1
|
Maiorano MFP, Cormio G, Loizzi V, Maiorano BA, D’Oronzo S, Silvestris E. Tamoxifen and Fertility in Women with Breast Cancer: A Systematic Review on Reproductive Outcomes and Oncological Safety of Treatment Interruption. Int J Mol Sci 2025; 26:3787. [PMID: 40332441 PMCID: PMC12028241 DOI: 10.3390/ijms26083787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 04/14/2025] [Accepted: 04/15/2025] [Indexed: 05/08/2025] Open
Abstract
Breast cancer (BC) is the most prevalent malignancy among women worldwide, with a rising incidence in young, premenopausal patients. For those diagnosed with hormone receptor-positive (HR+) BC, tamoxifen is a cornerstone of adjuvant endocrine therapy, significantly reducing recurrence risk and improving long-term survival. However, its prolonged use poses challenges for women desiring pregnancy, prompting interest in temporary treatment interruption as a strategy to achieve reproductive goals while maintaining oncological safety. This systematic review evaluates the impact of tamoxifen on fertility, the feasibility of treatment interruption, and associated reproductive and oncological outcomes. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we conducted a comprehensive search across major databases, identifying three relevant studies, including one randomized controlled trial (RCT) and two observational cohort studies. The findings suggest that temporary tamoxifen interruption allows for successful pregnancies without significantly increasing short-term recurrence rates. Notably, the POSITIVE trial demonstrated a pregnancy achievement rate of 74% and a live birth rate of 63.8%, with comparable three-year disease-free survival between patients who interrupted tamoxifen and those who continued therapy. However, concerns remain regarding tamoxifen's teratogenic risks, emphasizing the need for strict contraceptive measures and preconception counseling. Despite emerging evidence supporting this approach, long-term safety data are limited. Further research is warranted to refine clinical recommendations and optimize reproductive counseling for young BC survivors.
Collapse
Affiliation(s)
| | - Gennaro Cormio
- Gynecologic Oncology Unit, IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy; (G.C.); (V.L.); (E.S.)
| | - Vera Loizzi
- Gynecologic Oncology Unit, IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy; (G.C.); (V.L.); (E.S.)
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari “Aldo Moro”, Policlinico of Bari, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Brigida Anna Maiorano
- Department of Medical Oncology, IRCCS San Raffaele Hospital, Via Olgettina 60, 20132 Milan, Italy;
| | - Stella D’Oronzo
- Medicine and Surgery Department, LUM University, Casamassima, 70010 Bari, Italy
- Oncology and Oncohematology Division, “F. Miulli” General Regional Hospital, Acquaviva delle Fonti, 70021 Bari, Italy
| | - Erica Silvestris
- Gynecologic Oncology Unit, IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy; (G.C.); (V.L.); (E.S.)
| |
Collapse
|
2
|
Rivera-González KS, Reynolds PM, Lipinski RJ. Examination of piperonyl butoxide developmental toxicity as a Sonic hedgehog pathway inhibitor targeting limb and palate morphogenesis. Reprod Toxicol 2024; 130:108716. [PMID: 39255949 PMCID: PMC11624992 DOI: 10.1016/j.reprotox.2024.108716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/14/2024] [Accepted: 09/06/2024] [Indexed: 09/12/2024]
Abstract
Piperonyl butoxide (PBO) is a pesticide synergist with widespread use and human exposure that was discovered to inhibit Sonic hedgehog (Shh) signaling, a pathway required for numerous developmental processes. Previous examinations of PBO's potential for developmental toxicity have generated seemingly conflicting results. We investigated the impact of acute PBO exposure targeting Shh pathway activity during palate and limb morphogenesis. Timed-pregnant C57BL/6 J mice were exposed to a single PBO dose (67-1800 mg/kg) at gestational day (GD) 9.75, and litters were collected at GD10.25 and GD10.75 to examine Shh pathway activity or GD17 for phenotypic assessment. PBO exposure induced dose-dependent limb malformations and cleft palate in the highest dose group. Following PBO exposure, reduced expression of the Shh pathway activity markers Gli1 and Ptch1 was observed in the embryonic limb buds and craniofacial processes. These findings provide additional evidence that prenatal PBO exposure targeting Shh pathway activity can result in malformations in mice that parallel common etiologically complex human birth defects.
