1
|
Swarnakar R, Sahu D, Bahinipati J, Pradhan T, Meher D, Sarangi R, Mahapatra S. The significance of ANGPTL3 and ANGPTL4 proteins in the development of dyslipidemia in Type 2 diabetes mellitus. J Family Med Prim Care 2025; 14:947-953. [PMID: 40256107 PMCID: PMC12007761 DOI: 10.4103/jfmpc.jfmpc_1256_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/04/2024] [Accepted: 10/15/2024] [Indexed: 04/22/2025] Open
Abstract
Background Dyslipidemia is the leading cause of cardiovascular disease (CVD) in Type 2 diabetes mellitus patients. As a result, it is critical to target and manage the level of atherogenic lipids. Angiopoietin-like proteins 3 and 4 (ANGPTL 3 and ANGPTL 4) play an important role in the intravascular lipolysis of triglyceride-rich lipoproteins by blocking the enzyme lipoprotein lipase. This study aimed to determine the amounts of these angiopoietin-like proteins in T2DM and find their association with dyslipidemia in T2DM. Material and Methods Sixty-one T2DM patients of age group 25-65 years and 27 healthy age-matched control participants were enrolled in the study. Glycemic status (FBS, PPBS, HbA1C), serum lipid parameters (cholesterol, TG, LDL, VLDL, HDL, Tc/HDL ratio), free fatty acid, serum insulin, and ANGPTL3, 4 were measured. A correlation was found between the ANGPTLs and the above parameters in T2DM patients. Results Serum ANGPTL3 (P < 0.05) and ANGPTL4 (P < 0.001) were significantly decreased in T2DM. ANGPTL4 was also negatively correlated to PPBS (0.03), HbA1C (P = 0.05), and IR (P = 0.04). However, no such correlation was observed with ANGPTL 3. It was observed that lipid parameters were correlated with ANGPTL3 (LDL (P = 0.03), TC/HDL (P = 0.02)). There was a significant relationship between ANGPTL3 and 4 with FFA (P = 0.001 and P = 0.03, respectively). Conclusion This study shows that ANGPTL 3,4 may be associated with dyslipidemia in T2DM. ANGPTL4 is more correlated with glycemic status.
Collapse
Affiliation(s)
- Rik Swarnakar
- Department of Biochemistry, Kalinga Institute of Medical Sciences, Bhubaneswar, Odisha, India
| | - Debadyuti Sahu
- Department of Biochemistry, BSSCCRI, Bhubaneswar, Odisha, India
| | - Jyotirmayee Bahinipati
- Department of Biochemistry, Kalinga Institute of Medical Sciences, Bhubaneswar, Odisha, India
| | - Tapaswini Pradhan
- Department of Biochemistry, Kalinga Institute of Medical Sciences, Bhubaneswar, Odisha, India
| | - Dayanidhi Meher
- Department of Endocrinology, Kalinga Institute of Medical Sciences, Bhubaneswar, Odisha, India
| | - Rajlaxmi Sarangi
- Department of Biochemistry, Kalinga Institute of Medical Sciences, Bhubaneswar, Odisha, India
| | - Srikrushna Mahapatra
- Department of Biochemistry, Kalinga Institute of Medical Sciences, Bhubaneswar, Odisha, India
| |
Collapse
|
2
|
Chan DC, Watts GF. Inhibition of the ANGPTL3/8 Complex for the Prevention and Treatment of Atherosclerotic Cardiovascular Disease. Curr Atheroscler Rep 2024; 27:6. [PMID: 39565562 DOI: 10.1007/s11883-024-01254-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2024] [Indexed: 11/21/2024]
Abstract
PURPOSE OF REVIEW Dyslipidemia is a casual risk factor for atherosclerotic cardiovascular disease (ASCVD). There is an unmet need for more effective treatments for patients with dyslipidemias. Angiopoietin-like protein 3 (ANGPTL3) and ANGPTL8 play key roles in triglyceride trafficking and energy balance in humans. We review the functional role of these ANGPTL proteins in the regulation of lipoprotein metabolism, and recent clinical trials targeting ANGPTL3 and ANGPTL3/8 with monoclonal antibody and/or nucleic acid therapies, including antisense oligonucleotides and small interfering RNA. RECENT FINDINGS Cumulative evidence supports the roles of ANGPTL3 and ANGPTL8 in lipid metabolism through inhibition of lipoprotein lipase and endothelial lipase activity. ANGPTL3 and ANGPTL3/8 inhibitors are effective in lowering plasma triglycerides and low-density lipoprotein (LDL)-cholesterol, with the possible advantage of raising high-density lipoprotein (HDL)-cholesterol with the inhibition of ANGPTL3/8. Therapeutic inhibition of ANGPTL3 and ANGPTL3/8 can lower plasma triglyceride and LDL-cholesterol levels possibly by lowering production and upregulating catabolism of triglyceride-rich lipoprotein and LDL particles. However, the effect of these novel agents on HDL metabolism remains unclear. The cardiovascular benefits of ANGPTL3 and ABGPTL3/8 inhibitors may also include improvement in vascular inflammation, but this requires further investigation.
