1
|
Ardpairin J, Subkrasae C, Dumidae A, Pansri S, Homkaew C, Meesil W, Kumchantuek T, Phoungpetchara I, Dillman AR, Pavesi C, Bode HB, Tandhavanant S, Thanwisai A, Vitta A. Symbiotic bacteria associated with entomopathogenic nematodes showed molluscicidal activity against Biomphalaria glabrata, an intermediate host of Schistosoma mansoni. Parasit Vectors 2024; 17:529. [PMID: 39710701 DOI: 10.1186/s13071-024-06605-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/27/2024] [Indexed: 12/24/2024] Open
Abstract
BACKGROUND Biomphalaria glabrata acts as the intermediate host of schistosomes that causes human schistosomiasis. Symbiotic bacteria, Xenorhabdus and Photorhabdus associated with Steinernema and Heterorhabditis, produce secondary metabolites with several biological activities. Controlling B. glabrata is a potential strategy to limit the transmission of schistosomiasis. The aims of this study were to identify Xenorhabdus and Photorhabdus bacteria based on recA sequencing and evaluate their molluscicidal activity against B. glabrata snail. RESULTS A total of 31 bacterial isolates belonging to Xenorhabdus (n = 19) and Photorhabdus (n = 12) (X. ehlersii, X. stockiae, X. indica, X. griffinae, P. luminescens, P. akhurstii, and P. laumondii subsp. laumondii were molecularly identified based on recA sequencing. Five isolates of bacterial extracts showed potential molluscicide, with 100% snail mortality. P. laumondii subsp. laumondii (bALN19.5_TH) showed the highest effectiveness with lethal concentration (LC) values of 54.52 µg/mL and 89.58 µg/mL for LC50 and LC90, respectively. Histopathological changes of the snail were observed in the head-foot region, which showed ruptures of the epithelium covering the foot and deformation of the muscle fiber. A hemocyte of the treated snails was observed in the digestive tubules of the digestive glands. The hermaphrodite glands of treated snails showed a reduction in the number of spermatozoa, degeneration of oocytes, and deformation and destruction in the hermaphrodite gland. In addition, liquid chromatography-tandem mass spectrometry (LC-MS/MS) of three symbiotic bacteria contained compounds such as GameXPeptide, Xenofuranone, and Rhabdopeptide. CONCLUSIONS Five bacterial extracts showed good activity against B. glabrata, especially P. laumondii subsp. laumondii and X. stockiae, which produced virulent secondary metabolites resulting in the death of the snails. They also caused histopathological alterations in the foot, digestive glands, and hermaphrodite glands of the snails. This study suggests that extracts from these bacteria show promise as molluscicides for the control of B. glabrata.
Collapse
Affiliation(s)
- Jiranun Ardpairin
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Chanakan Subkrasae
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Abdulhakam Dumidae
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Supawan Pansri
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Chanatinat Homkaew
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Wipanee Meesil
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Tewarat Kumchantuek
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Ittipon Phoungpetchara
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Adler R Dillman
- Department of Nematology, University of California, Riverside, CA, 92521, USA
| | - Coralie Pavesi
- Max-Planck-Institut für Terrestrische Mikrobiologie Abteilung Naturstoffe in organismischen Interaktionen, Karl-von-Frisch-Str. 10, 35043, Marburg, Germany
| | - Helge B Bode
- Max-Planck-Institut für Terrestrische Mikrobiologie Abteilung Naturstoffe in organismischen Interaktionen, Karl-von-Frisch-Str. 10, 35043, Marburg, Germany
- Department of Natural Products in Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, 35043, Marburg, Germany
- Molecular Biotechnology, Department of Biosciences, Goethe University, Frankfurt, 60438, Frankfurt am Main, Germany
- Chemical Biology, Department of Chemistry, Philipps University Marburg, 35032, Marburg, Germany
- Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
- SYNMIKRO (Zentrum für Synthetische Mikrobiologie), 35032, Marburg, Germany
| | - Sarunporn Tandhavanant
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Aunchalee Thanwisai
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
- Centre of Excellence in Medical Biotechnology (CEMB), Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
- Centre of Excellence for Biodiversity, Faculty of Sciences, Naresuan University, Phitsanulok, 65000, Thailand
| | - Apichat Vitta
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand.
- Centre of Excellence in Medical Biotechnology (CEMB), Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand.
