus on the current status of biomarkers in Huntington's Disease (HD), a fatal hereditary and degenerative disease condition. First, we revise the sources and type of wet biomarkers currently in use. Then, we explore the feasibility of different RNA types (miRNA, ncRNA, circRNA) as possible biomarker candidates, discussing potential advantages, disadvantages, sources of origin and the ongoing investigations on this topic.
Collapse
Affiliation(s)
- Miguel Pellegrini
- Department of Cellular, Computational and Integrative Biology, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Guendalina Bergonzoni
- Department of Cellular, Computational and Integrative Biology, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Federica Perrone
- Huntington and Rare Diseases Unit, IRCCS Casa Sollievo Della Sofferenza Research Hospital, Viale Cappuccini, 71013 San Giovanni Rotondo, Italy
| | - Ferdinando Squitieri
- Huntington and Rare Diseases Unit, IRCCS Casa Sollievo Della Sofferenza Research Hospital, Viale Cappuccini, 71013 San Giovanni Rotondo, Italy
| | - Marta Biagioli
- Department of Cellular, Computational and Integrative Biology, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| |
Collapse
|
17
|
Zhang Y, Niu C. Relation of CDC42, Th1, Th2, and Th17 cells with cognitive function decline in Alzheimer's disease. Ann Clin Transl Neurol 2022; 9:1428-1436. [PMID: 35976992 PMCID: PMC9463943 DOI: 10.1002/acn3.51643] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/24/2022] [Accepted: 07/28/2022] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE Cell division cycle 42 (CDC42) regulates neurite outgrowth, neurotransmitter, and T help (Th) cell-mediated neuroinflammation, while its clinical implication in Alzheimer's disease (AD) is not clear. The present study aimed to investigate the correlation of CDC42 with Th1, Th2, and Th17 cells, as well as CDC42' longitudinal change and relation to cognitive function decline in AD patients. METHODS 150 AD patients were enrolled, then their blood Th1, Th2, and Th17 cells were quantified by flow cytometry at baseline; CDC42 was detected by RT-qPCR and MMSE score was assessed at baseline and during 3-year follow-up. Meanwhile, CDC42, Th1, Th2, and Th17 cells were quantified in 30 Parkinson's disease (PD) patients and 30 healthy controls (HCs). RESULTS CDC42 (p < 0.001) and Th2 cells (p < 0.001) were lowest in AD patients, followed by PD patients, highest in HCs; but Th1 cells (p = 0.001) and Th17 cells (p < 0.001) showed opposite trends. CDC42 was not related to Th1 cells (p = 0.134), positively correlated with Th2 cells (p = 0.023) and MMSE (p < 0.001), while negatively associated with Th17 cells (p < 0.001) in AD patients. CDC42 was only related to Th17 cells (p = 0.048) and MMSE (p = 0.048) in PD patients; and it was not linked with Th1, Th2, Th17 cells, or MMSE in HCs (all p > 0.05). During a 3-year follow-up, CDC42 was gradually declined in AD patients (p < 0.001), its decline was positively correlated with MMSE decline at 1 year (p = 0.004), 2 years (p = 0.005), and 3 years (p = 0.026). INTERPRETATION CDC42 might have the potency to serve as a biomarker for estimating AD risk and progression.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Neurology, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Chenglin Niu
- Department of ICU, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
18
|
Seefelder M, Klein FAC, Landwehrmeyer B, Fernández-Busnadiego R, Kochanek S. Huntingtin and Its Partner Huntingtin-Associated Protein 40: Structural and Functional Considerations in Health and Disease. J Huntingtons Dis 2022; 11:227-242. [PMID: 35871360 PMCID: PMC9484127 DOI: 10.3233/jhd-220543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Since the discovery of the mutation causing Huntington’s disease (HD) in 1993, it has been debated whether an expanded polyglutamine (polyQ) stretch affects the properties of the huntingtin (HTT) protein and thus contributes to the pathological mechanisms responsible for HD. Here we review the current knowledge about the structure of HTT, alone (apo-HTT) or in a complex with Huntingtin-Associated Protein 40 (HAP40), the influence of polyQ-length variation on apo-HTT and the HTT-HAP40 complex, and the biology of HAP40. Phylogenetic analyses suggest that HAP40 performs essential functions. Highlighting the relevance of its interaction with HTT, HAP40 is one of the most abundant partners copurifying with HTT and is rapidly degraded, when HTT levels are reduced. As the levels of both proteins decrease during disease progression, HAP40 could also be a biomarker for HD. Whether declining HAP40 levels contribute to disease etiology is an open question. Structural studies have shown that the conformation of apo-HTT is less constrained but resembles that adopted in the HTT-HAP40 complex, which is exceptionally stable because of extensive interactions between HAP40 and the three domains of HTT. The complex— and to some extent apo-HTT— resists fragmentation after limited proteolysis. Unresolved regions of apo-HTT, constituting about 25% of the protein, are the main sites of post-translational modifications and likely have major regulatory functions. PolyQ elongation does not substantially alter the structure of HTT, alone or when associated with HAP40. Particularly, polyQ above the disease length threshold does not induce drastic conformational changes in full-length HTT. Therefore, models of HD pathogenesis stating that polyQ expansion drastically alters HTT properties should be reconsidered.
