1
|
Khelidj N, Balestra S, Caccianiga MS, Cerabolini BEL, Tampucci D, Losapio G. Plants' Contributions to People Shift With Glacier Extinction. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2025; 6:e70041. [PMID: 40255938 PMCID: PMC12006824 DOI: 10.1002/pei3.70041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 04/22/2025]
Abstract
Alpine environments are among the most vulnerable ecosystems to climate change, with glacier retreat rapidly altering plant communities, biodiversity, and ecosystem functions. However, the socio-economic consequences of these biodiversity changes remain largely unexplored. Understanding Nature's Contributions to People (NCP) provides a valuable framework for assessing biodiversity's role in human well-being. While NCP has typically been studied at the landscape level, we focus on species-specific contributions of plants to highlight the importance of glacial biodiversity for people. Our novel concept of Plants' Contributions to People (PCP) provides insights into the ecological, social, and economic significance of plant biodiversity and offers a practical approach for guiding conservation efforts and policy decisions. We surveyed 99 plant species in four glacier environments in the Italian Alps; one glacier (Trobio) underwent a complete extinction in 2023 while another glacier (Amola) has a widespread surface debris cover and is proximate to extinction. We then grouped plant species into early, intermediate, and late depending on their successional stages, and then linked plants to 13 different PCP based on extensive literature research. By comparing present and projected future scenarios, we assessed the absolute and relative changes in PCP under glacier extinction. Our results show that changes in PCP are primarily driven by declining plant species richness. Most affected PCP are associated with air quality, soil health, and nutrient regulation, which decrease by sevenfold on average across plant species. Whereas natural hazards regulation showed no significant variation, association with pest and disease increases especially for late species. While future plant communities may provide PCP that are qualitatively similar to present-day communities, the volume of species-specific contributions would decrease due to biodiversity loss associated with glacier extinction. Our results provide the first evidence of PCP shift toward erosion following a decrease in plant species richness. This case study demonstrates that PCP is a valuable tool for assessing the ecological and socio-economic consequences of biodiversity change, helping raise awareness of the biodiversity crisis and inform conservation actions aimed at sustaining ecosystem functions in a rapidly changing world.
Collapse
Affiliation(s)
- N. Khelidj
- Institute of Earth Surface Dynamics, Faculty of Geosciences and EnvironmentUniversity of LausanneLausanneSwitzerland
| | - S. Balestra
- Department of BiosciencesUniversity of MilanMilanItaly
| | | | - B. E. L. Cerabolini
- Department of Biotechnologies and Life SciencesUniversity of InsubriaVareseItaly
| | - D. Tampucci
- Department of BiosciencesUniversity of MilanMilanItaly
| | - G. Losapio
- Institute of Earth Surface Dynamics, Faculty of Geosciences and EnvironmentUniversity of LausanneLausanneSwitzerland
- Department of BiosciencesUniversity of MilanMilanItaly
| |
Collapse
|
2
|
Cheng Z, Lin S, Wu Z, Lin C, Zhang Q, Xu C, Li J, Long C. Study on medicinal food plants in the Gaoligongshan Biosphere Reserve, the richest biocultural diversity center in China. JOURNAL OF ETHNOBIOLOGY AND ETHNOMEDICINE 2024; 20:10. [PMID: 38225656 PMCID: PMC10790445 DOI: 10.1186/s13002-023-00638-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/13/2023] [Indexed: 01/17/2024]
Abstract
BACKGROUND Traditional knowledge associated with medicinal food plants (MFPs) plays a vital role in fighting hidden hunger and safeguarding the health of local people. MFPs resources are abundant in the Gaoligongshan area, a biosphere reserve with the richest biocultural diversity in China. Local people of different linguistic groups also have rich traditional botanical knowledge. However, there are still few comprehensive and systematic studies on MFPs there. METHODS Ethnobotanical investigation including market survey, semi-structured interviews, free listing and key informant interviews was conducted in the Gaoligongshan area, Western Yunnan, Southwest China. A total of 13 local farmers' markets were selected and information about medicinal food plants, including food categories, medicinal and edible parts, modes of consumption, medicinal effects, and distribution were collected. The relative occurrence frequency (RFO) and cultural food significance index (CFSI) were calculated to identify the culturally significant MFPs. RESULTS A total of 184 species of MFPs, belonging to 83 families, were collected in the Gaoligongshan area, including vegetables (77), medicinal diets (26), fruits (25), spices (18), herbal tea (13), tea substitutes (11), substitutes for staple food (8), nuts (5), oils and fats (4), and dye material (1). The most frequently used families were Fabaceae, Asteraceae and Apiaceae, with 11, 10, and 9 species, respectively. The most frequently used plant parts were the stems, followed by fruits and leaves. Based on the evaluation results of the CFSI and RFO indices, 18 species of MFPs with magnificent local cultural importance have been screened out, such as Houttuynia cordata, Eryngium foetidum, Sechium edule, Centella asiatica and Pseudocydonia sinensis. CONCLUSION These findings have guiding significance for conservation of traditional knowledge associated with MFPs and facilitation of scientific utilization of MFPs to meet local people's needs for a healthy life.