- Centre of Excellence for Biodiversity, Faculty of Sciences, Naresuan University, Phitsanulok, 65000, Thailand.
| |
Collapse
|
2
|
Kamou N, Papafoti A, Chatzaki V, Kapranas A. Exploring the effects of entomopathogenic nematode symbiotic bacteria and their cell free filtrates on the tomato leafminer Tuta absoluta and its predator Nesidiocoris tenuis. J Invertebr Pathol 2024; 206:108181. [PMID: 39178983 DOI: 10.1016/j.jip.2024.108181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 08/26/2024]
Abstract
The use of biocontrol agents, such as predators and entomopathogenic nematodes, is a promising approach for the effective control of the tomato leafminer Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidaean), an oligophagous insect feeding mainly on Solanaceae species and a major pest of field- and greenhouse-grown tomatoes globally. In this context, the effects of two entomopathogenic nematode species Steinernema carpocapsae (Weiser) (Rhabditida: Steinernematidae) and Heterorhabditis bacteriophora (Poinar) (Rhabditida: Heterorhabditidae), as well as their respective bacterial symbionts, Xenorhabdus nematophila and Photorhabdus luminescens (Enterobacterales: Morganelaceae), which were applied as bacterial cell suspensions and as crude cell-free liquid filtrates on T. absoluta larvae, were investigated. The results showed that of all treatments, the nematodes S. carpocapsae and H. bacteriophora were the most effective, causing up to 98 % mortality of T. absoluta larvae. Regarding bacteria and their filtrates, the bacterium X. nematophila was the most effective (69 % mortality in young larvae), while P. luminescens and both bacterial filtrates showed similar potency (ca. 48-55 % mortality in young larvae). To achieve a holistic approach of controlling this important pest, the impact of these factors on the beneficial predator Nesidiocoris tenuis (Reuter) (Hemiptera: Miridae) was also studied. The results demonstrated that although nematodes and especially S. carpocapsae, caused significant mortality on N. tenuis (87 %), the bacterial cell suspensions of X. nematophila and P. luminescens and crude cell-free liquid filtrates had minimum impact on this beneficial predator (∼11-30 % mortality).
Collapse
Affiliation(s)
- Nathalie Kamou
- Laboratory of Applied Zoology and Parasitology (Entomology), Faculty of Agriculture Forestry and Natural Environment, School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ariadni Papafoti
- Laboratory of Applied Zoology and Parasitology (Entomology), Faculty of Agriculture Forestry and Natural Environment, School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Vasileia Chatzaki
- Laboratory of Applied Zoology and Parasitology (Entomology), Faculty of Agriculture Forestry and Natural Environment, School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Apostolos Kapranas
- Laboratory of Applied Zoology and Parasitology (Entomology), Faculty of Agriculture Forestry and Natural Environment, School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| |
Collapse
|
3
|
Chandrakasan G, García-Trejo JF, Feregrino-Pérez AA, Aguirre-Becerra H, García ER, Nieto-Ramírez MI. Preliminary Screening on Antibacterial Crude Secondary Metabolites Extracted from Bacterial Symbionts and Identification of Functional Bioactive Compounds by FTIR, HPLC and Gas Chromatography-Mass Spectrometry. Molecules 2024; 29:2914. [PMID: 38930979 PMCID: PMC11206551 DOI: 10.3390/molecules29122914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/02/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Secondary metabolites, bioactive compounds produced by living organisms, can unveil symbiotic relationships in nature. In this study, soilborne entomopathogenic nematodes associated with symbiotic bacteria (Xenorhabdus stockiae and Photorhabdus luminescens) were extracted from solvent supernatant containing secondary metabolites, demonstrating significant inhibitory effects against E. coli, S. aureus, B. subtilus, P. mirabilis, E. faecalis, and P. stutzeri. The characterization of these secondary metabolites by Fourier transforms infrared spectroscopy revealed amine groups of proteins, hydroxyl and carboxyl groups of polyphenols, hydroxyl groups of polysaccharides, and carboxyl groups of organic acids. Furthermore, the obtained crude extracts were analyzed by high-performance liquid chromatography for the basic identification of potential bioactive peptides. Gas chromatography-mass spectrometry analysis of ethyl acetate extracts from Xenorhabdus stockiae identified major compounds including nonanoic acid derivatives, proline, paromycin, octodecanal derivatives, trioxa-5-aza-1-silabicyclo, 4-octadecenal, methyl ester, oleic acid, and 1,2-benzenedicarboxylicacid. Additional extraction from Photorhabdus luminescens yielded functional compounds such as indole-3-acetic acid, phthalic acid, 1-tetradecanol, nemorosonol, 1-eicosanol, and unsaturated fatty acids. These findings support the potential development of novel natural antimicrobial agents for future pathogen suppression.