Collapse
Affiliation(s)
- Dick C Chan
- Medical School, University of Western Australia, Perth, Australia
| | - Gerald F Watts
- Medical School, University of Western Australia, Perth, Australia.
- Department of Cardiology and Internal Medicine, Royal Perth Hospital, Perth, Australia.
| |
Collapse
|
3
|
Gato S, García-Fernández V, Gil-Gómez A, Rojas Á, Montero-Vallejo R, Muñoz-Hernández R, Romero-Gómez M. Navigating the Link Between Non-alcoholic Fatty Liver Disease/Non-alcoholic Steatohepatitis and Cardiometabolic Syndrome. Eur Cardiol 2024; 19:e03. [PMID: 38807856 PMCID: PMC11131154 DOI: 10.15420/ecr.2023.26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 12/27/2023] [Indexed: 05/30/2024] Open
Abstract
The global prevalence of non-alcoholic fatty liver disease (NAFLD) is nearly 25% and is increasing rapidly. The spectrum of liver damage in NAFLD ranges from simple steatosis to non-alcoholic steatohepatitis, characterised by the presence of lobular inflammation and hepatocyte ballooning degeneration, with or without fibrosis, which can further develop into cirrhosis and hepatocellular carcinoma. Not only is NAFLD a progressive liver disease, but numerous pieces of evidence also point to extrahepatic consequences. Accumulating evidence suggests that patients with NAFLD are also at increased risk of cardiovascular disease (CVD); in fact, CVDs are the most common cause of mortality in patients with NAFLD. Obesity, type 2 diabetes and higher levels of LDL are common risk factors in both NAFLD and CVD; however, how NAFLD affects the development and progression of CVD remains elusive. In this review, we comprehensively summarise current data on the key extrahepatic manifestations of NAFLD, emphasising the possible link between NAFLD and CVD, including the role of proprotein convertase substilisin/kenin type 9, extracellular vesicles, microbiota, and genetic factors.
