1
|
Al-Faze R, Ahmed HA, El-Atawy MA, Zagloul H, Alshammari EM, Jaremko M, Emwas AH, Nabil GM, Hanna DH. Mitochondrial dysfunction route as a possible biomarker and therapy target for human cancer. Biomed J 2025; 48:100714. [PMID: 38452973 PMCID: PMC11743316 DOI: 10.1016/j.bj.2024.100714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024] Open
Abstract
Mitochondria are vital organelles found within living cells and have signalling, biosynthetic, and bioenergetic functions. Mitochondria play a crucial role in metabolic reprogramming, which is a characteristic of cancer cells and allows them to ensure a steady supply of proteins, nucleotides, and lipids to enable rapid proliferation and development. Their dysregulated activities have been associated with the growth and metastasis of different kinds of human cancer, particularly ovarian carcinoma. In this review, we briefly demonstrated the modified mitochondrial function in cancer, including mutations in mitochondrial DNA (mtDNA), reactive oxygen species (ROS) production, dynamics, apoptosis of cells, autophagy, and calcium excess to maintain cancer genesis, progression, and metastasis. Furthermore, the mitochondrial dysfunction pathway for some genomic, proteomic, and metabolomics modifications in ovarian cancer has been studied. Additionally, ovarian cancer has been linked to targeted therapies and biomarkers found through various alteration processes underlying mitochondrial dysfunction, notably targeting (ROS), metabolites, rewind metabolic pathways, and chemo-resistant ovarian carcinoma cells.
Collapse
Affiliation(s)
- Rawan Al-Faze
- Department of Chemistry, Faculty of Science, Taibah University, Almadinah Almunawarah, Saudi Arabia
| | - Hoda A Ahmed
- Chemistry Department, Faculty of Science at Yanbu, Taibah University, Yanbu, Saudi Arabia; Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Mohamed A El-Atawy
- Chemistry Department, Faculty of Science at Yanbu, Taibah University, Yanbu, Saudi Arabia; Chemistry Department, Faculty of Science, Alexandria University, Ibrahemia, Alexandria, Egypt
| | - Hayat Zagloul
- Chemistry Department, Faculty of Science at Yanbu, Taibah University, Yanbu, Saudi Arabia
| | - Eida M Alshammari
- Department of Chemistry, College of Sciences, University of Ha'il, Ha'il, Saudi Arabia
| | - Mariusz Jaremko
- Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Abdul-Hamid Emwas
- Core Labs., King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Gehan M Nabil
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Demiana H Hanna
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt.
| |
Collapse
|
2
|
Moussa AK, Abd El-Rahman HA, Mohamed RR, Hanna DH. Hyaluronic Acid-Based pH-Sensitive Nanogel: Synthesis, Characterization, and Assessment for Acyclovir Delivery In Vitro and In Vivo. Biomacromolecules 2025; 26:341-362. [PMID: 39720889 DOI: 10.1021/acs.biomac.4c01189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
Acyclovir (ACV) is a potentially effective antiviral medication; however, it has a serious drawback, which is its poor solubility, bioavailability, and short half-life. The goal of this study is to improve its drawbacks through the synthesis of nanogels. In this study, the cross-linked hyaluronic acid-grafted poly(acrylamide-co-itaconic acid) nanogel is synthesized successfully through free radical polymerization and used as a safe pH-responsive carrier for ACV. The nanogels showed pH response in vitro and in vivo. The prepared nanogel C5 (1:1 ratio of acrylamide: itaconic), which had the highest grafting efficiency, showed maximum swelling, drug loading, and release in pH 7.4, higher than pH 1.2. Also, nanogel C5, which had a large surface area, showed good stability, and its matrices shrank in acidic medium and protected the drug, while in basic medium, it expanded and released ACV in a sustained manner and improved the bioavailability and half-life of ACV in vivo.