Collapse
Affiliation(s)
- Gobinath Chandrakasan
- División de Estudios de Posgrado, Facultad de Ingeniería, Universidad Autónoma de Querétaro, Santiago de Querétaro 76010, Querétaro, Mexico; (A.A.F.-P.); (H.A.-B.); (E.R.G.); (M.I.N.-R.)
| | - Juan Fernando García-Trejo
- División de Estudios de Posgrado, Facultad de Ingeniería, Universidad Autónoma de Querétaro, Santiago de Querétaro 76010, Querétaro, Mexico; (A.A.F.-P.); (H.A.-B.); (E.R.G.); (M.I.N.-R.)
| | | | | | | | | |
Collapse
|
4
|
Jin G, Hrithik MTH, Lee DH, Kim IH, Jung JS, Bode HB, Kim Y. Manipulation of GameXPeptide synthetase gene expression by a promoter exchange alters the virulence of an entomopathogenic bacterium, Photorhabdus temperata temperata, by modulating insect immune responses. Front Microbiol 2023; 14:1271764. [PMID: 38173677 PMCID: PMC10764021 DOI: 10.3389/fmicb.2023.1271764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/23/2023] [Indexed: 01/05/2024] Open
Abstract
An entomopathogenic bacterium, Photorhabdus temperata subsp. temperata, is mutualistic to its host nematode, Heterorhabditis megidis. The infective juvenile nematodes enter target insects through natural openings and release the symbiotic bacteria into the insect hemocoel. The released bacteria suppress the insect immune responses and cause septicemia through their secondary metabolites. GameXPeptide (GXP) is one of the common secondary metabolites of most Photorhabdus species and is produced by the catalytic activity of a specific non-ribosomal peptide synthetase called GxpS encoded by the gxpS gene. This study confirmed gxpS to be encoded in the P. temperata temperata genome and analyzed its expression during bacterial growth. LC-MS/MS analysis of the bacterial culture broth contained at least four different GXPs (GXP-A to GXP-D), in which GXP-A was the most abundant. To investigate GXP synthesis following gxpS expression, the gxpS promoter of P. temperata temperata was replaced with an inducible arabinose promoter by homologous recombination. The gxpS transcript levels in the mutant were altered by the addition of l-arabinose. Without the inducer, the gxpS transcript level was significantly lower compared to the wild type and produced significantly lower amounts of the four GXPs. The addition of the inducer to the mutant significantly increased gxpS expression and produced significantly higher levels of the four GXPs compared to the wild type. The metabolite extracts obtained from wild-type and mutant bacteria showed differential immunosuppressive activities according to their GXP contents against the cellular and humoral immune responses of a lepidopteran insect, Spodoptera exigua. Interestingly, the gxpS-mutant bacteria showed less insecticidal activity compared to the wild type, whereas the addition of GXP to the mutant significantly restored insecticidal activity. These results suggest that the gxpS gene encoded in P. temperata temperata is responsible for the production of at least four different GXPs, which play crucial roles in bacterial virulence.