Collapse
Affiliation(s)
- Sheila Gato
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de SevillaSeville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD)Madrid, Spain
| | - Vanessa García-Fernández
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de SevillaSeville, Spain
| | - Antonio Gil-Gómez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de SevillaSeville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD)Madrid, Spain
| | - Ángela Rojas
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de SevillaSeville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD)Madrid, Spain
| | - Rocío Montero-Vallejo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de SevillaSeville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD)Madrid, Spain
| | - Rocío Muñoz-Hernández
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de SevillaSeville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD)Madrid, Spain
- Departamento de Fisiología, Facultad de Biología, Universidad de SevillaSeville, Spain
| | - Manuel Romero-Gómez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de SevillaSeville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD)Madrid, Spain
- Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen del RocíoSeville, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad de SevillaSeville, Spain
| |
Collapse
|
4
|
Wong Chong E, Joncas FH, Douville P, Bachvarov D, Diorio C, Calon F, Bergeron AC, Blais J, Leung SOA, Seidah NG, Gangloff A. Pre-operative levels of angiopoietin protein-like 3 (ANGPTL3) in women diagnosed with high-grade serous carcinoma of the ovary. Lipids Health Dis 2024; 23:59. [PMID: 38414008 PMCID: PMC10898078 DOI: 10.1186/s12944-024-02038-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/02/2024] [Indexed: 02/29/2024] Open
Abstract
Cancer cells need constant supplies of lipids to survive and grow. Lipid dependence has been observed in various types of cancer, including high-grade serous ovarian carcinomas (HGSOC), which is a lethal form of gynecological malignancy. ANGPTL3, PCSK9, and Apo CIII are pivotal lipid-modulating factors, and therapeutic antibodies have been developed against each one (Evinacumab, Evolocumab and Volanesorsen, respectively). The roles -if any- of ANGPTL3, PCSK9, and Apo CIII in HGSOC are unclear. Moreover, levels of these lipid-modulating factors have never been reported before in HGSOC. In this study, circulating levels of ANGPTL3, PCSK9, and Apo CIII, along with lipid profiles, are examined to verify whether one or many of these lipid-regulating factors are associated with HGSOC. Methods ELISA kits were used to measure ANGPTL3, PCSK9 and Apo CIII levels in plasma samples from 31 women with HGSOC and 40 women with benign ovarian lesions (BOL) before treatment and surgery. A Roche Modular analytical platform measured lipid panels, Apo B and Lp(a) levels.Results ANGPTL3 levels were higher in women with HGSOC (84 ng/mL, SD: 29 ng/mL, n = 31) than in women with BOL (67 ng/mL, SD: 31 ng/mL, n = 40; HGSOC vs. BOL P = 0.019). Associations between the lipid panel and ANGPTL3, and the inverse relationship between HDL-cholesterol and triglycerides, were present in women with BOL but not with HGSOC. PCSK9 and Apo CIII were not associated with HGSOC.Conclusions In this cohort of 71 women, ANGPTL3 levels were increased in HGSOC patients. The presence of HGSOC disrupted the classic inverse relationship between HDL and triglycerides, as well as the association between the lipid panel and ANGPTL3. These associations were only maintained in cancer-free women. Given the availability of Evinacumab, a therapeutic antibody against ANGPTL3, the current finding prompts an assessment of whether ANGPTL3 inhibition has therapeutic potential in HGSOC.
Collapse
Affiliation(s)
- Emilie Wong Chong
- Faculty of Medicine, Laval University, Québec, QC, Canada
- Centre de recherche sur le cancer (CRC) de l'Université Laval, Québec, QC, Canada
- Réseau de Recherche sur le Cancer, 9 McMahon, Québec, QC, G1R 3S3, Canada
- Oncology Research Division, CHU de Québec- Université Laval, Québec, QC, Canada
| | - France-Hélène Joncas
- Centre de recherche sur le cancer (CRC) de l'Université Laval, Québec, QC, Canada
- Oncology Research Division, CHU de Québec- Université Laval, Québec, QC, Canada
| | - Pierre Douville
- Faculty of Medicine, Laval University, Québec, QC, Canada
- Centre de recherche sur le cancer (CRC) de l'Université Laval, Québec, QC, Canada
- Réseau de Recherche sur le Cancer, 9 McMahon, Québec, QC, G1R 3S3, Canada
- Oncology Research Division, CHU de Québec- Université Laval, Québec, QC, Canada
| | - Dimcho Bachvarov
- Faculty of Medicine, Laval University, Québec, QC, Canada
- Centre de recherche sur le cancer (CRC) de l'Université Laval, Québec, QC, Canada
- Réseau de Recherche sur le Cancer, 9 McMahon, Québec, QC, G1R 3S3, Canada
- Oncology Research Division, CHU de Québec- Université Laval, Québec, QC, Canada
| | - Caroline Diorio
- Faculty of Medicine, Laval University, Québec, QC, Canada
- Centre de recherche sur le cancer (CRC) de l'Université Laval, Québec, QC, Canada
- Réseau de Recherche sur le Cancer, 9 McMahon, Québec, QC, G1R 3S3, Canada
- Oncology Research Division, CHU de Québec- Université Laval, Québec, QC, Canada
- Centre des Maladies du Sein Deschênes-Fabia, Hôpital du Saint-Sacrement, Québec, QC, Canada
| | - Frédéric Calon
- Faculty of Pharmacy, Laval University, Québec, QC, Canada
- Neuroscience Research Division, CHU de Québec- Université Laval, Québec, QC, Canada
| | | | - Jonatan Blais
- Faculty of Medicine, Laval University, Québec, QC, Canada
- CHU de Québec-Université Laval, Lipid Clinic, Room C-00102, 2705 Laurier Blvd, Québec, QC, G1V 4G2, Canada
| | - Shuk On Annie Leung
- Réseau de Recherche sur le Cancer, 9 McMahon, Québec, QC, G1R 3S3, Canada
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, McGill University Health Center, Montreal, QC, Canada
| | - Nabil Georges Seidah
- Laboratory of Biochemical Neuroendocrinology, Institut de Recherches Cliniques de Montréal, Montreal, QC, Canada
| | - Anne Gangloff
- Faculty of Medicine, Laval University, Québec, QC, Canada.