Collapse
Affiliation(s)
- Kenneth S Rivera-González
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA; Molecular and Environmental Toxicology Graduate Training Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Porsha M Reynolds
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Robert J Lipinski
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA; Molecular and Environmental Toxicology Graduate Training Program, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
3
|
Yu W, Kastriti ME, Ishan M, Choudhary SK, Rashid MM, Kramer N, Do HGT, Wang Z, Xu T, Schwabe RF, Ye K, Adameyko I, Liu HX. The duct of von Ebner's glands is a source of Sox10 + taste bud progenitors and susceptible to pathogen infections. Front Cell Dev Biol 2024; 12:1460669. [PMID: 39247625 PMCID: PMC11377339 DOI: 10.3389/fcell.2024.1460669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 08/01/2024] [Indexed: 09/10/2024] Open
Abstract
Introduction We have recently demonstrated that Sox10-expressing (Sox10 +) cells give rise to mainly type-III neuronal taste bud cells that are responsible for sour and salt taste. The two tissue compartments containing Sox10 + cells in the surrounding of taste buds include the connective tissue core of taste papillae and von Ebner's glands (vEGs) that are connected to the trench of circumvallate and foliate papillae. Methods In this study, we performed single cell RNA-sequencing of the epithelium of Sox10-Cre/tdT mouse circumvallate/vEG complex and used inducible Cre mouse models to map the cell lineages of vEGs and/or connective tissue (including stromal and Schwann cells). Results Transcriptomic analysis indicated that Sox10 expression was enriched in the cell clusters of vEG ducts that contained abundant proliferating cells, while Sox10-Cre/tdT expression was enriched in type-III taste bud cells and vEG ductal cells. In vivo lineage mapping showed that the traced cells were distributed in circumvallate taste buds concurrently with those in the vEGs, but not in the connective tissue. Moreover, multiple genes encoding pathogen receptors were enriched in the vEG ducts hosting Sox10 + cells. Discussion Our data supports that it is the vEGs, not connective tissue core, that serve as the niche of Sox10 + taste bud progenitors. If this is also true in humans, our data indicates that vEG duct is a source of Sox10 + taste bud progenitors and susceptible to pathogen infections.
Collapse
Affiliation(s)
- Wenxin Yu
- Department of Animal and Dairy Science, Regenerative Bioscience Center, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States
| | | | - Mohamed Ishan
- Department of Animal and Dairy Science, Regenerative Bioscience Center, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States
| | | | - Md Mamunur Rashid
- Department of Animal and Dairy Science, Regenerative Bioscience Center, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States
| | - Naomi Kramer
- Department of Animal and Dairy Science, Regenerative Bioscience Center, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States
| | - Hy Gia Truong Do
- Department of Genetics, University of Georgia, Athens, GA, United States
| | - Zhonghou Wang
- Department of Animal and Dairy Science, Regenerative Bioscience Center, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States
| | - Ting Xu
- Department of Animal and Dairy Science, Regenerative Bioscience Center, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States
| | - Robert F Schwabe
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Kaixiong Ye
- Institute of Bioinformatics, University of Georgia, Athens, GA, United States
- Department of Genetics, University of Georgia, Athens, GA, United States
| | - Igor Adameyko
- Department of Neuroimmunology, Medical University of Vienna, Vienna, Austria
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden
| | - Hong-Xiang Liu
- Department of Animal and Dairy Science, Regenerative Bioscience Center, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States
| |
Collapse
|
4
|
Yu W, Kastriti ME, Ishan M, Choudhary SK, Kramer N, Rashid MM, Truong Do HG, Wang Z, Xu T, Schwabe RF, Ye K, Adameyko I, Liu HX. The main duct of von Ebner's glands is a source of Sox10 + taste bud progenitors and susceptible to pathogen infections. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.14.594215. [PMID: 38798668 PMCID: PMC11118543 DOI: 10.1101/2024.05.14.594215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
We have recently demonstrated that Sox10 -expressing ( Sox10 + ) cells give rise to mainly type-III neuronal taste bud cells that are responsible for sour and salt taste. The two tissue compartments containing Sox10 + cells in the surrounding of taste buds include the connective tissue core of taste papillae and von Ebner's glands (vEGs) that are connected to the trench of circumvallate and foliate papillae. In this study, we used inducible Cre mouse models to map the cell lineages of connective tissue (including stromal and Schwann cells) and vEGs and performed single cell RNA-sequencing of the epithelium of Sox10-Cre/tdT mouse circumvallate/vEG complex. In vivo lineage mapping showed that the distribution of traced cells in circumvallate taste buds was closely linked with that in the vEGs, but not in the connective tissue. Sox10 , but not the known stem cells marker Lgr5 , expression was enriched in the cell clusters of main ducts of vEGs that contained abundant proliferating cells, while Sox10-Cre/tdT expression was enriched in type-III taste bud cells and excretory ductal cells. Moreover, multiple genes encoding pathogen receptors are enriched in the vEG main ducts. Our data indicate that the main duct of vEGs is a source of Sox10 + taste bud progenitors and susceptible to pathogen infections.
