1
|
Zhou D, Jin Y, Jin Y, Shen Y, Qu Q, Chen C. The imbalance of circulating PD-L1-expressing non-classical/ classical monocytes is involved in immunocompromised host related pulmonary opportunistic infection. Innate Immun 2025; 31:17534259251316152. [PMID: 39846217 PMCID: PMC11774481 DOI: 10.1177/17534259251316152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 12/18/2024] [Accepted: 01/12/2025] [Indexed: 01/24/2025] Open
Abstract
The application of biological therapy and glucocorticoids in Auto-immune diseases (AID) patients will cause immunocompromised host (ICH) prone to infection. And monocytes play a key role in both innate and adaptive immune responses. We aimed to investigate the changes of circulating monocyte subsets in AID or AID-ICH patients with pulmonary infection. The subgroups and PD-L1 expression of monocytes were measured by flow cytometry in healthy individuals (HC), new-onset AID patients (AID cohort) and AID-ICH patients with pulmonary opportunistic infection (AID-ICH cohort). Flow cytometry analysis was used to determine the distribution of monocyte subsets, including classical monocytes (CL, CD14++CD16-), intermediate monocytes (ITM, CD14++CD16+) and non-classical monocytes (NC, CD14+/-CD16++), as well as the dynamic change of PD-L1 + cluster among monocyte subsets. Among total monocyte, AID-ICH displayed decreased CL subset along with increased NC subset compared to HCs and AID. Regarding PD-L1 + monocytes, although CL subset constituted the majority of that in HCs, AIDs and AID-ICHs, imbalance of NC/CL within PD-L1 + monocytes was only noticed in AID-ICHs (P < 0.05). Furthermore, when AID subjects were developed into immunocompromised status (ICH), PD-L1 + cluster in CL was minorly decreased (P > 0.05). Clinically, the lower ratio of PD-L1 + cluster among CL subset (P < 0.05) and the less differentiated CL in PD-L1 + monocytes (P < 0.05) was more likely to leaded to disease progression. The imbalance of circulating NC/CL subset was remarkable in immunocompromised host with pulmonary opportunistic infection, especially involvement of PD-L1+ cluster, which served as a potential biomarker in clinical practice.
Collapse
Affiliation(s)
- Danhong Zhou
- Department of Respiratory and Critical Medicine, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yujia Jin
- Department of Respiratory and Critical Medicine, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yifan Jin
- Department of Respiratory and Critical Medicine, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yu Shen
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China
| | - Qiuxia Qu
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China
| | - Cheng Chen
- Department of Respiratory and Critical Medicine, the First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
2
|
Moyano A, Colado A, Amarillo ME, De Matteo E, Preciado MV, Borge M, Chabay P. Epstein Barr Virus (EBV) Latent Membrane Protein 1 (LMP-1) Regulates Functional Markers in Intermediate and Non-Classical Monocytes. Cancers (Basel) 2024; 16:4169. [PMID: 39766068 PMCID: PMC11674279 DOI: 10.3390/cancers16244169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Background: The Epstein-Barr virus (EBV) infects more than 90 percent of the human population. In pediatric patients, the innate immune response against EBV primary infection plays a key role. Monocytes and macrophages can have distinct functions depending on the microenvironment surrounding them. At least three monocyte subpopulations can be differentiated depending on membrane protein expression: classical (C, CD14++CD16-), intermediate (I, CD14++CD16+), and non-classical (NC, CD14+CD16++). They also modulate T and B lymphocyte activation/inhibition through the expression of costimulatory molecules such as CD80, CD86, and PD-L1. Yet, little is known about monocytes' role in EBV infection. Methods: Peripheral blood and tonsil biopsies of EBV primary infected (PI) patients, healthy carriers (HCs), and patients undergoing reactivation (R) were studied. Results: Classical monocytes prevailed in all infectious statuses. Tonsillar CD163 positively correlated with CD163 expression in NC monocytes in HCs. PD-L1+ cells in the tonsil positively correlated with PD-L1 expression in NC monocytes. LMP-1 viral latent protein presented a positive correlation with PD-L1, CD163, and CD206 expression in the NC subpopulation. Conclusions: Our results evidence the predominant role of I and NC monocytes' response against EBV infection. Furthermore, the viral oncoprotein LMP-1 could be involved in the expression of regulatory proteins in I and NC monocytes.