- Centre de recherche sur le cancer (CRC) de l'Université Laval, Québec, QC, Canada.
- Réseau de Recherche sur le Cancer, 9 McMahon, Québec, QC, G1R 3S3, Canada.
- Oncology Research Division, CHU de Québec- Université Laval, Québec, QC, Canada.
- CHU de Québec-Université Laval, Lipid Clinic, Room C-00102, 2705 Laurier Blvd, Québec, QC, G1V 4G2, Canada.
| |
Collapse
|
5
|
Thorin E, Labbé P, Lambert M, Mury P, Dagher O, Miquel G, Thorin-Trescases N. Angiopoietin-Like Proteins: Cardiovascular Biology and Therapeutic Targeting for the Prevention of Cardiovascular Diseases. Can J Cardiol 2023; 39:1736-1756. [PMID: 37295611 DOI: 10.1016/j.cjca.2023.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/27/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023] Open
Abstract
Despite the best pharmacologic tools available, cardiovascular diseases (CVDs) remain a major cause of morbidity and mortality in developed countries. After 2 decades of research, new therapeutic targets, such as angiopoietin-like proteins (ANGPTLs), are emerging. ANGPTLs belong to a family of 8 members, from ANGPTL1 to ANGPTL8; they have structural homology with angiopoietins and are secreted in the circulation. ANGPTLs display a multitude of physiological and pathologic functions; they contribute to inflammation, angiogenesis, cell death, senescence, hematopoiesis, and play a role in repair, maintenance, and tissue homeostasis. ANGPTLs-particularly the triad ANGPTL3, 4, and 8-have an established role in lipid metabolism through the regulation of triacylglycerol trafficking according to the nutritional status. Some ANGPTLs also contribute to glucose metabolism. Therefore, dysregulation in ANGPTL expression associated with abnormal circulating levels are linked to a plethora of CVD and metabolic disorders including atherosclerosis, heart diseases, diabetes, but also obesity and cancers. Because ANGPTLs bind to different receptors according to the cell type, antagonists are therapeutically inadequate. Recently, direct inhibitors of ANGPTLs, mainly ANGPTL3, have been developed, and specific monoclonal antibodies and antisense oligonucleotides are currently being tested in clinical trials. The aim of the current review is to provide an up-to-date preclinical and clinical overview on the function of the 8 members of the ANGPTL family in the cardiovascular system, their contribution to CVD, and the therapeutic potential of manipulating some of them.