Collapse
Affiliation(s)
- Aalaa K Moussa
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | | | - Riham R Mohamed
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Demiana H Hanna
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| |
Collapse
|
3
|
Sabbarwal S, Majumdar S, Verma VK, Srivastava P, Nawaz A, Singh V, Koch B, Krishnamurthy S, Kumar M. Room-Temperature-Stabilized Alpha Tin Nanocrystals for In Vivo Toxicology Evaluation and Photothermal Therapy Corroborated by FFT Modeling. ACS APPLIED MATERIALS & INTERFACES 2025; 17:140-156. [PMID: 39679903 DOI: 10.1021/acsami.4c10772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Herein, we unveil a remarkable finding for synthesizing room-temperature-stable, nontoxic, ultrasmall free-standing diamond cubic tin nanocrystals (α-Sn) with beta forms in the aqueous phase, avoiding conventional approaches that typically use toxic elements or large reactive substrates (Si/InSb) to stabilize α-Sn above 13 °C. Herein, for the first time, we demonstrate the successful synthesis of free-standing alpha tin with extraordinary stability up to 80 °C and in the aqueous phase at room temperature, which was supported by powder X-ray diffraction and X-ray photoelectron spectroscopy characterization methods. This synthetic approach eliminates the need to use hazardous materials, bulky substrates, and elevated temperatures, offering a safer, low-cost, and more sustainable alternative. Prepared α-Sn is characterized by extraordinary NIR absorption and a photothermal efficiency of 42.4%, making it a promising photothermal agent for cancer treatment upon shining low-power (0.5 W) 980 nm NIR light using a CW laser. Using fast Fourier transform weighted bright-field imaging, a mathematical model that foretells the behavior of live malignant cells before and after photothermal treatment has been constructed. Additionally, in vivo studies in rats backed by biochemical and histopathological analyses demonstrated no adverse effects on the vital organs of Wister rats. The unusual biocompatibility of the prepared α-Sn nanocrystals is demonstrated by a low hemolysis index (3.28 ± 0.53%) of the blood, which is far below the permissible limits of 5%. Current research unveils the strong potential of free-standing alpha-tin not only in the area of nanomedicine but also in other domains.
Collapse
Affiliation(s)
| | - Shreyasi Majumdar
- Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Vivek Kumar Verma
- School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Prachi Srivastava
- School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Ahmad Nawaz
- Interdisciplinary Research Center for Refining and Advanced Chemicals, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Virendra Singh
- Cancer Biology Laboratory, Department of Zoology Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Biplob Koch
- Cancer Biology Laboratory, Department of Zoology Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Sairam Krishnamurthy
- Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | | |
Collapse
|
4
|
Hanna DH, Al-Atmani AK, AlRashidi AA, Shafee EE. Camellia sinensis methanolic leaves extract: Phytochemical analysis and anticancer activity against human liver cancer cells. PLoS One 2024; 19:e0309795. [PMID: 39541389 PMCID: PMC11563400 DOI: 10.1371/journal.pone.0309795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 08/19/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND The study's primary goal is to ascertain whether there is a relationship between the processed green tea methanolic extract's (GTME) phytochemical components and its potential effectiveness against human liver cancer cells. The GTME's phytochemical composition was identified using gas chromatography-mass spectrometry, and the extract's capacity to lower cellular proliferation and cause apoptosis in HepG2 cancerous liver cell lines was checked. RESULTS The findings of the gas chromatography-mass chromatogram showed that GTME included bioactive antioxidants and anticancer substances. Additionally, utilizing the MTT, comet assay, and acridine assay, GTME revealed a selective cytotoxic impact with a significant IC50 value (27.3 µg/ml) on HepG2 cells without any harmful effects on WI-38 healthy cells. Also, compared to untreated cells, the extract-treated HepG2 cells had an upsurge in the proportion of cells that have undergone apoptosis and displayed a comet nucleus, which is a sign of DNA damage. In addition, HepG2 cells treated with GTME revealed a stop in the G1 phase and sub-G1 apoptotic cells (37.32%) in a flow cytometry analysis. Furthermore, reactive oxygen species were shown to be responsible for HepG2 apoptosis, and the tested extract significantly reduced their levels in the treated cells. Lastly, compared to untreated cells in treated HepG2 cells, GTME significantly changed protein expression levels linked with cell cycle arrest in the G1 phase and apoptosis. CONCLUSION These findings provided information about the processes through which the GTME inhibited the growth of HepG2. Therefore, it has potential as an effective natural therapy for the treatment of human liver cancer. However, to validate these findings, animal models must be used for in vivo studies.