Collapse
Affiliation(s)
- Gahyeon Jin
- Department of Plant Medicals, Andong National University, Andong, Republic of Korea
| | | | - Dong-Hee Lee
- Industry Academy Cooperation Foundation, Andong National University, Andong, Republic of Korea
| | - Il-Hwan Kim
- Korea Research Institute of Standards and Science, Daejeon, Republic of Korea
| | - Ji-Seon Jung
- Korea Research Institute of Standards and Science, Daejeon, Republic of Korea
| | - Helge B. Bode
- Department of Natural Products in Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Molecular Biotechnology, Department of Biosciences, Goethe Universität Frankfurt, Frankfurt, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Phillips Universität Marburg, Marburg, Germany
- Department of Chemistry, Phillips Universität Marburg, Marburg, Germany
- Senckenberg Gesellschaft für Naturforschung, Frankfurt, Germany
| | - Yonggyun Kim
- Department of Plant Medicals, Andong National University, Andong, Republic of Korea
| |
Collapse
|
5
|
Meesil W, Muangpat P, Sitthisak S, Rattanarojpong T, Chantratita N, Machado RAR, Shi YM, Bode HB, Vitta A, Thanwisai A. Genome mining reveals novel biosynthetic gene clusters in entomopathogenic bacteria. Sci Rep 2023; 13:20764. [PMID: 38007490 PMCID: PMC10676414 DOI: 10.1038/s41598-023-47121-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/09/2023] [Indexed: 11/27/2023] Open
Abstract
The discovery of novel bioactive compounds produced by microorganisms holds significant potential for the development of therapeutics and agrochemicals. In this study, we conducted genome mining to explore the biosynthetic potential of entomopathogenic bacteria belonging to the genera Xenorhabdus and Photorhabdus. By utilizing next-generation sequencing and bioinformatics tools, we identified novel biosynthetic gene clusters (BGCs) in the genomes of the bacteria, specifically plu00736 and plu00747. These clusters were identified as unidentified non-ribosomal peptide synthetase (NRPS) and unidentified type I polyketide synthase (T1PKS) clusters. These BGCs exhibited unique genetic architecture and encoded several putative enzymes and regulatory elements, suggesting its involvement in the synthesis of bioactive secondary metabolites. Furthermore, comparative genome analysis revealed that these BGCs were distinct from previously characterized gene clusters, indicating the potential for the production of novel compounds. Our findings highlighted the importance of genome mining as a powerful approach for the discovery of biosynthetic gene clusters and the identification of novel bioactive compounds. Further investigations involving expression studies and functional characterization of the identified BGCs will provide valuable insights into the biosynthesis and potential applications of these bioactive compounds.
Collapse
Affiliation(s)
- Wipanee Meesil
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Paramaporn Muangpat
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Sutthirat Sitthisak
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
- Centre of Excellence in Medical Biotechnology (CEMB), Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Triwit Rattanarojpong
- Department of Microbiology, Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, 10400, Thailand
| | - Narisara Chantratita
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Ricardo A R Machado
- Experimental Biology Research Group, Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland
| | - Yi-Ming Shi
- Department of Natural Products in Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, 35043, Marburg, Germany
- Molecular Biotechnology, Department of Biosciences, Goethe University, Frankfurt, 60438, Frankfurt am Main, Germany
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Helge B Bode
- Department of Natural Products in Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, 35043, Marburg, Germany
- Molecular Biotechnology, Department of Biosciences, Goethe University, Frankfurt, 60438, Frankfurt am Main, Germany
- Chemical Biology, Department of Chemistry, Philipps University Marburg, 35032, Marburg, Germany
- Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
- SYNMIKRO (Zentrum für Synthetische Mikrobiologie), 35032, Marburg, Germany
| | - Apichat Vitta
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
- Centre of Excellence in Medical Biotechnology (CEMB), Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
- Center of Excellence for Biodiversity, Faculty of Sciences, Naresuan University, Phitsanulok, 65000, Thailand
| | - Aunchalee Thanwisai
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand.
- Centre of Excellence in Medical Biotechnology (CEMB), Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand.
- Center of Excellence for Biodiversity, Faculty of Sciences, Naresuan University, Phitsanulok, 65000, Thailand.