Collapse
Affiliation(s)
- Eric Thorin
- Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada; Faculty of Medicine, Department of Pharmacology, Université de Montréal, Montréal, Québec, Canada; Faculty of Medicine, Department of Surgery, Université de Montréal, Montréal, Québec, Canada.
| | - Pauline Labbé
- Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada
| | - Mélanie Lambert
- Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada; Faculty of Medicine, Department of Pharmacology, Université de Montréal, Montréal, Québec, Canada
| | - Pauline Mury
- Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada; Faculty of Medicine, Department of Pharmacology, Université de Montréal, Montréal, Québec, Canada
| | - Olina Dagher
- Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada; Faculty of Medicine, Department of Surgery, Université de Montréal, Montréal, Québec, Canada; Department of Cardiac Sciences, Libin Cardiovascular Institute, Calgary, Alberta, Canada
| | - Géraldine Miquel
- Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada
| | | |
Collapse
|
6
|
Kurooka N, Eguchi J, Wada J. Role of glycosylphosphatidylinositol-anchored high-density lipoprotein binding protein 1 in hypertriglyceridemia and diabetes. J Diabetes Investig 2023; 14:1148-1156. [PMID: 37448184 PMCID: PMC10512915 DOI: 10.1111/jdi.14056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
In diabetes, the impairment of insulin secretion and insulin resistance contribute to hypertriglyceridemia, as the enzymatic activity of lipoprotein lipase (LPL) depends on insulin action. The transport of LPL to endothelial cells and its enzymatic activity are maintained by the formation of lipolytic complex depending on the multiple positive (glycosylphosphatidylinositol-anchored high-density lipoprotein binding protein 1 [GPIHBP1], apolipoprotein C-II [APOC2], APOA5, heparan sulfate proteoglycan [HSPG], lipase maturation factor 1 [LFM1] and sel-1 suppressor of lin-12-like [SEL1L]) and negative regulators (APOC1, APOC3, angiopoietin-like proteins [ANGPTL]3, ANGPTL4 and ANGPTL8). Among the regulators, GPIHBP1 is a crucial molecule for the translocation of LPL from parenchymal cells to the luminal surface of capillary endothelial cells, and maintenance of lipolytic activity; that is, hydrolyzation of triglyceride into free fatty acids and monoglyceride, and conversion from chylomicron to chylomicron remnant in the exogenous pathway and from very low-density lipoprotein to low-density lipoprotein in the endogenous pathway. The null mutation of GPIHBP1 causes severe hypertriglyceridemia and pancreatitis, and GPIGBP1 autoantibody syndrome also causes severe hypertriglyceridemia and recurrent episodes of acute pancreatitis. In patients with type 2 diabetes, the elevated serum triglyceride levels negatively correlate with circulating LPL levels, and positively with circulating APOC1, APOC3, ANGPTL3, ANGPTL4 and ANGPTL8 levels. In contrast, circulating GPIHBP1 levels are not altered in type 2 diabetes patients with higher serum triglyceride levels, whereas they are elevated in type 2 diabetes patients with diabetic retinopathy and nephropathy. The circulating regulators of lipolytic complex might be new biomarkers for lipid and glucose metabolism, and diabetic vascular complications.
Collapse
Affiliation(s)
- Naoko Kurooka
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| | - Jun Eguchi
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| | - Jun Wada
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| |
Collapse
|
7
|
Mohamed F, Mansfield B, Raal FJ. Targeting PCSK9 and Beyond for the Management of Low-Density Lipoprotein Cholesterol. J Clin Med 2023; 12:5082. [PMID: 37568484 PMCID: PMC10419884 DOI: 10.3390/jcm12155082] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Reducing low-density lipoprotein cholesterol (LDL-C) levels is crucial to the prevention of atherosclerotic cardiovascular disease (ASCVD). However, many patients, especially those at very high ASCVD risk or with familial hypercholesterolemia (FH), do not achieve target LDL-C levels with statin monotherapy. The underutilization of novel lipid-lowering therapies (LLT) globally may be due to cost concerns or therapeutic inertia. Emerging approaches have the potential to lower LDL-C and reduce ASCVD risk further, in addition to offering alternatives for statin-intolerant patients. Shifting the treatment paradigm towards initial combination therapy and utilizing novel LLT strategies can complement existing treatments. This review discusses innovative approaches including combination therapies involving statins and agents like ezetimibe, bempedoic acid, cholesterol ester transfer protein (CETP) inhibitors as well as strategies targeting proprotein convertase subtilisin/kexin type 9 (PCSK9) and angiopoietin-like protein 3 (ANGPTL3) inhibition. Advances in nucleic acid-based therapies and gene editing are innovative approaches that will improve patient compliance and adherence. These strategies demonstrate significant LDL-C reductions and improved cardiovascular outcomes, offering potential for optimal LDL-C control and reduced ASCVD risk. By addressing the limitations of statin monotherapy, these approaches provide new management options for elevated LDL-C levels.