Collapse
Affiliation(s)
- Demiana H. Hanna
- Faculty of Science, Department of Chemistry, Cairo University, Giza, Egypt
| | - Ahlam K. Al-Atmani
- Faculty of Science, Department of Chemistry, Cairo University, Giza, Egypt
| | | | - E. El. Shafee
- Faculty of Science, Department of Chemistry, Cairo University, Giza, Egypt
| |
Collapse
|
5
|
Abd-Rabou AA, Kishta MS, Yakout SM, Youssef AM, Abdallah AN, Ahmed HH. Copper/Tin Nanocomposites-Loaded Exosomes Induce Apoptosis and Cell Cycle Arrest at G0/G1 Phase in Skin Cancer Cell Line. Chem Biodivers 2024; 21:e202400486. [PMID: 38860853 DOI: 10.1002/cbdv.202400486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/12/2024]
Abstract
This study aims to explore the efficacy of Copper/Tin (CuS/SnS) nanocomposites loaded into exosomes against skin cancer A431 cell line. CuS/SnS nanocomposites (S1, S2, S3) were synthesized and characterized, then loaded into exosomes (Exo) (S1-Exo, S2-Exo and S3-Exo) and characterized. After that, the loaded samples were investigated in vitro against A431 using cytotoxicity, apoptosis, and cell cycle assays. CuS/SnS nanocomposites were indexed to hexagonal CuS structure and orthorhombic α-SnS phase and showed nano-rode shape. The exosomes loaded with nanocomposites were regular and rounded within the size of 120 nm, with no signs of broken exosomes or leakage of their contents. The cytotoxicity assay indicated the enhanced cytotoxic of S1-Exo versus the free nano-form S1 on A431. Interestingly, S1-Exo recorded 1.109 times more than DOX in its anti-skin cancer capacity. Moreover, S1-Exo recorded 40.2 % for early apoptosis and 22.1 % for late apoptosis. Furthermore, it displayed impact in arresting the cancer cell cycle at G0/G1 phase and reducing G2/M phase. Noteworthy, loaded nanocomposites were safe against normal HSF skin cells. In conclusion, the loaded CuS/SnS nanocomposites into the exosomes could be of great potential as anti-skin cancer candidates through induction of apoptosis and promotion of the cell cycle arrest at G0/G1 phase.
Collapse
Affiliation(s)
- Ahmed A Abd-Rabou
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Cairo, Egypt
- Stem Cell Lab., Center of Excellence for Advanced Sciences, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - Mohamed S Kishta
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Cairo, Egypt
- Stem Cell Lab., Center of Excellence for Advanced Sciences, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - Saad M Yakout
- Inorganic Chemistry Department, Inorganic Chemical Industries and Mineral Resources Research institute, National Research Centre, Dokki, Cairo, Egypt
| | - Ahmed M Youssef
- Inorganic Chemistry Department, Inorganic Chemical Industries and Mineral Resources Research institute, National Research Centre, Dokki, Cairo, Egypt
| | - Ahmed N Abdallah
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Cairo, Egypt
- Stem Cell Lab., Center of Excellence for Advanced Sciences, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - Hanaa H Ahmed
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Cairo, Egypt
- Stem Cell Lab., Center of Excellence for Advanced Sciences, National Research Centre, Dokki, Cairo, 12622, Egypt
| |
Collapse
|
6
|
Ahmed TA, Ahmed SM, Elkhenany H, El-Desouky MA, Magdeldin S, Osama A, Anwar AM, Mohamed IK, Abdelgawad ME, Hanna DH, El-Badri N. The cross talk between type II diabetic microenvironment and the regenerative capacities of human adipose tissue-derived pericytes: a promising cell therapy. Stem Cell Res Ther 2024; 15:36. [PMID: 38331889 PMCID: PMC10854071 DOI: 10.1186/s13287-024-03643-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/21/2024] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND Pericytes (PCs) are multipotent contractile cells that wrap around the endothelial cells (ECs) to maintain the blood vessel's functionality and integrity. The hyperglycemia associated with Type 2 diabetes mellitus (T2DM) was shown to impair the function of PCs and increase the risk of diabetes complications. In this study, we aimed to investigate the deleterious effect of the diabetic microenvironment on the regenerative capacities of human PCs. METHODS PCs isolated from human adipose tissue were cultured in the presence or absence of serum collected from diabetic patients. The functionality of PCs was analyzed after 6, 14, and 30 days. RESULTS Microscopic examination of PCs cultured in DS (DS-PCs) showed increased aggregate formation and altered surface topography with hyperbolic invaginations. Compared to PCs cultured in normal serum (NS-PCs), DS-PCs showed more fragmented mitochondria and thicker nuclear membrane. DS caused impaired angiogenic differentiation of PCs as confirmed by tube formation, decreased VEGF-A and IGF-1 gene expression, upregulated TSP1, PF4, actin-related protein 2/3 complex, and downregulated COL21A1 protein expression. These cells suffered more pronounced apoptosis and showed higher expression of Clic4, apoptosis facilitator BCl-2-like protein, serine/threonine protein phosphatase, and caspase-7 proteins. DS-PCs showed dysregulated DNA repair genes CDKN1A, SIRT1, XRCC5 TERF2, and upregulation of the pro-inflammatory genes ICAM1, IL-6, and TNF-α. Further, DS-treated cells also showed disruption in the expression of the focal adhesion and binding proteins TSP1, TGF-β, fibronectin, and PCDH7. Interestingly, DS-PCs showed resistance mechanisms upon exposure to diabetic microenvironment by maintaining the intracellular reactive oxygen species (ROS) level and upregulation of extracellular matrix (ECM) organizing proteins as vinculin, IQGAP1, and tubulin beta chain. CONCLUSION These data showed that the diabetic microenvironment exert a deleterious effect on the regenerative capacities of human adipose tissue-derived PCs, and may thus have possible implications on the vascular complications of T2DM. Nevertheless, PCs have shown remarkable protective mechanisms when initially exposed to DS and thus they could provide a promising cellular therapy for T2DM.