Collapse
|
5
|
Kocherlakota S, Baes M. Benefits and Caveats in the Use of Retinal Pigment Epithelium-Specific Cre Mice. Int J Mol Sci 2024; 25:1293. [PMID: 38279294 PMCID: PMC10816505 DOI: 10.3390/ijms25021293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024] Open
Abstract
The retinal pigment epithelium (RPE) is an important monolayer of cells present in the outer retina, forming a major part of the blood-retina barrier (BRB). It performs many tasks essential for the maintenance of retinal integrity and function. With increasing knowledge of the retina, it is becoming clear that both common retinal disorders, like age-related macular degeneration, and rare genetic disorders originate in the RPE. This calls for a better understanding of the functions of various proteins within the RPE. In this regard, mice enabling an RPE-specific gene deletion are a powerful tool to study the role of a particular protein within the RPE cells in their native environment, simultaneously negating any potential influences of systemic changes. Moreover, since RPE cells interact closely with adjacent photoreceptors, these mice also provide an excellent avenue to study the importance of a particular gene function within the RPE to the retina as a whole. In this review, we outline and compare the features of various Cre mice created for this purpose, which allow for inducible or non-inducible RPE-specific knockout of a gene of interest. We summarize the various benefits and caveats involved in the use of such mouse lines, allowing researchers to make a well-informed decision on the choice of Cre mouse to use in relation to their research needs.
Collapse
Affiliation(s)
| | - Myriam Baes
- Laboratory of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
6
|
Ulschmid CM, Sun MR, Jabbarpour CR, Steward AC, Rivera-González KS, Cao J, Martin AA, Barnes M, Wicklund L, Madrid A, Papale LA, Joseph DB, Vezina CM, Alisch RS, Lipinski RJ. Disruption of DNA methylation-mediated cranial neural crest proliferation and differentiation causes orofacial clefts in mice. Proc Natl Acad Sci U S A 2024; 121:e2317668121. [PMID: 38194455 PMCID: PMC10801837 DOI: 10.1073/pnas.2317668121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/14/2023] [Indexed: 01/11/2024] Open
Abstract
Orofacial clefts of the lip and palate are widely recognized to result from complex gene-environment interactions, but inadequate understanding of environmental risk factors has stymied development of prevention strategies. We interrogated the role of DNA methylation, an environmentally malleable epigenetic mechanism, in orofacial development. Expression of the key DNA methyltransferase enzyme DNMT1 was detected throughout palate morphogenesis in the epithelium and underlying cranial neural crest cell (cNCC) mesenchyme, a highly proliferative multipotent stem cell population that forms orofacial connective tissue. Genetic and pharmacologic manipulations of DNMT activity were then applied to define the tissue- and timing-dependent requirement of DNA methylation in orofacial development. cNCC-specific Dnmt1 inactivation targeting initial palate outgrowth resulted in OFCs, while later targeting during palatal shelf elevation and elongation did not. Conditional Dnmt1 deletion reduced cNCC proliferation and subsequent differentiation trajectory, resulting in attenuated outgrowth of the palatal shelves and altered development of cNCC-derived skeletal elements. Finally, we found that the cellular mechanisms of cleft pathogenesis observed in vivo can be recapitulated by pharmacologically reducing DNA methylation in multipotent cNCCs cultured in vitro. These findings demonstrate that DNA methylation is a crucial epigenetic regulator of cNCC biology, define a critical period of development in which its disruption directly causes OFCs, and provide opportunities to identify environmental influences that contribute to OFC risk.