Collapse
Affiliation(s)
| | | | | | - Rubén Fernández-Busnadiego
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | | |
Collapse
|
19
|
Kim C, Yousefian-Jazi A, Choi SH, Chang I, Lee J, Ryu H. Non-Cell Autonomous and Epigenetic Mechanisms of Huntington's Disease. Int J Mol Sci 2021; 22:12499. [PMID: 34830381 PMCID: PMC8617801 DOI: 10.3390/ijms222212499] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 02/06/2023] Open
Abstract
Huntington's disease (HD) is a rare neurodegenerative disorder caused by an expansion of CAG trinucleotide repeat located in the exon 1 of Huntingtin (HTT) gene in human chromosome 4. The HTT protein is ubiquitously expressed in the brain. Specifically, mutant HTT (mHTT) protein-mediated toxicity leads to a dramatic degeneration of the striatum among many regions of the brain. HD symptoms exhibit a major involuntary movement followed by cognitive and psychiatric dysfunctions. In this review, we address the conventional role of wild type HTT (wtHTT) and how mHTT protein disrupts the function of medium spiny neurons (MSNs). We also discuss how mHTT modulates epigenetic modifications and transcriptional pathways in MSNs. In addition, we define how non-cell autonomous pathways lead to damage and death of MSNs under HD pathological conditions. Lastly, we overview therapeutic approaches for HD. Together, understanding of precise neuropathological mechanisms of HD may improve therapeutic approaches to treat the onset and progression of HD.
Collapse
Affiliation(s)
- Chaebin Kim
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea; (C.K.); (A.Y.-J.); (S.-H.C.)
| | - Ali Yousefian-Jazi
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea; (C.K.); (A.Y.-J.); (S.-H.C.)
| | - Seung-Hye Choi
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea; (C.K.); (A.Y.-J.); (S.-H.C.)
| | - Inyoung Chang
- Department of Biology, Boston University, Boston, MA 02215, USA;
| | - Junghee Lee
- Boston University Alzheimer’s Disease Research Center, Boston University, Boston, MA 02118, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA
- VA Boston Healthcare System, Boston, MA 02130, USA
| | - Hoon Ryu
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea; (C.K.); (A.Y.-J.); (S.-H.C.)
| |
Collapse
|
20
|
Huang B, Seefelder M, Buck E, Engler T, Lindenberg KS, Klein F, Landwehrmeyer GB, Kochanek S. HAP40 protein levels are huntingtin-dependent and decrease in Huntington disease. Neurobiol Dis 2021; 158:105476. [PMID: 34390835 DOI: 10.1016/j.nbd.2021.105476] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 07/08/2021] [Accepted: 08/09/2021] [Indexed: 12/01/2022] Open
Abstract
The huntingtin-associated protein 40 (HAP40) is an abundant interactor of huntingtin (HTT). In complexes of these proteins, HAP40 tightly binds to HTT in a cleft formed by two larger domains rich in HEAT repeats, and a smaller bridge domain connecting the two. We show that HAP40 steady-state protein levels are directly dependent on HTT (both normal and mutant HTT) and that HAP40 is strongly stabilized by the interaction with HTT resulting in an at least 5-fold increase in HAP40's half-life when bound to HTT. Cellular HAP40 protein levels were reduced in primary fibroblasts and lymphoblasts of Huntington Disease (HD) patients and in brain tissue of a full-length HTT mouse model of HD, concomitant with decreased soluble HTT levels in these cell types. This data and our previous demonstration of coevolution between HTT and HAP40 and evolutionary conservation of their interaction suggest that HAP40 is an obligate interaction partner of HTT. Our observation of reduced HAP40 levels in HD invites further studies, whether HAP40 loss-of-function contributes to the pathophysiology of HD.
Collapse
Affiliation(s)
- Bin Huang
- Department of Gene Therapy, Ulm University, 89081 Ulm, Germany
| | | | - Eva Buck
- Department of Neurology, Ulm University, 89081 Ulm, Germany
| | - Tatjana Engler
- Department of Gene Therapy, Ulm University, 89081 Ulm, Germany
| | | | - Fabrice Klein
- Department of Neurology, Ulm University, 89081 Ulm, Germany
| | | | - Stefan Kochanek
- Department of Gene Therapy, Ulm University, 89081 Ulm, Germany.
| |
Collapse
|