Collapse
Affiliation(s)
- Toka A Ahmed
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12582, Egypt
- Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo, Egypt
| | - Sara M Ahmed
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12582, Egypt
| | - Hoda Elkhenany
- Department of Surgery, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 22785, Egypt
| | - Mohamed A El-Desouky
- Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Sameh Magdeldin
- Proteomics and Metabolomics Research Program, Basic Research Department, Children's Cancer Hospital, Cairo, 57357, Egypt
- Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Aya Osama
- Proteomics and Metabolomics Research Program, Basic Research Department, Children's Cancer Hospital, Cairo, 57357, Egypt
| | - Ali Mostafa Anwar
- Proteomics and Metabolomics Research Program, Basic Research Department, Children's Cancer Hospital, Cairo, 57357, Egypt
| | - Ihab K Mohamed
- Department of Zoology, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Mohamed Essameldin Abdelgawad
- Biochemistry and Molecular Biotechnology Division, Chemistry Department, Faculty of Science, Innovative Cellular Microenvironment Optimization Platform (ICMOP), Precision Therapy Unit, Helwan University, Cairo, Egypt
- The Egyptian Network of Bioinformatics "BioNetMasr", Cairo, Egypt
| | - Demiana H Hanna
- Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Nagwa El-Badri
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12582, Egypt.
| |
Collapse
|
7
|
Hanna DH, Beshay SN, El Shafee E, El-Rahman HAA. The protective effect of aqueous extract of Stevia rebaudiana against tartrazine toxicity in male Wistar rat. Cell Biochem Funct 2023; 41:1462-1476. [PMID: 38010705 DOI: 10.1002/cbf.3886] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/29/2023]
Abstract
Tartrazine is a yellow colouring agent that is commonly used in foods; however, high dosages of Tartrazine affect fertility and create oxidative stress by generating free radicals. A plant species known as Stevia rebaudiana has natural antioxidants that show promise for protecting testicular tissue. Consequently, this study was intended to examine the ameliorative effect of the aqueous extract of S. rebaudiana (Stevia) on the fertility of male Wistar rats induced by the daily oral intake of Tartrazine. Utilizing gas chromatography-mass spectrometry, phytochemical identification was accomplished for Stevia extract. Study groups were separated into several groups: the first group (the control) got distilled water for up to 56 days; the Stevia group (1000 mg/kg), the Tartrazine group (300 mg/kg) and the Stevia and Tartrazine group (the group was given Tartrazine after 1 h of Stevia extract intake). Also, the oxidative damage in testicular tissues was assessed by measuring the levels of malondialdehyde (MDA) and antioxidants (catalase [CAT], superoxide dismutase [SOD] and glutathione reductase [GSH]). Further, histological alterations were examined. In addition, cyclic AMP-responsive element modulator (Crem) gene expression levels and their relative proteins were measured in the testicular tissues using quantitative real-time polymerase chain reaction and enzyme-linked immunosorbent assays, respectively. Sperm analysis and testosterone concentration were also performed. SPSS version 25 was used for the analysis of results while (p < .05) was regarded as significant. Compared with the control group, the results demonstrated that Tartrazine caused a significant reduction (p < .05) in the testosterone hormone level (0.70 ± 0.21) and the Crem protein quantity (1.21 ± 0.23) in the treated Tartrazine group. Also, it had a significant decrease (p < .05) in sperm motility, viability, count and antioxidant levels. Moreover, there was a significant increase (p < .05) in sperm abnormalities, MDA level (7.40 ± 1.10), kidney and liver function parameters, and DNA degradation in the treated Tartrazine group compared with the control group. On the contrary, the Stevia extract intake enhanced the testosterone (2.50 ± 0.60), antioxidants and Crem protein levels (2.33 ± 0.10) with an improvement in sperm quality in the Stevia and Tartrazine-treated group compared with the Tartrazine group. Stevia also caused a significant decrease (p < .05) in the MDA level (3.20 ± 0.20), and sperm abnormalities with an enhancement of the liver and kidney function parameters in the Stevia and Tartrazine-treated group compared to the Tartrazine group. Stevia administration has a protective effect on the testicular tissues and sperm quality against toxicity induced by Tartrazine exposure, so it will be a good antioxidant drug to be administered daily before daily administration of Tartrazine.