Collapse
Affiliation(s)
- Agustina Moyano
- Multidisciplinary Institute for Investigation in Pediatric Pathologies (IMIPP), CONICET-GCBA, Pathology Division, Ricardo Gutiérrez Children’s Hospital, Buenos Aires C1425EFD, Argentina; (A.M.); (M.E.A.); (E.D.M.); (M.V.P.)
| | - Ana Colado
- Laboratory of Oncological Immunology, Institute of Experimental Medicine (IMEX), CONICET-National Academy of Medicine (ANM), Buenos Aires C1425ASU, Argentina; (A.C.); (M.B.)
| | - María Eugenia Amarillo
- Multidisciplinary Institute for Investigation in Pediatric Pathologies (IMIPP), CONICET-GCBA, Pathology Division, Ricardo Gutiérrez Children’s Hospital, Buenos Aires C1425EFD, Argentina; (A.M.); (M.E.A.); (E.D.M.); (M.V.P.)
| | - Elena De Matteo
- Multidisciplinary Institute for Investigation in Pediatric Pathologies (IMIPP), CONICET-GCBA, Pathology Division, Ricardo Gutiérrez Children’s Hospital, Buenos Aires C1425EFD, Argentina; (A.M.); (M.E.A.); (E.D.M.); (M.V.P.)
| | - María Victoria Preciado
- Multidisciplinary Institute for Investigation in Pediatric Pathologies (IMIPP), CONICET-GCBA, Pathology Division, Ricardo Gutiérrez Children’s Hospital, Buenos Aires C1425EFD, Argentina; (A.M.); (M.E.A.); (E.D.M.); (M.V.P.)
| | - Mercedes Borge
- Laboratory of Oncological Immunology, Institute of Experimental Medicine (IMEX), CONICET-National Academy of Medicine (ANM), Buenos Aires C1425ASU, Argentina; (A.C.); (M.B.)
| | - Paola Chabay
- Multidisciplinary Institute for Investigation in Pediatric Pathologies (IMIPP), CONICET-GCBA, Pathology Division, Ricardo Gutiérrez Children’s Hospital, Buenos Aires C1425EFD, Argentina; (A.M.); (M.E.A.); (E.D.M.); (M.V.P.)
| |
Collapse
|
3
|
Liu R, Wang K, Guo X, Wang Q, Zhang X, Peng K, Lu W, Chen Z, Cao F, Wang Z, Wen L. A causal relationship between distinct immune features and acute or chronic pancreatitis: results from a mendelian randomization analysis. Pancreatology 2024; 24:1219-1228. [PMID: 39419750 DOI: 10.1016/j.pan.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/02/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
OBJECTIVES This study aimed to thoroughly examining the causal link between immune traits and four types of pancreatitis, using mendelian randomization. METHODS Data on 731 immune traits were collected from the genome-wide association study (GWAS) database as exposure. Information regarding acute pancreatitis (AP), alcohol-induced acute pancreatitis (AAP), chronic pancreatitis (CP), and alcohol-induced chronic pancreatitis (ACP) were acquired from the FinnGen Consortium as outcomes. Mendelian randomization (MR) using inverse variance weighting (IVW) evaluated the links between immune traits and pancreatitis. We evaluated the robustness of the IVW results through sensitivity analyses and validated them using meta-analysis with AP and CP data from the UK Biobank in the GWAS catalog. RESULTS A total of 36 immune traits showed significant associations with susceptibility of four types of pancreatitis, including AP (7 traits), AAP (8 traits), CP (14 traits), and ACP (7 traits). Twenty characteristics were found to be potential risk factors for pancreatitis, identified in B Cells (5 traits), conventional dendritic cells (cDCs, 2 traits), maturation stage of T cells (2 traits), monocytes (2 traits), myeloid cells (2 traits), T cells, B cells, natural killer cells (TBNK, 2 traits), and regulatory T cells (Treg cells, 5 traits). Multiple sensitivity analyses confirmed the validity of the findings. Meta-analysis confirmed a solid causal relationship between CX3CR1 on CD14- CD16-of monocyte panel and the susceptibility of CP. CONCLUSIONS Our MR study identified immune traits causally linked to acute and chronic pancreatitis, offering new insights for early clinical intervention and immune cell-targeted therapies.