Collapse
Affiliation(s)
- Caden M. Ulschmid
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI53706
| | - Miranda R. Sun
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI53706
| | - Christopher R. Jabbarpour
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI53706
| | - Austin C. Steward
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI53706
| | - Kenneth S. Rivera-González
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI53706
- Molecular and Environmental Toxicology Training Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI53706
| | - Jocelyn Cao
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI53706
| | - Alexander A. Martin
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI53706
| | - Macy Barnes
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI53706
| | - Lorena Wicklund
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI53706
| | - Andy Madrid
- Neurological Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI53706
| | - Ligia A. Papale
- Neurological Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI53706
| | - Diya B. Joseph
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI53706
| | - Chad M. Vezina
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI53706
- Molecular and Environmental Toxicology Training Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI53706
| | - Reid S. Alisch
- Neurological Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI53706
| | - Robert J. Lipinski
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI53706
- Molecular and Environmental Toxicology Training Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI53706
| |
Collapse
|
7
|
Xue J, Brawner AT, Thompson JR, Yelhekar TD, Newmaster KT, Qiu Q, Cooper YA, Yu CR, Ahmed-Braima YH, Kim Y, Lin Y. Spatiotemporal Mapping and Molecular Basis of Whole-brain Circuit Maturation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.03.572456. [PMID: 38260331 PMCID: PMC10802351 DOI: 10.1101/2024.01.03.572456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Brain development is highly dynamic and asynchronous, marked by the sequential maturation of functional circuits across the brain. The timing and mechanisms driving circuit maturation remain elusive due to an inability to identify and map maturing neuronal populations. Here we create DevATLAS (Developmental Activation Timing-based Longitudinal Acquisition System) to overcome this obstacle. We develop whole-brain mapping methods to construct the first longitudinal, spatiotemporal map of circuit maturation in early postnatal mouse brains. Moreover, we uncover dramatic impairments within the deep cortical layers in a neurodevelopmental disorders (NDDs) model, demonstrating the utility of this resource to pinpoint when and where circuit maturation is disrupted. Using DevATLAS, we reveal that early experiences accelerate the development of hippocampus-dependent learning by increasing the synaptically mature granule cell population in the dentate gyrus. Finally, DevATLAS enables the discovery of molecular mechanisms driving activity-dependent circuit maturation.
Collapse
Affiliation(s)
- Jian Xue
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Andrew T. Brawner
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Neuroscience Graduate Program, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Equal contribution
| | - Jacqueline R. Thompson
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Neuroscience Graduate Program, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Equal contribution
| | - Tushar D. Yelhekar
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Kyra T. Newmaster
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, Hershey, PA 17033, USA
| | - Qiang Qiu
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, MO 66160, USA
| | - Yonatan A. Cooper
- Current address: Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - C. Ron Yu
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, MO 66160, USA
| | | | - Yongsoo Kim
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, Hershey, PA 17033, USA
| | - Yingxi Lin
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Lead contact
| |
Collapse
|
8
|
Rashbrook VS, Denti L, Ruhrberg C. Tamoxifen exacerbates morbidity and mortality in male mice receiving medetomidine anaesthesia. Anim Welf 2023; 32:e78. [PMID: 38487465 PMCID: PMC10936365 DOI: 10.1017/awf.2023.98] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 10/20/2023] [Accepted: 11/21/2023] [Indexed: 03/17/2024]
Abstract
Tamoxifen-induced CreER-LoxP recombination is often used to induce spatiotemporally controlled gene deletion in genetically modified mice. Prior work has shown that tamoxifen and tamoxifen-induced CreER activation can have off-target effects that should be controlled. However, it has not yet been reported whether tamoxifen administration, independently of CreER expression, interacts adversely with commonly used anaesthetic drugs such as medetomidine or its enantiomer dexmedetomidine in laboratory mice (Mus musculus). Here, we report a high incidence of urinary plug formation and morbidity in male mice on a mixed C57Bl6/J6 and 129/SvEv background when tamoxifen treatment was followed by ketamine-medetomidine anaesthesia. Medetomidine is therefore contra-indicated for male mice after tamoxifen treatment. As dexmedetomidine causes morbidity and mortality in male mice at higher rates than medetomidine even without tamoxifen treatment, our findings suggest that dexmedetomidine is not a suitable alternative for anaesthesia of male mice after tamoxifen treatment. We conclude that the choice of anaesthetic drug needs to be carefully evaluated in studies using male mice that have undergone tamoxifen treatment for inducing CreER-LoxP recombination.