Collapse
Affiliation(s)
- Demiana H Hanna
- Department of Chemistry, Faculty of Science, Cairo University, Cairo, Egypt
| | | | - E El Shafee
- Department of Chemistry, Faculty of Science, Cairo University, Cairo, Egypt
| | | |
Collapse
|
8
|
Hanna DH, Aziz MM, Shafee EE. Effective-by-method for the preparation of folic acid-coated TiO 2 nanoparticles with high targeting potential for apoptosis induction against bladder cancer cells (T24). Biotechnol Appl Biochem 2023; 70:1597-1615. [PMID: 36905187 DOI: 10.1002/bab.2456] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 02/25/2023] [Indexed: 03/12/2023]
Abstract
The research's goal is to create the surfaces of titanium dioxide nanoparticles (TiO2 NPs) in a layer of folic acid (FA) that can effectively target human bladder cancer cells (T24). An efficient method for creating FA-coated TiO2 NPs was used, and many tools have been used to analyze its physicochemical properties. The cytotoxic effects of FA-coated NPs on T24 cells and the mechanisms of apoptosis generation were examined employing a variety of methodologies. The prepared FA-coated TiO2 NPs suspensions with a hydrodynamic diameter around 37 nm and a negative surface charge of -30 mV reduced T24 cell proliferation with stronger IC50 value (21.8 ± 1.9 μg/ml) than TiO2 NPs (47.8 ± 2.5 μg/ml). This toxicity resulted in apoptosis induction (16.63%) that was caused through enhanced reactive oxygen species formation and stopping the cell cycle over G2/M phase. Moreover, FA-TiO2 NPs raised the expression levels of P53, P21, BCL2L4, and cleaved Caspase-3, while decreasing Bcl-2, Cyclin B, and CDK1 in treated cells. Overall, these findings revealed efficient targeting of the FA-TiO2 NPs resulted in increasing cellular internalization caused increased apoptosis in T24 cells. As a result, FA-TiO2 NPs might be a viable treatment for human bladder cancer.
Collapse
Affiliation(s)
- Demiana H Hanna
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | - Marina M Aziz
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | - E El Shafee
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
9
|
El-Atawy MA, Alsubaie MS, Alazmi ML, Hamed EA, Hanna DH, Ahmed HA, Omar AZ. Synthesis, Characterization, and Anticancer Activity of New N,N'-Diarylthiourea Derivative against Breast Cancer Cells. Molecules 2023; 28:6420. [PMID: 37687250 PMCID: PMC10490226 DOI: 10.3390/molecules28176420] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/21/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023] Open
Abstract
The goal of the current study was to prepare two new homologous series of N,N'-diarylurea and N,N'-diarylthiourea derivatives to investigate the therapeutic effects of these derivatives on the methodologies of inhibition directed on human MCF-7 cancer cells. The molecular structures of the prepared derivatives were successfully revealed through elemental analyses, 1H-NMR, 13C-NMR and FT-IR spectroscopy. The cytotoxic results showed that Diarylthiourea (compound 4) was the most effective in suppressing MCF-7 cell growth when compared to all other prepared derivatives, with the most effective IC50 value (338.33 ± 1.52 µM) after an incubation period of 24 h and no cytotoxic effects on normal human lung cells (wi38 cells). Using the annexin V/PI and comet tests, respectively, treated MCF-7 cells with this IC50 value of the Diarylthiourea 4 compound displayed a considerable increase in early and late apoptotic cells, as well as an intense comet nucleus in comparison to control cells. An arrest of the cell cycle in the S phase was observed via flow cytometry in MCF-7 cells treated with the Diarylthiourea 4 compound, suggesting the onset of apoptosis. Additionally, ELISA research showed that caspase-3 was upregulated in MCF-7 cells treated with compound 4 compared to control cells, suggesting that DNA damage induced by compound 4 may initiate an intrinsic apoptotic pathway and activate caspase-3. These results contributed to recognizing that the successfully prepared Diarylthiourea 4 compound inhibited the proliferation of MCF-7 cancer cells by arresting the S cell cycle and caspase-3 activation via an intrinsic apoptotic route. These results, however, need to be verified through in vivo studies utilizing an animal model.