Collapse
Affiliation(s)
- Rujuan Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shanxi Province, China; Center for Biomarker Discovery and Validation, National Infrastructures for Translational Medicine (PUMCH) & State Key Laboratory of Complex, Severe, and Rare Diseases, Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Kui Wang
- Department of Gastroenterology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoyu Guo
- Center for Biomarker Discovery and Validation, National Infrastructures for Translational Medicine (PUMCH) & State Key Laboratory of Complex, Severe, and Rare Diseases, Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Qiqi Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shanxi Province, China
| | - Xiuli Zhang
- Center for Biomarker Discovery and Validation, National Infrastructures for Translational Medicine (PUMCH) & State Key Laboratory of Complex, Severe, and Rare Diseases, Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Kaixin Peng
- Center for Biomarker Discovery and Validation, National Infrastructures for Translational Medicine (PUMCH) & State Key Laboratory of Complex, Severe, and Rare Diseases, Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Wanyi Lu
- Center for Biomarker Discovery and Validation, National Infrastructures for Translational Medicine (PUMCH) & State Key Laboratory of Complex, Severe, and Rare Diseases, Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Zhigao Chen
- Center for Biomarker Discovery and Validation, National Infrastructures for Translational Medicine (PUMCH) & State Key Laboratory of Complex, Severe, and Rare Diseases, Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Feng Cao
- Department of General Surgery, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Zheng Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shanxi Province, China.
| | - Li Wen
- Center for Biomarker Discovery and Validation, National Infrastructures for Translational Medicine (PUMCH) & State Key Laboratory of Complex, Severe, and Rare Diseases, Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China.
| |
Collapse
|
4
|
Qu P, Li X, Liu W, Zhou F, Xu X, Tang J, Sun M, Li J, Li H, Han Y, Hu C, Lei Y, Pan Q, Zhan L. Absence of PD-L1 signaling hinders macrophage defense against Mycobacterium tuberculosis via upregulating STAT3/IL-6 pathway. Microbes Infect 2024; 26:105352. [PMID: 38729294 DOI: 10.1016/j.micinf.2024.105352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 04/12/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024]
Abstract
The blockade of programmed death-ligand 1 (PD-L1) pathway has been clinically used in cancer immunotherapy, while its effects on infectious diseases remain elusive. Roles of PD-L1 signaling in the macrophage-mediated innate immune defense against M.tb is unclear. In this study, the outcomes of tuberculosis (TB) in wild-type (WT) mice treated with anti-PD-1/PD-L1 therapy and macrophage-specific Pdl1-knockout (Pdl1ΔΜΦ) mice were compared. Treatment with anti-PD-L1 or anti-PD-1 benefited protection against M.tb infection in WT mice, while Pdl1ΔΜΦ mice exhibited the increased susceptibility to M.tb infection. Mechanistically, the absence of PD-L1 signaling impaired M.tb killing by macrophages. Furthermore, elevated STAT3 activation was found in PD-L1-deficient macrophages, leading to increased interleukin (IL)-6 production and reduced inducible nitric oxide synthase (iNOS) expression. Inhibiting STAT3 phosphorylation partially impeded the increase in IL-6 production and restored iNOS expression in these PD-L1-deficient cells. These findings provide valuable insights into the complexity and mechanisms underlying anti-PD-L1 therapy in the context of tuberculosis.