Collapse
Affiliation(s)
| | | | - Frederick J. Raal
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa; (F.M.); (B.M.)
| |
Collapse
|
8
|
Saruhan E, Ispir E. Relationship Between Serum Betatrophin, GPIHBP1, and LDL Subfractions in Patients With Gestational Diabetes Mellitus. Clin Biochem 2023:110592. [PMID: 37277027 DOI: 10.1016/j.clinbiochem.2023.110592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/09/2023] [Accepted: 05/26/2023] [Indexed: 06/07/2023]
Abstract
OBJECTIVES Gestational diabetes mellitus (GDM) leads to changes in the lipid metabolism. In this study, we aimed to compare serum levels of LDL subfractions, betatrophin, and glycosylphosphatidylinositol-anchored high-density lipoprotein binding protein 1 (GPIHBP1) between patients with GDM and healthy pregnant women. DESIGN AND METHODS We designed a prospective case-control study with 41 pregnant women. Subjects were divided into two groups: GDM and control. Betatrophin and GPIHBP1 levels were measured by ELISA method. Lipoprint LDL subfraction kit was used to perform LDL subfraction analysis electrophoretically. RESULTS Serum levels of LDL6 subfraction, betatrophin, and GPIHBP1 were found to be higher in GDM group compared to the controls (p<0.001). The mean LDL size were also found larger in GDM group. A positive correlation was found between betatrophin and GPIHBP1 levels (rho=0.96, p<0.001). CONCLUSIONS Our findings suggest that betatrophin, and GPIHBP1 levels were found to be increased in GDM. This maybe the result of adaptive mechanisms in response to insulin resistance, but also this relationship should be evaluated for their effects on impaired lipid metabolism and lipoprotein lipase metabolism. There is a need for further prospective studies with larger samples to fully elucidate the mechanisms of this relationship both in pregnant patients and the other patient groups.
Collapse
Affiliation(s)
- Ercan Saruhan
- University of Health Sciences Izmir Bozyaka Education and Research Hospital, Turkey
| | - Emre Ispir
- University of Health Sciences Izmir Bozyaka Education and Research Hospital, Turkey.
| |
Collapse
|
9
|
Guo X, Huang Z, Chen J, Hu J, Hu D, Peng D, Yu B. ANGPTL3 Is Involved in the Post-prandial Response in Triglyceride-Rich Lipoproteins and HDL Components in Patients With Coronary Artery Disease. Front Cardiovasc Med 2022; 9:913363. [PMID: 35845073 PMCID: PMC9276986 DOI: 10.3389/fcvm.2022.913363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/31/2022] [Indexed: 11/30/2022] Open
Abstract
It is well-established that there exists an inverse relationship between high-density lipoprotein (HDL) cholesterol and triglyceride (TG) levels in the plasma. However, information is lacking on the impact of post-prandial triglyceride-rich lipoproteins (TRLs) on the structure of HDL subclasses in patients with coronary artery disease (CAD). In this study, the data of 49 patients with CAD were analyzed to evaluate dynamic alterations in post-prandial lipid profiles using nuclear magnetic resonance-based methods. An enzyme-linked immunosorbent assay was used to quantify the serum angiopoietin-like protein 3 (ANGPTL3). After glucose supplementation, the expression of hepatic ANGPTL3 was evaluated both in vitro and in vivo. Compared to fasting levels, the post-prandial serum TG level of all participants was considerably increased. Although post-prandial total cholesterol in HDL (HDL-C) remained unchanged, free cholesterol in HDL particles (HDL-FC) was significantly reduced after a meal. Furthermore, the post-prandial decrease in the HDL-FC level corresponded to the increase in remnant cholesterol (RC), indicating the possible exchange of free cholesterol between HDL and TRLs after a meal. Moreover, CAD patients with exaggerated TG response to diet, defined as TG increase >30%, tend to have a greater post-prandial increase of RC and decrease of HDL-FC compared to those with TG increase ≤30%. Mechanistically, the fasting and post-prandial serum ANGPTL3 levels were significantly lower in those with TG increase ≤30% than those with TG increase >30%, suggesting that ANGPTL3, the key lipolysis regulator, may be responsible for the different post-prandial responses of TG, RC, and HDL-FC.