Collapse
Affiliation(s)
- Zhuo Cheng
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission of China, Beijing, 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Shuyan Lin
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Ziyi Wu
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Chen Lin
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission of China, Beijing, 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Qing Zhang
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission of China, Beijing, 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Congli Xu
- Yunnan Gaoligongshan National Nature Reserve (Baoshan Bureau), Yunnan, 678000, China
| | - Jiahua Li
- Yunnan Gaoligongshan National Nature Reserve (Longyang Branch of Baoshan Bureau), Yunnan, 678000, China
| | - Chunlin Long
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission of China, Beijing, 100081, China.
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China.
- Institute of National Security Studies, Minzu University of China, Beijing, 100081, China.
| |
Collapse
|
3
|
Gepts P. Biocultural diversity and crop improvement. Emerg Top Life Sci 2023; 7:151-196. [PMID: 38084755 PMCID: PMC10754339 DOI: 10.1042/etls20230067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/30/2023]
Abstract
Biocultural diversity is the ever-evolving and irreplaceable sum total of all living organisms inhabiting the Earth. It plays a significant role in sustainable productivity and ecosystem services that benefit humanity and is closely allied with human cultural diversity. Despite its essentiality, biodiversity is seriously threatened by the insatiable and inequitable human exploitation of the Earth's resources. One of the benefits of biodiversity is its utilization in crop improvement, including cropping improvement (agronomic cultivation practices) and genetic improvement (plant breeding). Crop improvement has tended to decrease agricultural biodiversity since the origins of agriculture, but awareness of this situation can reverse this negative trend. Cropping improvement can strive to use more diverse cultivars and a broader complement of crops on farms and in landscapes. It can also focus on underutilized crops, including legumes. Genetic improvement can access a broader range of biodiversity sources and, with the assistance of modern breeding tools like genomics, can facilitate the introduction of additional characteristics that improve yield, mitigate environmental stresses, and restore, at least partially, lost crop biodiversity. The current legal framework covering biodiversity includes national intellectual property and international treaty instruments, which have tended to limit access and innovation to biodiversity. A global system of access and benefit sharing, encompassing digital sequence information, would benefit humanity but remains an elusive goal. The Kunming-Montréal Global Biodiversity Framework sets forth an ambitious set of targets and goals to be accomplished by 2030 and 2050, respectively, to protect and restore biocultural diversity, including agrobiodiversity.
Collapse
Affiliation(s)
- Paul Gepts
- Department of Plant Sciences, Section of Crop and Ecosystem Sciences, University of California, Davis, CA 95616-8780, U.S.A
| |
Collapse
|
4
|
Zhang Q, Cheng Z, Fan Y, Zhang D, Wang M, Zhang J, Sommano S, Wu X, Long C. Ethnobotanical study on edible flowers in Xishuangbanna, China. JOURNAL OF ETHNOBIOLOGY AND ETHNOMEDICINE 2023; 19:43. [PMID: 37777741 PMCID: PMC10542681 DOI: 10.1186/s13002-023-00608-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 08/24/2023] [Indexed: 10/02/2023]
Abstract
BACKGROUND Edible flowers (EFs) represent valuable sources of both food and medicinal resources, holding the promise to enhance human well-being. Unfortunately, their significance is often overlooked. Ethnobotanical studies on the EFs are lacking in comparison with their botanical and phytochemical research. The practice of consuming flowers as food has a rich culture and long history in China, especially among different linguistic groups in Xishuangbanna, Yunnan. However, economic activities have led to a decline of this tradition. Consequently, preserving the traditional knowledge and culture tied to the EFs in Xishuangbanna becomes both essential and pressing. METHODS The field ethnobotanical survey was conducted in Xishuangbanna during five visits in April 2021 and May 2023, covering 48 villages and 19 local markets of all three county-level areas and 9 different linguistic groups. By conducting a comprehensive literature review and on-site field surveys, relevant information regarding the EFs of Xishuangbanna was systematically collected and documented. Additionally, the relative frequency of citation (RFC) values were calculated from the survey data. RESULTS A total of 212 taxa (including