| |
Collapse
|
6
|
Thanwisai A, Muangpat P, Meesil W, Janthu P, Dumidae A, Subkrasae C, Ardpairin J, Tandhavanant S, Yoshino TP, Vitta A. Entomopathogenic Nematodes and Their Symbiotic Bacteria from the National Parks of Thailand and Larvicidal Property of Symbiotic Bacteria against Aedes aegypti and Culex quinquefasciatus. BIOLOGY 2022; 11:biology11111658. [PMID: 36421372 PMCID: PMC9687835 DOI: 10.3390/biology11111658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Entomopathogenic nematodes (EPNs) are insect-parasitizing nematodes of the genera Heterorhabditis and Steinernema that are symbiotically associated with the symbiotic bacteria Photorhabdus and Xenorhabdus, respectively. Heterorhabditis indica, H. baujardi, Heterorhabditis SGmg3, Steinernema guangdongense, S. surkhetense, S. minutum, and S. longicaudum were isolated from soil samples in the national parks of Thailand. For symbiotic bacterial isolates, P. luminescens subsp. akhurstii, P. luminescens subsp. hainanensis, P. luminescens subsp. australis, Xenorhabdus stockiae, X. indica, X. griffiniae, X. japonica, and X. hominickii were isolated from those EPNs. In mosquito larvicidal bioassays, Photorhabdus isolates were effective against both Aedes aegypti and Culex quinquefasciatus. In conclusion, a wide diversity of entomopathogenic nematodes and symbiotic bacteria was found in the national parks of Thailand. Moreover, isolated Photorhabdus bacteria were shown to have potential as biocontrol agents to control culicine mosquitoes. Abstract Entomopathogenic nematodes (EPNs) are insect parasitic nematodes of the genera Het-erorhabditis and Steinernema. These nematodes are symbiotically associated with the bacteria, Photorhabdus and Xenorhabdus, respectively. National parks in Thailand are a potentially rich resource for recovering native EPNs and their symbiotic bacteria. The objectives of this study are to isolate and identify EPNs and their bacterial flora from soil samples in four national parks in Thailand and to evaluate their efficacy for controlling mosquito larvae. Using a baiting method with a Galleria mellonella moth larvae and a White trap technique, 80 out of 840 soil samples (9.5%) from 168 field sites were positive for EPNs. Sequencing of an internal transcribed spacer resulted in the molecular identification of Heterorhabditis nematode isolates as H. indica, H. baujardi and Heterorhabditis SGmg3, while using 28S rDNA sequencing, Steinernema nematode species were identified as S. guang-dongense, S. surkhetense, S. minutum, S. longicaudum and one closely related to S. yirgalemense. For the symbiotic bacterial isolates, based on recA sequencing, the Photorhabdus spp. were identified as P. luminescens subsp. akhurstii, P. luminescens subsp. hainanensis and P. luminescens subsp. australis. Xenorhabdus isolates were identified as X. stockiae, X. indica, X. griffiniae, X. japonica and X. hominickii. Results of bioassays demonstrate that Photorhabdus isolates were effective on both Aedes aegypti and Culex quinquefasciatus. Therefore, we conclude that soil from Thailand’s national parks contain a high diversity of entomopathogenic nematodes and their symbiotic bacteria. Photorhabdus bacteria are larvicidal against culicine mosquitoes and may serve as effective biocontrol agents.
Collapse
Affiliation(s)
- Aunchalee Thanwisai
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
- Centre of Excellence in Medical Biotechnology (CEMB), Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
- Center of Excellence for Biodiversity, Faculty of Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Paramaporn Muangpat
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Wipanee Meesil
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Pichamon Janthu
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Abdulhakam Dumidae
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Chanakan Subkrasae
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Jiranun Ardpairin
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Sarunporn Tandhavanant
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Timothy P. Yoshino
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA
| | - Apichat Vitta
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
- Centre of Excellence in Medical Biotechnology (CEMB), Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
- Center of Excellence for Biodiversity, Faculty of Sciences, Naresuan University, Phitsanulok 65000, Thailand
- Correspondence:
| |
Collapse
|
7
|
Ünal M, Yüksel E, Canhilal R. Biocontrol potential of cell suspensions and cell-free superntants of different Xenorhabdus and Photorhabdus bacteria against the different larval instars of Agrotis ipsilon (Hufnagel) (Lepidoptera: Noctuidae). Exp Parasitol 2022; 242:108394. [PMID: 36179855 DOI: 10.1016/j.exppara.2022.108394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 12/01/2022]
Abstract
The black cutworm (BCW), Agrotis ipsilon (Hufnagel) (Lepidoptera: Noctuidae), is one of the destructive cutworm species. Black cutworm is a highly polyphagous pest that feeds on more than 30 plants, many of which are of economic importance such as maize, sugar beet, and potato. The control of BCW larvae relies heavily on the application of synthetic insecticides which have a detrimental impact on human health and the natural environment. In addition, increasing insecticide resistance in many insect species requires a novel and sustainable approach to controlling insect pests. The endosymbionts of entomopathogenic nematodes (EPNs) (Xenorhabdus and Phorohabdus spp.) represent a newly emerging green approach to controlling a wide range of insect pests. In the current study, the oral and contact efficacy of cell suspension (4 × 107 cells ml-1) and cell-free supernatants of different symbiotic bacteria (X. nematophilai, X. bovienii, X. budapestensis, and P. luminescent subsp. kayaii) were evaluated against the mixed groups of 1st-2nd and 3rd-4th instars larvae of BCW under controlled conditions. The oral treatment of the cell suspension and cell-free supernatants resulted in higher mortality rates than contact treatments. In general, larval mortality was higher in the 1st-2nd instar larvae than in the 3rd-4th instar larvae. The highest (75%) mortality was obtained from the cell suspension of X. budapestensis. The results indicated that the oral formulations of the cell suspension and cell-free supernatants of bacterial strains may have a good control potential against the 1st-2nd larvae BCW. However, the efficacy of the cell suspension and cell-free supernatants of tested bacterial strains should be further evaluated under greenhouse and field conditions.