Collapse
Affiliation(s)
- Mohamed A. El-Atawy
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426 Ibrahemia, Alexandria 21321, Egypt; (M.A.E.-A.); (A.Z.O.)
- Chemistry Department, Faculty of Science, Taibah University, Yanbu 46423, Saudi Arabia
| | - Mai S. Alsubaie
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426 Ibrahemia, Alexandria 21321, Egypt; (M.A.E.-A.); (A.Z.O.)
| | - Mohammed L. Alazmi
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426 Ibrahemia, Alexandria 21321, Egypt; (M.A.E.-A.); (A.Z.O.)
| | - Ezzat A. Hamed
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426 Ibrahemia, Alexandria 21321, Egypt; (M.A.E.-A.); (A.Z.O.)
| | - Demiana H. Hanna
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt;
| | - Hoda A. Ahmed
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt;
| | - Alaa Z. Omar
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426 Ibrahemia, Alexandria 21321, Egypt; (M.A.E.-A.); (A.Z.O.)
| |
Collapse
|
10
|
Alzahrani B, Elderdery AY, Alzerwi NAN, Alsrhani A, Alsultan A, Rayzah M, Idrees B, Rayzah F, Baksh Y, Alzahrani AM, Subbiah SK, Mok PL. Pluronic-F-127-Passivated SnO 2 Nanoparticles Derived by Using Polygonum cuspidatum Root Extract: Synthesis, Characterization, and Anticancer Properties. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091760. [PMID: 37176818 PMCID: PMC10181209 DOI: 10.3390/plants12091760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/01/2023] [Accepted: 04/07/2023] [Indexed: 05/15/2023]
Abstract
Nanotechnology has emerged as the most popular research topic with revolutionary applications across all scientific disciplines. Tin oxide (SnO2) has been gaining considerable attention lately owing to its intriguing features, which can be enhanced by its synthesis in the nanoscale range. The establishment of a cost-efficient and ecologically friendly procedure for its production is the result of growing concerns about human well-being. The novelty and significance of this study lie in the fact that the synthesized SnO2 nanoparticles have been tailored to have specific properties, such as size and morphology. These properties are crucial for their applications. Moreover, this study provides insights into the synthesis process of SnO2 nanoparticles, which can be useful for developing efficient and cost-effective methods for large-scale production. In the current study, green Pluronic-coated SnO2 nanoparticles (NPs) utilizing the root extracts of Polygonum cuspidatum have been formulated and characterized by several methods such as UV-visible, Fourier transform infrared spectroscopy (FTIR), energy dispersive X-ray (EDAX), transmission electron microscope (TEM), field emission-scanning electron microscope (FE-SEM), X-ray diffraction (XRD), photoluminescence (PL), and dynamic light scattering (DLS) studies. The crystallite size of SnO2 NPs was estimated to be 45 nm, and a tetragonal rutile-type crystalline structure was observed. FESEM analysis validated the NPs' spherical structure. The cytotoxic potential of the NPs against HepG2 cells was assessed using the in vitro MTT assay. The apoptotic efficiency of the NPs was evaluated using a dual-staining approach. The NPs revealed substantial cytotoxic effects against HepG2 cells but failed to exhibit cytotoxicity in different liver cell lines. Furthermore, dual staining and flow cytometry studies revealed higher apoptosis in NP-treated HepG2 cells. Nanoparticle treatment also inhibited the cell cycle at G0/G1 stage. It increased oxidative stress and promoted apoptosis by encouraging pro-apoptotic protein expression in HepG2 cells. NP treatment effectively blocked the PI3K/Akt/mTOR axis in HepG2 cells. Thus, green Pluronic-F-127-coated SnO2 NPs exhibits enormous efficiency to be utilized as an talented anticancer agent.
