1
|
Pallathadka H, Jabir M, Rasool KH, Hanumanthaiah M, Sharma N, Pramanik A, Rab SO, Jawad SF, Oghenemaro EF, Mustafa YF. siRNA-based therapy for overcoming drug resistance in human solid tumours; molecular and immunological approaches. Hum Immunol 2025; 86:111221. [PMID: 39700968 DOI: 10.1016/j.humimm.2024.111221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 11/25/2024] [Accepted: 12/09/2024] [Indexed: 12/21/2024]
Abstract
RNA interference (RNAi) is a primordial biological process that protects against external intrusion. SiRNA has the potential to selectively silence disease-related genes in a sequence-specific way, thus offering a promising therapeutic approach. The efficacy of siRNA-based therapies in cancer treatment has gained significant recognition due to multiple studies demonstrating its ability to effectively suppress cancer cells' growth and multiplication. Moreover, siRNA-based medicines have shown considerable promise in enhancing the sensitivity of cancer cells to chemotherapy and other treatment methods by suppressing genes that play a role in the development of drug resistance. Exploring and identifying functional genes linked to cancer cell characteristics and drug resistance is crucial for developing effective siRNAs for cancer treatment and advancing targeted and personalized therapeutics. Targeting and silencing genes in charge of resistance mechanisms, such as those involved in drug efflux, cell survival, or DNA repair, is possible with siRNA therapy in the context of drug resistance, especially cancer. Through inhibiting these genes, siRNA therapy can prevent resistance and restore the efficacy of traditional medications. This review addresses the potential of siRNAs in addressing drug resistance in human tumours, opening up new possibilities in cancer therapy. This review article offers a non-systematic summary of how different siRNA types contribute to cancer cells' treatment resistance. Using pertinent keywords, sources were chosen from reliable databases, including PubMed, Scopus, and Google Scholar. The review covered essential papers in this area and those that mainly addressed the function of siRNA in drug resistance. The articles examined in connection with the title of this review were primarily published from 2020 onward and are based on in vitro studies. Furthermore, this article examines the potential barriers and prospective perspectives of siRNA therapies.
Collapse
Affiliation(s)
| | - Majid Jabir
- Department of Applied Sciences, University of Technology, Iraq
| | | | - Malathi Hanumanthaiah
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Neha Sharma
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjeri - 140307, Mohali, Punjab, India
| | - Atreyi Pramanik
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University Dehradun, Uttarakhand, India
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Sabrean Farhan Jawad
- Department of Biochemistry, College of Science, Al-Mustaqbal University, 51001 Babil, Iraq.
| | - Enwa Felix Oghenemaro
- Department of Pharmaceutical Microbiology, Delta State University, Faculty of Pharmacy, PMB 1 Abraka, Delta State, Nigeria
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| |
Collapse
|
2
|
Ivarsdottir EV, Gudmundsson J, Tragante V, Sveinbjornsson G, Kristmundsdottir S, Stacey SN, Halldorsson GH, Magnusson MI, Oddsson A, Walters GB, Sigurdsson A, Saevarsdottir S, Beyter D, Thorleifsson G, Halldorsson BV, Melsted P, Stefansson H, Jonsdottir I, Sørensen E, Pedersen OB, Erikstrup C, Bøgsted M, Pøhl M, Røder A, Stroomberg HV, Gögenur I, Hillingsø J, Bojesen SE, Lassen U, Høgdall E, Ullum H, Brunak S, Ostrowski SR, Sonderby IE, Frei O, Djurovic S, Havdahl A, Moller P, Dominguez-Valentin M, Haavik J, Andreassen OA, Hovig E, Agnarsson BA, Hilmarsson R, Johannsson OT, Valdimarsson T, Jonsson S, Moller PH, Olafsson JH, Sigurgeirsson B, Jonasson JG, Tryggvason G, Holm H, Sulem P, Rafnar T, Gudbjartsson DF, Stefansson K. Gene-based burden tests of rare germline variants identify six cancer susceptibility genes. Nat Genet 2024; 56:2422-2433. [PMID: 39472694 DOI: 10.1038/s41588-024-01966-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/30/2024] [Indexed: 11/10/2024]
Abstract
Discovery of cancer risk variants in the sequence of the germline genome can shed light on carcinogenesis. Here we describe gene burden association analyses, aggregating rare missense and loss of function variants, at 22 cancer sites, including 130,991 cancer cases and 733,486 controls from Iceland, Norway and the United Kingdom. We identified four genes associated with increased cancer risk; the pro-apoptotic BIK for prostate cancer, the autophagy involved ATG12 for colorectal cancer, TG for thyroid cancer and CMTR2 for both lung cancer and cutaneous melanoma. Further, we found genes with rare variants that associate with decreased risk of cancer; AURKB for any cancer, irrespective of site, and PPP1R15A for breast cancer, suggesting that inhibition of PPP1R15A may be a preventive strategy for breast cancer. Our findings pinpoint several new cancer risk genes and emphasize autophagy, apoptosis and cell stress response as a focus point for developing new therapeutics.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Saedis Saevarsdottir