Collapse
Affiliation(s)
- Xin Guo
- Department of Cardiovascular Medicine, Research Institute of Blood Lipid and Atherosclerosis, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhijie Huang
- Department of Cardiovascular Medicine, Research Institute of Blood Lipid and Atherosclerosis, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jin Chen
- Department of Cardiovascular Medicine, Research Institute of Blood Lipid and Atherosclerosis, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jiarui Hu
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Die Hu
- Department of Cardiovascular Medicine, Research Institute of Blood Lipid and Atherosclerosis, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Daoquan Peng
- Department of Cardiovascular Medicine, Research Institute of Blood Lipid and Atherosclerosis, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Bilian Yu
- Department of Cardiovascular Medicine, Research Institute of Blood Lipid and Atherosclerosis, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
10
|
Novel Pharmaceutical and Nutraceutical-Based Approaches for Cardiovascular Diseases Prevention Targeting Atherogenic Small Dense LDL. Pharmaceutics 2022; 14:pharmaceutics14040825. [PMID: 35456658 PMCID: PMC9027611 DOI: 10.3390/pharmaceutics14040825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/27/2022] [Accepted: 04/07/2022] [Indexed: 11/17/2022] Open
Abstract
Compelling evidence supports the causative link between increased levels of low-density lipoprotein cholesterol (LDL-C) and atherosclerotic cardiovascular disease (CVD) development. For that reason, the principal aim of primary and secondary cardiovascular prevention is to reach and sustain recommended LDL-C goals. Although there is a considerable body of evidence that shows that lowering LDL-C levels is directly associated with CVD risk reduction, recent data shows that the majority of patients across Europe cannot achieve their LDL-C targets. In attempting to address this matter, a new overarching concept of a lipid-lowering approach, comprising of even more intensive, much earlier and longer intervention to reduce LDL-C level, was recently proposed for high-risk patients. Another important concern is the residual risk for recurrent cardiovascular events despite optimal LDL-C reduction, suggesting that novel lipid biomarkers should also be considered as potential therapeutic targets. Among them, small dense LDL particles (sdLDL) seem to have the most significant potential for therapeutic modulation. This paper discusses the potential of traditional and emerging lipid-lowering approaches for cardiovascular prevention by targeting sdLDL particles.
Collapse
|
11
|
Zhang R, Zhang K. An updated ANGPTL3-4-8 model as a mechanism of triglyceride partitioning between fat and oxidative tissues. Prog Lipid Res 2022; 85:101140. [PMID: 34793860 PMCID: PMC8760165 DOI: 10.1016/j.plipres.2021.101140] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 01/03/2023]
Abstract
In mammals, triglyceride (TG), the main form of lipids for storing and providing energy, is stored in white adipose tissue (WAT) after food intake, while during fasting it is routed to oxidative tissues (heart and skeletal muscle) for energy production, a process referred to as TG partitioning. Lipoprotein lipase (LPL), a rate-limiting enzyme in this fundamental physiological process, hydrolyzes circulating TG to generate free fatty acids that are taken up by peripheral tissues. The postprandial activity of LPL declines in oxidative tissues but rises in WAT, directing TG to WAT; the reverse is true during fasting. However, the molecular mechanism in regulating tissue-specific LPL activity during the fed-fast cycle has not been completely understood. Research on angiopoietin-like (ANGPTL) proteins (A3, A4, and A8) has resulted in an ANGPTL3-4-8 model to explain the TG partitioning between WAT and oxidative tissues. Food intake induces A8 expression in the liver and WAT. Liver A8 activates A3 by forming the A3-8 complex, which is then secreted into the circulation. The A3-8 complex acts in an endocrine manner to inhibit LPL in oxidative tissues. WAT A8 forms the A4-8 complex, which acts locally to block A4's LPL-inhibiting activity. Therefore, the postprandial activity of LPL is low in oxidative tissues but high in WAT, directing circulating TG to WAT. Conversely, during fasting, reduced A8 expression in the liver and WAT disables A3 from inhibiting oxidative-tissue LPL and restores WAT A4's LPL-inhibiting activity, respectively. Thus, the fasting LPL activity is high in oxidative tissues but low in WAT, directing TG to the former. According to the model, we hypothesize that A8 antagonism has the potential to simultaneously reduce TG and increase HDL-cholesterol plasma levels. Future research on A3, A4, and A8 can hopefully provide more insights into human health, disease, and therapeutics.