Collapse
Affiliation(s)
- Merve Ünal
- Department of Plant Protection, Faculty of Agriculture, Erciyes University, 38030, Melikgazi, Kayseri, Turkey
| | - Ebubekir Yüksel
- Department of Plant Protection, Faculty of Agriculture, Erciyes University, 38030, Melikgazi, Kayseri, Turkey.
| | - Ramazan Canhilal
- Department of Plant Protection, Faculty of Agriculture, Erciyes University, 38030, Melikgazi, Kayseri, Turkey
| |
Collapse
|
8
|
Muangpat P, Meesil W, Ngoenkam J, Teethaisong Y, Thummeepak R, Sitthisak S, Tandhavanant S, Chantratita N, Bode HB, Vitta A, Thanwisai A. Genome analysis of secondary metabolite‑biosynthetic gene clusters of Photorhabdus akhurstii subsp. akhurstii and its antibacterial activity against antibiotic-resistant bacteria. PLoS One 2022; 17:e0274956. [PMID: 36129957 PMCID: PMC9491552 DOI: 10.1371/journal.pone.0274956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/08/2022] [Indexed: 11/27/2022] Open
Abstract
Xenorhabdus and Photorhabdus can produce a variety of secondary metabolites with broad spectrum bioactivity against microorganisms. We investigated the antibacterial activity of Xenorhabdus and Photorhabdus against 15 antibiotic-resistant bacteria strains. Photorhabdus extracts had strong inhibitory the growth of Methicillin-resistant Staphylococcus aureus (MRSA) by disk diffusion. The P. akhurstii s subsp. akhurstii (bNN168.5_TH) extract showed lower minimum inhibitory concentrations (MIC) and minimal bactericidal concentrations (MBC). The interaction between either P. akhurstii subsp. akhurstii (bNN141.3_TH) or P. akhurstii subsp. akhurstii (bNN168.5_TH) or P. hainanensis (bNN163.3_TH) extract in combination with oxacillin determined by checkerboard assay exhibited partially synergistic interaction with fractional inhibitory concentration index (FICI) of 0.53. Time-killing assay for P. akhurstii subsp. akhurstii (bNN168.5_TH) extract against S. aureus strain PB36 significantly decreased cell viability from 105 CFU/ml to 103 CFU/ml within 30 min (P < 0.001, t-test). Transmission electron microscopic investigation elucidated that the bNN168.5_TH extract caused treated S. aureus strain PB36 (MRSA) cell membrane damage. The biosynthetic gene clusters of the bNN168.5_TH contained non-ribosomal peptide synthetase cluster (NRPS), hybrid NRPS-type l polyketide synthase (PKS) and siderophore, which identified potentially interesting bioactive products: xenematide, luminmide, xenortide A-D, luminmycin A, putrebactin/avaroferrin and rhizomide A-C. This study demonstrates that bNN168.5_TH showed antibacterial activity by disrupting bacterial cytoplasmic membrane and the draft genome provided insights into the classes of bioactive products. This also provides a potential approach in developing a novel antibacterial agent.