- deCODE genetics/Amgen, Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Medicine, Landspitali University Hospital, Reykjavik, Iceland
| | | | | | - Bjarni V Halldorsson
- deCODE genetics/Amgen, Reykjavik, Iceland
- School of Technology, Reykjavik University, Reykjavik, Iceland
| | - Pall Melsted
- deCODE genetics/Amgen, Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | | | - Ingileif Jonsdottir
- deCODE genetics/Amgen, Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Immunology, Landspitali University Hospital, Reykjavik, Iceland
| | - Erik Sørensen
- Department of Clinical Immunology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Ole B Pedersen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Immunology, Zealand University Hospital, Koege, Denmark
| | - Christian Erikstrup
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Martin Bøgsted
- Center for Clinical Data Science, Aalborg University and Aalborg University Hospital, Aalborg, Denmark
| | - Mette Pøhl
- Department of Oncology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Andreas Røder
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Urology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Hein Vincent Stroomberg
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Urology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Ismail Gögenur
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Surgical Science, Zealand University Hospital, Køge, Denmark
| | - Jens Hillingsø
- Department of Transplantation, Digestive Diseases and General Surgery, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Stig E Bojesen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Herlev Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Ulrik Lassen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Oncology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Estrid Høgdall
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Pathology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | | | - Søren Brunak
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sisse R Ostrowski
- Department of Clinical Immunology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ida Elken Sonderby
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Centre for Precision Psychiatry, University of Oslo and Oslo University Hospital, Oslo, Norway
- K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Oleksandr Frei
- K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Department of Informatics, Centre for Bioinformatics, University of Oslo, Oslo, Norway
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Centre for Precision Psychiatry, University of Oslo and Oslo University Hospital, Oslo, Norway
- K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Alexandra Havdahl
- Center for Genetic Epidemiology and Mental Health, Norwegian Institute of Public Health, Oslo, Norway
- Nic Waals Institute, Lovisenberg Diaconal Hospital, Oslo, Norway
- Department of Psychology, PROMENTA Research Center, University of Oslo, Oslo, Norway
| | - Pal Moller
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Mev Dominguez-Valentin
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Jan Haavik
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Division of Psychiatry, Bergen Center of Brain Plasticity, Haukeland University Hospital, Bergen, Norway
| | - Ole A Andreassen
- Division of Mental Health and Addiction, Centre for Precision Psychiatry, University of Oslo and Oslo University Hospital, Oslo, Norway
- K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Eivind Hovig
- Department of Informatics, Centre for Bioinformatics, University of Oslo, Oslo, Norway
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Bjarni A Agnarsson
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Pathology, Landspitali University Hospital, Reykjavik, Iceland
| | - Rafn Hilmarsson
- Department of General Surgery, Landspitali University Hospital, Reykjavik, Iceland
| | | | - Trausti Valdimarsson
- The Medical Center, Glaesibae, Reykjavik, Iceland
- Department of Medicine, West Iceland Healthcare Centre, Akranes, Iceland
| | - Steinn Jonsson
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Medicine, Landspitali University Hospital, Reykjavik, Iceland
| | - Pall H Moller
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of General Surgery, Landspitali University Hospital, Reykjavik, Iceland
| | - Jon H Olafsson
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Dermatology Oncology, Landspitali University Hospital, Reykjavik, Iceland
| | - Bardur Sigurgeirsson
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Dermatology Oncology, Landspitali University Hospital, Reykjavik, Iceland
| | - Jon G Jonasson
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Pathology, Landspitali University Hospital, Reykjavik, Iceland
| | - Geir Tryggvason
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Otorhinolaryngology, Landspitali University Hospital, Reykjavik, Iceland
| | - Hilma Holm
- deCODE genetics/Amgen, Reykjavik, Iceland
| | | | | | - Daniel F Gudbjartsson
- deCODE genetics/Amgen, Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Kari Stefansson
- deCODE genetics/Amgen, Reykjavik, Iceland.