Collapse
Affiliation(s)
- Victoria S Rashbrook
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | - Laura Denti
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | - Christiana Ruhrberg
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| |
Collapse
|
9
|
Tiyaboonchai A, Wakefield L, Vonada A, May CL, Dorrell C, Enicks D, Sairavi A, Kaestner KH, Grompe M. In vivo tracing of the Cytokeratin 14 lineages using self-cleaving guide RNAs and CRISPR/Cas9. Dev Biol 2023; 504:120-127. [PMID: 37813160 PMCID: PMC11631131 DOI: 10.1016/j.ydbio.2023.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/11/2023]
Abstract
The current gold-standard for genetic lineage tracing in transgenic mice is based on cell-type specific expression of Cre recombinase. As an alternative, we developed a cell-type specific CRISPR/spCas9 system for lineage tracing. This method relies on RNA polymerase II promoter driven self-cleaving guide RNAs (scgRNA) to achieve tissue-specificity. To demonstrate proof-of-principle for this approach a transgenic mouse was generated harbouring a knock-in of a scgRNA into the Cytokeratin 14 (Krt14) locus. Krt14 expression marks the stem cells of squamous epithelium in the skin and oral mucosa. The scgRNA targets a Stop cassette preceding a fluorescent reporter in the Ai9-tdtomato mouse. Ai9-tdtomato reporter mice harbouring this allele along with a spCas9 transgene demonstrated precise marking of the Krt14 lineage. We conclude that RNA polymerase II promoter driven scgRNAs enable the use of CRISPR/spCas9 for genetic lineage tracing.
Collapse
Affiliation(s)
- Amita Tiyaboonchai
- Oregon Stem Cell Center, Oregon Health & Science University, Portland, OR, 97239, USA; Department of Pediatrics, Oregon Health & Science University, Portland, OR, 97239, USA.
| | - Leslie Wakefield
- Oregon Stem Cell Center, Oregon Health & Science University, Portland, OR, 97239, USA; Department of Pediatrics, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Anne Vonada
- Oregon Stem Cell Center, Oregon Health & Science University, Portland, OR, 97239, USA; Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Catherine L May
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Genetics, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Craig Dorrell
- Oregon Stem Cell Center, Oregon Health & Science University, Portland, OR, 97239, USA; Department of Pediatrics, Oregon Health & Science University, Portland, OR, 97239, USA
| | - David Enicks
- Oregon Stem Cell Center, Oregon Health & Science University, Portland, OR, 97239, USA; Department of Pediatrics, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Anusha Sairavi
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Klaus H Kaestner
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Genetics, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Markus Grompe
- Oregon Stem Cell Center, Oregon Health & Science University, Portland, OR, 97239, USA; Department of Pediatrics, Oregon Health & Science University, Portland, OR, 97239, USA; Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, 97239, USA
| |
Collapse
|
10
|
Chen MY, Zhao FL, Chu WL, Bai MR, Zhang DM. A review of tamoxifen administration regimen optimization for Cre/loxp system in mouse bone study. Biomed Pharmacother 2023; 165:115045. [PMID: 37379643 DOI: 10.1016/j.biopha.2023.115045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/07/2023] [Accepted: 06/20/2023] [Indexed: 06/30/2023] Open
Abstract
Gene knockout is a technique routinely used in basic experimental research, particularly in mouse skeletal and developmental studies. Tamoxifen-induced Cre/loxp system is known for its temporal and spatial precision and commonly utilized by researchers. However, tamoxifen has been shown its side effects on affecting the phenotype of mouse bone directly. This review aimed to optimize tamoxifen administration regimens including its dosage and duration, to identify an optimal induction strategy that minimizes potential side effects while maintaining recombination efficacy. This study will help researchers in designing gene knockout experiments in bone when using tamoxifen.