Collapse
Affiliation(s)
- Paramaporn Muangpat
- Faculty of Medical Science, Department of Microbiology and Parasitology, Naresuan University, Phitsanulok, Thailand
| | - Wipanee Meesil
- Faculty of Medical Science, Department of Microbiology and Parasitology, Naresuan University, Phitsanulok, Thailand
| | - Jatuporn Ngoenkam
- Faculty of Medical Science, Department of Microbiology and Parasitology, Naresuan University, Phitsanulok, Thailand
| | - Yothin Teethaisong
- Faculty of Allied Health Sciences, Department of Biomedical Sciences, Burapha University, Chonburi, Thailand
- Research Unit for Sensor Inovation (RUSI), Burapha University, Chon Buri, Thailand
| | - Rapee Thummeepak
- Faculty of Medical Science, Department of Microbiology and Parasitology, Naresuan University, Phitsanulok, Thailand
| | - Sutthirat Sitthisak
- Faculty of Medical Science, Department of Microbiology and Parasitology, Naresuan University, Phitsanulok, Thailand
| | - Sarunporn Tandhavanant
- Faculty of Tropical Medicine, Department of Microbiology and Immunology, Mahidol University, Bangkok, Thailand
| | - Narisara Chantratita
- Faculty of Tropical Medicine, Department of Microbiology and Immunology, Mahidol University, Bangkok, Thailand
| | - Helge B. Bode
- Molekulare Biotechnologie, Goethe Universität Frankfurt, Frankfurt am Main, Germany
- Department of Natural Products in Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Apichat Vitta
- Faculty of Medical Science, Department of Microbiology and Parasitology, Naresuan University, Phitsanulok, Thailand
- Faculty of Sciences, Center of Excellence for Biodiversity, Naresuan University, Phitsanulok, Thailand
- Faculty of Medical Science, Centre of Excellence in Medical Biotechnology (CEMB), Naresuan University, Phitsanulok, Thailand
| | - Aunchalee Thanwisai
- Faculty of Medical Science, Department of Microbiology and Parasitology, Naresuan University, Phitsanulok, Thailand
- Faculty of Sciences, Center of Excellence for Biodiversity, Naresuan University, Phitsanulok, Thailand
- Faculty of Medical Science, Centre of Excellence in Medical Biotechnology (CEMB), Naresuan University, Phitsanulok, Thailand
| |
Collapse
|
9
|
Larvicidal activity of Photorhabdus and Xenorhabdus bacteria isolated from insect parasitic nematodes against Aedes aegypti and Aedes albopictus. Acta Trop 2022; 235:106668. [PMID: 36030882 DOI: 10.1016/j.actatropica.2022.106668] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 01/26/2023]
Abstract
Aedes aegypti and Aedes albopictus are important vectors for several arboviruses such as the dengue virus. The chemical control of Aedes spp., which is usually implemented, affects both humans and the environment. The biological control of Aedes spp. with entomopathogenic bacteria such as Photorhabdus and Xenorhabdus may be an alternative method that can overcome such issues. This study aimed to isolate and identify Photorhabdus and Xenorhabdus bacteria from entomopathogenic nematodes (EPNs) collected in Thailand and evaluate their larvicidal properties in controlling A. aegypti and A. albopictus. Colony morphology and recA sequencing of the 118 symbiotic isolated bacteria indicated that most were P. luminescens subsp. akhurstii and X. stockiae with minor prevalence of P. luminescens subsp. hainanensis, P. asymbiotica subsp. australis, X. indica, X. griffiniae, X. japonica, X. thuongxuanensis, and X. eapokensis . The larvicidal bioassay with the third- and fourth-instar mosquito larvae suggested that a whole-cell suspension of X. griffiniae (bMSN3.3_TH) had the highest efficiency in eradicating A. aegypti and A. albopictus, with 90 ± 3.71% and 81 ± 2.13% mortality, respectively, after 96 h exposure. In contrast, 1% of ethyl acetate extracted from X. indica (bSNK8.5_TH) showed reduced mortality for A. aegypti of only 50 ± 3.66% after 96 h exposure. The results indicate that both X. griffiniae (bMSN3.3_TH) and X. indica (bSNK8.5_TH) could be used as biocontrol agents against Aedes larvae.