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.
| |
Collapse
|
3
|
Luo G, Aldridge K, Chen T, Aslot V, Kim BG, Han EH, Singh N, Li S, Xiao TS, Sporn MB, Letterio JJ. The synthetic oleanane triterpenoid CDDO-2P-Im binds GRP78/BiP to induce unfolded protein response-mediated apoptosis in myeloma. Mol Oncol 2023; 17:2526-2545. [PMID: 37149844 DOI: 10.1002/1878-0261.13447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/20/2023] [Accepted: 05/05/2023] [Indexed: 05/09/2023] Open
Abstract
Synthetic oleanane triterpenoids (SOTs) are small molecules with broad anticancer properties. A recently developed SOT, 1-[2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oyl]-4(-pyridin-2-yl)-1H-imidazole (CDDO-2P-Im or '2P-Im'), exhibits enhanced activity and improved pharmacokinetics over CDDO-Im, a previous generation SOT. However, the mechanisms leading to these properties are not defined. Here, we show the synergy of 2P-Im and the proteasome inhibitor ixazomib in human multiple myeloma (MM) cells and 2P-Im activity in a murine model of plasmacytoma. RNA sequencing and quantitative reverse transcription PCR revealed the upregulation of the unfolded protein response (UPR) in MM cells upon 2P-lm treatment, implicating the activation of the UPR as a key step in 2P-Im-induced apoptosis. Supporting this hypothesis, the deletion of genes encoding either protein kinase R-like endoplasmic reticulum kinase (PERK) or DNA damage-inducible transcript 3 protein (DDIT3; also known as CHOP) impaired the MM response to 2P-Im, as did treatment with ISRIB, integrated stress response inhibitor, which inhibits UPR signaling downstream of PERK. Finally, both drug affinity responsive target stability and thermal shift assays demonstrated direct binding of 2P-Im to endoplasmic reticulum chaperone BiP (GRP78/BiP), a stress-inducible key signaling molecule of the UPR. These data reveal GRP78/BiP as a novel target of SOTs, and specifically of 2P-Im, and suggest the potential broader utility of this class of small molecules as modulators of the UPR.
Collapse
Affiliation(s)
- George Luo
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | | | - Toby Chen
- Trinity College of Arts and Sciences, Duke University, Durham, NC, USA
| | - Vivek Aslot
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Byung-Gyu Kim
- The Angie Fowler Adolescent and Young Adult Cancer Institute, University Hospitals Rainbow Babies & Children's Hospital, Cleveland, OH, USA
- The Case Comprehensive Cancer Center, Cleveland, OH, USA
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
| | - Eun Hyang Han
- The Angie Fowler Adolescent and Young Adult Cancer Institute, University Hospitals Rainbow Babies & Children's Hospital, Cleveland, OH, USA
- The Case Comprehensive Cancer Center, Cleveland, OH, USA
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
| | - Neelima Singh
- The Angie Fowler Adolescent and Young Adult Cancer Institute, University Hospitals Rainbow Babies & Children's Hospital, Cleveland, OH, USA
- The Case Comprehensive Cancer Center, Cleveland, OH, USA
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
| | - Sai Li
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Tsan Sam Xiao
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | | | - John J Letterio
- The Angie Fowler Adolescent and Young Adult Cancer Institute, University Hospitals Rainbow Babies & Children's Hospital, Cleveland, OH, USA
- The Case Comprehensive Cancer Center, Cleveland, OH, USA
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|