species and varieties) of EFs from 58 families and 141 genera were documented in the study area. The edible parts of flowers were classified into 13 categories including peduncle, petal, flower buds, inflorescence as a whole, and etc. They were consumed in 21 ways and as 8 types of food. The inflorescence was the most commonly consumed category, accounting for 85 species (40.1%) of the total categories. They always eat flowers as vegetables (184 species, 86.8%). The preparing form of stir-frying was the preferred food preparation method (138, 65.1%). The Xishuangbanna locals had profound knowledge of which EFs required specific processing to remove their toxicity or bitterness. The dishes can be made from either exclusively from the flowers themselves or by incorporating them alongside other plant parts like stems and leaves. Some EFs with high RFC value, such as Musa acuminata and Bauhinia variegata var. candida, showed significant cultural meanings. These edible flowers occupy specific positions in local traditional culture. CONCLUSION Traditional knowledge regarding edible flowers holds substantial significance and serves as a representative element of the flower-eating culture in Xishuangbanna. Nevertheless, this knowledge and cultural practice are currently decreasing. Serving as a bridge between tradition and modernity, the flower-eating culture, which derives from local people's practical experience, shows the potential of EFs and can be applied to the conservation of biocultural diversity, healthy food systems, and sustainable development.
Collapse
Affiliation(s)
- Qing Zhang
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Zhuo Cheng
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Yanxiao Fan
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Dezheng Zhang
- School of Ethnology and Sociology, Yunnan University, Kunming, 650091, China
| | - Miaomiao Wang
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, 100081, China
| | - Jihai Zhang
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, 100081, China
| | - Sarana Sommano
- Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Xianjin Wu
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, College of Biological and Food Engineering, Huaihua University, Huaihua, 418000, China.
| | - Chunlin Long
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China.
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China.
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, 100081, China.
- Institute of National Security Studies, Minzu University of China, Beijing, 100081, China.
| |
Collapse
|
5
|
Rey PL, Vittoz P, Petitpierre B, Adde A, Guisan A. Linking plant and vertebrate species to Nature's Contributions to People in the Swiss Alps. Sci Rep 2023; 13:7312. [PMID: 37147401 PMCID: PMC10163046 DOI: 10.1038/s41598-023-34236-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 04/26/2023] [Indexed: 05/07/2023] Open
Abstract
Since the late 1990s, Nature's Contributions to People (NCPs; i.e. ecosystem services) were used as a putative leverage for fostering nature preservation. NCPs have largely been defined and mapped at the landscape level using land use and cover classifications. However, NCP mapping attempts based directly on individual species are still uncommon. Given that species shape ecosystems and ultimately deliver NCPs, mapping NCPs based on species distribution data should deliver highly meaningful results. This requires first establishing a census of the species-to-NCP relationships. However, datasets quantifying these relationships across several species and NCPs are rare. Here, we fill this gap by compiling literature and expert knowledge to establish the relationships of 1816 tracheophyte and 250 vertebrate species with 17 NCPs in the Swiss Alps. We illustrated the 31,098 identified species-NCP relationships for the two lineages and discuss why such a table is a key initial step in building spatial predictions of NCPs directly from species data, e.g. to ultimately complement spatial conservation planning.
Collapse
Affiliation(s)
- Pierre-Louis Rey
- Institute of Earth Surface Dynamics, Faculty of Geosciences and Environment, University of Lausanne, Lausanne, Switzerland.
| | - Pascal Vittoz
- Institute of Earth Surface Dynamics, Faculty of Geosciences and Environment, University of Lausanne, Lausanne, Switzerland
| | - Blaise Petitpierre
- Info Flora, c/o Conservatoire et Jardin botaniques de Genève, Chambésy-Genève, Switzerland
| | - Antoine Adde
- Institute of Earth Surface Dynamics, Faculty of Geosciences and Environment, University of Lausanne, Lausanne, Switzerland
| | - Antoine Guisan
- Institute of Earth Surface Dynamics, Faculty of Geosciences and Environment, University of Lausanne, Lausanne, Switzerland
- Department of Ecology and Evolution, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|