Collapse
Affiliation(s)
- Badr Alzahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia
| | - Abozer Y Elderdery
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia
| | - Nasser A N Alzerwi
- Department of Surgery, College of Medicine, Majmaah University, P.O. Box 66, Al-Majmaah 11952, Saudi Arabia
| | - Abdullah Alsrhani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia
| | - Afnan Alsultan
- Department of Surgery, King Saud Medical City, Riyadh 12746, Saudi Arabia
| | - Musaed Rayzah
- Department of Surgery, College of Medicine, Majmaah University, P.O. Box 66, Al-Majmaah 11952, Saudi Arabia
| | - Bandar Idrees
- Department of Surgery, Prince Sultan Military Medical City, P.O. Box 7897, Riyadh 11159, Saudi Arabia
| | - Fares Rayzah
- Aseer Central Hospital, Abha 62523, Saudi Arabia
| | - Yaser Baksh
- Iman General Hospital, Riyadh 12684, Saudi Arabia
| | - Ahmed M Alzahrani
- Department of Surgery, College of Medicine, Majmaah University, P.O. Box 66, Al-Majmaah 11952, Saudi Arabia
| | - Suresh K Subbiah
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Chennai 600073, India
| | - Pooi Ling Mok
- Department of Biomedical Science, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
11
|
Hanna DH, Hamed AA, Saad GR. Synthesis and characterization of poly(3-hydroxybutyrate)/chitosan-graft poly (acrylic acid) conjugate hyaluronate for targeted delivery of methotrexate drug to colon cancer cells. Int J Biol Macromol 2023; 240:124396. [PMID: 37037346 DOI: 10.1016/j.ijbiomac.2023.124396] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/26/2023] [Accepted: 04/05/2023] [Indexed: 04/12/2023]
Abstract
Anti-cancer medications that are delivered specifically to the tumor site possess greater efficacy with less negative effects on the body. So, the current research relies on a novel method for intercalating the anticancer medication methotrexate in poly(3-hydroxybutyrate)/chitosan-graft poly (acrylic acid) conjugated with sodium hyaluronate. The graft copolymers were synthesized through persulfate-initiated grafting of acrylic acid onto a binary mixture of various amounts of chitosan and poly(3-hydroxybutyrate) (2/1, 1/1 and 1/2, w/w) using microwave irradiation. The graft copolymer was conjugated with sodium hyaluronate for targeted delivery of methotrexate drug specifically to colon cancer cell lines (Caco-2). The graft copolymers were characterized by many physical techniques. The maximum drug loading efficiency was observed in case of the graft copolymer/hyaluronate rich in chitosan content 69.7 ± 2.7 % (4.65 mg/g) with a sustained release about 98.6 ± 1.12 %, at pH 7.4. The findings of severe cytotoxicity having a value of the IC50 of 11.7 μg/ml, a substantial proportion of apoptotic cells (67.88 %), and an elevated level of DNA breakage inside the treated Caco-2 cells verified the effective release of methotrexate from the loaded copolymer matrix. Besides, the high stability and biological activity of the released drug was exhibited through occurrence of greater increment of reactive oxygen species and effect on the extent of expression of genes connected to apoptosis and anti-oxidant enzymes within the treated cells. Ultimately, this system can be recommended as potent carrier for methotrexate administration to targeted cancerous cells in the colon.
Collapse
Affiliation(s)
- Demiana H Hanna
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt.