Collapse
|
10
|
Biosynthesis and characterization of silver nanoparticles from symbiotic bacteria Xenorhabdus nematophila and testing its insecticidal efficacy on Spodoptera litura larvae. Biometals 2022; 35:795-812. [PMID: 35715709 DOI: 10.1007/s10534-022-00403-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/26/2022] [Indexed: 11/02/2022]
Abstract
Spodoptera litura, one of the polyphagous pests, causes huge economical lose and use of chemical pesticide causes impact to the environmental. The present study deals with the use of cell- free supernatant of bacteria Xenorhabdus nematophila NP-1 strain for synthesizing silver nanoparticles and analyzing its larvicidal ability against Spodoptera litura. Color change from yellow to dark brown specifies the synthesis of AgNPs. UV-Vis spec indicates the presences of AgNPs at 440 nm λmax and functional groups; alcohols, carboxylic acids, aromatics, alkylhalides, ethers and phenols were confirmed by FTIR. SEM revealed the synthesized AgNPs is in spherical shape, EDaX confirms the elemental composition and the crystalline nature were observed using XRD. GC-MS analysis showed presence of Benzencepropanoic acid, 1, 3, 5 Trichloropent-2-ene, 1,1-Dichloro-2,3- dicmethycycloprone and 1,2-benzenedicarboxylic acid bioactive compounds some of which may be responsible for insecticidal and antibacterial activity. The antibacterial activity against S. aureus, B. subtilis and K. pneumoniae showed maximum zone of inhibition at 100 µL/mL. Larvicidal activity of S. litura shows highest mortality at 48 h. In potted plant experiment, AgNPs treated plants showed less damage, with less leaf consumption by S. litura larvae. Further, the synthesis of AgNPs were targeted to zebrafish embryos (non- target organism) and it didn't exhibit any toxic effect even at higher concentration. Our experiment concludes that, AgNPs synthesized using NP-1 strain has highest antimicrobial and insecticidal activity, which can be used in biomedical and biopesticides.
Collapse
|
11
|
Subkrasae C, Ardpairin J, Dumidae A, Janthu P, Meesil W, Muangpat P, Tandhavanant S, Thanwisai A, Vitta A. Molecular identification and phylogeny of Steinernema and Heterorhabditis nematodes and their efficacy in controlling the larvae of Aedes aegypti, a major vector of the dengue virus. Acta Trop 2022; 228:106318. [PMID: 35063414 DOI: 10.1016/j.actatropica.2022.106318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/13/2022] [Accepted: 01/16/2022] [Indexed: 11/18/2022]
Abstract
Aedes aegypti is the mosquito vector of several arboviruses, especially the dengue virus. Aedes aegypti strain resistant to chemical insecticides have been reported worldwide. To tackle this, an entomopathogenic nematode (EPN) may be an alternative bio-control agent. To this end, this study aims to isolate, identify, and analyze the phylogeny of EPNs in Thailand and evaluate their efficacy for controlling the Ae. aegypti larvae. From 12 provinces in Thailand, soil samples were randomly collected, with 118 out of 1,100 them being positive for EPNs (10.73% prevalence) in genera Steinernema (4.46%) and Heterorhabditis (6.27%). Then, molecular discrimination of these two genus was performed based on the sequencing and phylogenetic analysis of the 28S rDNA and internal transcribed spacer regions. The most abundant species of EPN were Heterorhabditis indica, with minor species of Heterorhabditis sp. SGmg3, H. baujardi, S. surkhetense, S. kushidai, S. siamkayai, Steinernema sp. YNd80, Steinernema sp. YNc215, S. guangdongense, and S. huense. The larvicidal activity of five selected EPN isolates were tested against Ae. aegypti. Ten larvae of Ae. aegypti were incubated with different concentration (80, 160, 320, and 640 IJs/larva) of the infective juveniles of EPN in a 24-well and 6-well plates for 4 days. The mortality rates of the larvae were observed daily. Steinernema surkhetense (ePYO8.5_TH) showed the potential to kill mosquito larvae, with the highest mortality rate of 92 ± 9.37% and 89 ± 9.91% after it was treated with 640 IJs/larva in a 24-well plate and 1600 IJs/larva in a 6-well plate, respectively. There is an abundant distribution of EPNs across the country, and S. surkhetense ePYO8.5_TH may be used as a biocontrol agent against Ae. aegypti larvae.
Collapse
Affiliation(s)
- Chanakan Subkrasae
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Jiranun Ardpairin
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Abdulhakam Dumidae
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Pichamon Janthu
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Wipanee Meesil
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Paramaporn Muangpat
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Sarunporn Tandhavanant
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Aunchalee Thanwisai
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand; Centre of Excellence in Medical Biotechnology (CEMB), Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand; Centre of Excellence for Biodiversity, Faculty of Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Apichat Vitta
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand; Centre of Excellence in Medical Biotechnology (CEMB), Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand; Centre of Excellence for Biodiversity, Faculty of Sciences, Naresuan University, Phitsanulok 65000, Thailand.
| |
Collapse
|