Collapse
Affiliation(s)
- Ming-Yang Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fu-Lin Zhao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wen-Lin Chu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ming-Ru Bai
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - De-Mao Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China.
| |
Collapse
|
11
|
Schmitz GP, Roth BL. G protein-coupled receptors as targets for transformative neuropsychiatric therapeutics. Am J Physiol Cell Physiol 2023; 325:C17-C28. [PMID: 37067459 PMCID: PMC10281788 DOI: 10.1152/ajpcell.00397.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 03/28/2023] [Accepted: 04/06/2023] [Indexed: 04/18/2023]
Abstract
G protein-coupled receptors (GPCRs) constitute the largest family of druggable genes in the human genome. Even though perhaps 30% of approved medications target GPCRs, they interact with only a small number of them. Here, we consider whether there might be new opportunities for transformative therapeutics for neuropsychiatric disorders by specifically targeting both known and understudied GPCRs. Using psychedelic drugs that target serotonin receptors as an example, we show how recent insights into the structure, function, signaling, and cell biology of these receptors have led to potentially novel therapeutics. We next focus on the possibility that nonpsychedelic 5-HT2A receptor agonists might prove to be safe and rapidly acting antidepressants. Finally, we examine understudied and orphan GPCRs using the MRGPR family of receptors as an example.
Collapse
Affiliation(s)
- Gavin P Schmitz
- Department of Pharmacology, UNC Chapel Hill Medical School, Chapel Hill, North Carolina, United States
| | - Bryan L Roth
- Department of Pharmacology, UNC Chapel Hill Medical School, Chapel Hill, North Carolina, United States
| |
Collapse
|
12
|
Limitations of Tamoxifen Application for In Vivo Genome Editing Using Cre/ER T2 System. Int J Mol Sci 2022; 23:ijms232214077. [PMID: 36430553 PMCID: PMC9694728 DOI: 10.3390/ijms232214077] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022] Open
Abstract
Inducible Cre-dependent systems are frequently used to produce both conditional knockouts and transgenic mice with regulated expression of the gene of interest. Induction can be achieved by doxycycline-dependent transcription of the wild type gene or OH-tamoxifen-dependent nuclear translocation of the chimeric Cre/ERT2 protein. However, both of these activation strategies have some limitations. We analyzed the efficiency of knockout in different tissues and found out that it correlates with the concentration of the hydroxytamoxifen and endoxifen-the active metabolites of tamoxifen-measured by LC-MS in these tissues. We also describe two cases of Cdk8floxed/floxed/Rosa-Cre-ERT2 mice tamoxifen-induced knockout limitations. In the first case, the standard scheme of tamoxifen administration does not lead to complete knockout formation in the brain or in the uterus. Tamoxifen metabolite measurements in multiple tissues were performed and it has been shown that low recombinase activity in the brain is due to the low levels of tamoxifen active metabolites. Increase of tamoxifen dosage (1.5 fold) and duration of activation (from 5 to 7 days) allowed us to significantly improve the knockout rate in the brain, but not in the uterus. In the second case, knockout induction during embryonic development was impossible due to the negative effect of tamoxifen on gestation. Although DNA editing in the embryos was achieved in some cases, the treatment led to different complications of the pregnancy in wild-type female mice. We propose to use doxycycline-induced Cre systems in such models.
Collapse
|
13
|
Rashbrook VS, Brash JT, Ruhrberg C. Cre toxicity in mouse models of cardiovascular physiology and disease. NATURE CARDIOVASCULAR RESEARCH 2022; 1:806-816. [PMID: 37692772 PMCID: PMC7615056 DOI: 10.1038/s44161-022-00125-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/27/2022] [Indexed: 09/12/2023]
Abstract
The Cre-LoxP system provides a widely used method for studying gene requirements in the mouse as the main mammalian genetic model organism. To define the molecular and cellular mechanisms that underlie cardiovascular development, function and disease, various mouse strains have been engineered that allow Cre-LoxP-mediated gene targeting within specific cell types of the cardiovascular system. Despite the usefulness of this system, evidence is accumulating that Cre activity can have toxic effects in cells, independently of its ability to recombine pairs of engineered LoxP sites in target genes. Here, we have gathered published evidence for Cre toxicity in cells and tissues relevant to cardiovascular biology and provide an overview of mechanisms proposed to underlie Cre toxicity. Based on this knowledge, we propose that each study utilising the Cre-LoxP system to investigate gene function in the cardiovascular system should incorporate appropriate controls to account for Cre toxicity.
Collapse
Affiliation(s)
- Victoria S. Rashbrook
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | - James T. Brash
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | - Christiana Ruhrberg
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| |
Collapse
|