Collapse
Affiliation(s)
- Ren Zhang
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, 540 East Canfield Street, Detroit, MI 48201, USA.
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, 540 East Canfield Street, Detroit, MI 48201, USA
| |
Collapse
|
12
|
Hoang Thi M, Dang Thanh C, Huynh Quang T. The Correlation Between Angiopoietin-Like 3 and Metabolic Markers of Some Lipid and Glucose in Type 2 Diabetes Mellitus Patients at the First Diagnosis. Diabetes Metab Syndr Obes 2022; 15:3329-3337. [PMID: 36341228 PMCID: PMC9628699 DOI: 10.2147/dmso.s383234] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022] Open
Abstract
PURPOSE Angiopoietin-Like3 is a protein that plays an important role in regulating plasma triglyceride concentrations by inhibiting the enzyme lipoprotein lipase. Lipid metabolism and glucose metabolism are closely related and interact with each other. ANGPTL3 may also be a factor involved in blood glucose regulation through an increase in free fatty acids generated from enhanced lipolysis in adipose tissue leading to insulin resistance. This study aimed to investigate plasma ANGPTL3 concentrations and their correlation with lipid and glucose metabolic markers in newly diagnosed type 2 Diabetes Mellitus patients. SUBJECT AND METHODS A cross-sectional descriptive study was conducted on 98 healthy subjects (control group) and 103 patients with type 2 diabetes at the first diagnosis, without any treatment (patient group). Plasma ANGPTL3 concentration was quantified by the ELISA method. The study determines the correlation of ANGPTL3 concentration with some indicators reflecting lipid and glucose metabolism. RESULTS The concentration of ANGPTL3 in the newly diagnosed type 2 Diabetes Mellitus patient group was lower than in the control group, the difference was statistically significant with p < 0.05. In the patient group: there was an inverse correlation between ANGPTL3 concentration and HDL-C concentration (r = -0.37; p<0.001), and a positive correlation with triglyceride concentration (r = 0.275; p < 0.05). There was no correlation between plasma ANGPTL3 levels and anthropometric indices, total cholesterol, HDL-C, glucose, HbA1C, insulin, and HOMA-IR. In the control group: there was no correlation between ANGPTL3 and any of the indicators mentioned above. CONCLUSION ANGPTL3 levels in newly diagnosed type 2 diabetes mellitus patients were statistically significantly lower than in healthy subjects. Plasma ANGPTL3 was positively correlated with triglyceride levels and inversely correlated with HDL-C levels in newly diagnosed type 2 Diabetes mellitus patients.
Collapse
Affiliation(s)
- Minh Hoang Thi
- Department of Pathophysiology, Vietnam Military Medical University (VMMU), Ha Noi City, Vietnam
| | - Chung Dang Thanh
- Department of Pathology and Forensic Medicine, 103 Military Medical Hospital, Vietnam Military Medical University (VMMU), Ha Noi City, Vietnam
| | - Thuan Huynh Quang
- Biochemistry Department, 103 Military Medical Hospital, Vietnam Military Medical University (VMMU), Ha Noi City, Vietnam
- Correspondence: Thuan Huynh Quang, Biochemistry Department, 103 Military Medical Hospital, Vietnam Military Medical University (VMMU), No. 160, Phung Hung Street, Phuc La Ward, Ha Dong District, Hanoi City, Vietnam, Tel +84904175342, Email
| |
Collapse
|