| | - Amira A Hamed
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Gamal R Saad
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt
| |
Collapse
|
12
|
Hassan SS, Hanna DH, Medany SS. The double‐edged sword of the amoxicillin antibiotic against prostate cancer in nano palladium form and its electrochemical detection of dopamine. Appl Organomet Chem 2023; 37. [DOI: 10.1002/aoc.7026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/15/2023] [Indexed: 01/22/2023]
Abstract
Pd (II) complex was prepared from the interaction with Schiff base based on the condensation amoxicillin trihydrate drug and 4‐N,N‐dimethylaminobenzaldehyde. The complex was prepared on the nanoscale that was investigated using transmission electron microscopy (TEM). The chemical structure of the synthesized Schiff base and its Pd (II) chelate was proved through several techniques. Assays using MTT and lactate dehydrogenase verified the Pd (II) complex ability to inhibit human prostate cancer cells (PC3). According to the findings, the inhibition of PC3 cell growth was directly proportional to the dose of Pd (II) complex. Its highest IC50 value was attained after 48 h of incubation reached to 22.6 μg/mL. As a measure of DNA damage in PC3 cells, this IC50 value demonstrated a significant increase in early and late apoptotic cells with an intense comet nucleus. Given that the concentration of reactive oxygen species (ROS) in treated PC3 cells was much higher than in control ones. These results contributed to the notion that ROS‐mediated cell death, which may have taken place via the mitochondrial pathway, was the mechanism by which the Pd (II) complex inhibited the proliferation of PC3 cancer cells. The prepared Pd (II) complex was fabricated and casted onto GC electrode for investigate the dopamine concentration in human serum. The limit of detection and limit of quantization were found to be 0.0127 and 0.0424 μM, respectively, which were in a good agreement with literature and were found to be an improvement to that present in the literature.
Collapse
Affiliation(s)
- Safaa S. Hassan
- Department of Chemistry, Faculty of Science Cairo University 12613 Giza Egypt
| | - Demiana H. Hanna
- Department of Chemistry, Faculty of Science Cairo University 12613 Giza Egypt
| | - Shymaa S. Medany
- Department of Chemistry, Faculty of Science Cairo University 12613 Giza Egypt
| |
Collapse
|
13
|
Długosz O, Matyjasik W, Hodacka G, Szostak K, Matysik J, Krawczyk P, Piasek A, Pulit-Prociak J, Banach M. Inorganic Nanomaterials Used in Anti-Cancer Therapies:Further Developments. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13061130. [PMID: 36986024 PMCID: PMC10051539 DOI: 10.3390/nano13061130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 05/14/2023]
Abstract
In this article, we provide an overview of the progress of scientists working to improve the quality of life of cancer patients. Among the known methods, cancer treatment methods focusing on the synergistic action of nanoparticles and nanocomposites have been proposed and described. The application of composite systems will allow precise delivery of therapeutic agents to cancer cells without systemic toxicity. The nanosystems described could be used as a high-efficiency photothermal therapy system by exploiting the properties of the individual nanoparticle components, including their magnetic, photothermal, complex, and bioactive properties. By combining the advantages of the individual components, it is possible to obtain a product that would be effective in cancer treatment. The use of nanomaterials to produce both drug carriers and those active substances with a direct anti-cancer effect has been extensively discussed. In this section, attention is paid to metallic nanoparticles, metal oxides, magnetic nanoparticles, and others. The use of complex compounds in biomedicine is also described. A group of compounds showing significant potential in anti-cancer therapies are natural compounds, which have also been discussed.
Collapse
|
14
|
Ganji C, Muppala V, Khan M, Purnachandra Nagaraju G, Farran B. Mitochondrial-targeted nanoparticles: Delivery and therapeutic agents in cancer. Drug Discov Today 2023; 28:103469. [PMID: 36529353 DOI: 10.1016/j.drudis.2022.103469] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/30/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Mitochondria are the powerhouses of cells and modulate the essential metabolic functions required for cellular survival. Various mitochondrial pathways, such as oxidative phosphorylation or production of reactive oxygen species (ROS) are dysregulated during cancer growth and development, rendering them attractive targets against cancer. Thus, the delivery of antitumor agents to mitochondria has emerged as a potential approach for treating cancer. Recent advances in nanotechnology have provided innovative solutions for overcoming the physical barriers posed by the structure of mitochondrial organelles, and have enabled the development of efficient mitochondrial nanoplatforms. In this review, we examine the importance of mitochondria during neoplastic development, explore the most recent smart designs of nano-based systems aimed at targeting mitochondria, and highlight key mitochondrial pathways in cancer cells.
Collapse
Affiliation(s)
- Chaithanya Ganji
- Department of Hematology and Oncology, School of Medicine, University of Alabama, Birmingham, AL 35201, USA
| | - Veda Muppala
- Department of Hematology and Oncology, School of Medicine, University of Alabama, Birmingham, AL 35201, USA
| | - Musaab Khan
- Department of Hematology and Oncology, School of Medicine, University of Alabama, Birmingham, AL 35201, USA
| | - Ganji Purnachandra Nagaraju
- Department of Hematology and Oncology, School of Medicine, University of Alabama, Birmingham, AL 35201, USA.
| | - Batoul Farran
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|