Collapse
Affiliation(s)
- Peijie Qu
- Department of Anatomy, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan 430071, China; Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xinyu Li
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Weihuang Liu
- Medical Research Center for Structural Biology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan 430071, China
| | - Fangting Zhou
- Department of Anatomy, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan 430071, China
| | - Xiaoxu Xu
- Department of Anatomy, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan 430071, China
| | - Jun Tang
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Mengmeng Sun
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Junli Li
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Haifeng Li
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yunlin Han
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Chengjun Hu
- Department of Anatomy, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan 430071, China
| | - Yueshan Lei
- Department of Anatomy, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan 430071, China
| | - Qin Pan
- Department of Anatomy, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan 430071, China.
| | - Lingjun Zhan
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| |
Collapse
|
5
|
Tamene W, Wassie L, Marconi VC, Abebe M, Kebede A, Sack U, Howe R. Protein Expression of TLR2, TLR4, and TLR9 on Monocytes in TB, HIV, and TB/HIV. J Immunol Res 2024; 2024:9399524. [PMID: 38660059 PMCID: PMC11042910 DOI: 10.1155/2024/9399524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/08/2024] [Accepted: 04/06/2024] [Indexed: 04/26/2024] Open
Abstract
Toll-like receptors (TLRs) have a critical role in recognizing pathogenic patterns and initiating immune responses against TB and HIV. Previously, studies described the gene expression of TLRs in patients with TB and HIV. Here, we demonstrated TLRs protein expressions and their association with clinical status and plasma markers in TB, HIV, and TB/HIV coinfection. The phenotyping of TLR2, TLR4, and TLR9 on CD14+ monocytes and their subsets were determined by multicolor flow cytometry. Host plasma biomarkers and microbial indices were measured using Luminex Multiplex assay and standard of care tools, respectively. TLR2 expression significantly enhanced in TB, slightly increased in HIV but slightly reduced in TB/HIV coinfection compared to apparently health controls (HC). On the other hand, TLR4 expression was significantly increased in TB, HIV, and TB/HIV compared to HC. Expression of TLR4 was equally enhanced on classical and intermediate monocytes while higher TLR2 expression on intermediate than classical monocytes. TLR4 had a positive correlation pattern with plasma biomarkers while TLR2 had an inverse correlation pattern. TLR4 is associated with disease severity while TLR2 is with the immune-competent status of patients. Our findings demonstrated that the pattern of TLR expression is disease as well as monocyte subset specific and distinct factors drive these differences.
Collapse
Affiliation(s)
- Wegene Tamene
- HIV and TB Research Directorate, Ethiopian Public Health Institute (EPHI), Addis Ababa, Ethiopia
- Mycobacterial Disease Research Directorate, Armauer Hansen Research Institute (AHRI), Addis Ababa, Ethiopia
- Institute of Clinical Immunology, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Liya Wassie
- Mycobacterial Disease Research Directorate, Armauer Hansen Research Institute (AHRI), Addis Ababa, Ethiopia
| | - Vincent C. Marconi
- School of Medicine, Rollins School of Public Health and the Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | - Meseret Abebe
- Mycobacterial Disease Research Directorate, Armauer Hansen Research Institute (AHRI), Addis Ababa, Ethiopia
| | - Amha Kebede
- HIV and TB Research Directorate, Ethiopian Public Health Institute (EPHI), Addis Ababa, Ethiopia
| | - Ulrich Sack
- Institute of Clinical Immunology, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Rawleigh Howe
- Mycobacterial Disease Research Directorate, Armauer Hansen Research Institute (AHRI), Addis Ababa, Ethiopia
| |
Collapse
|
6
|
Kumari S, Bandyopadhyay B, Singh A, Aggarwal S, Yadav AK, Vikram NK, Guchhait P, Banerjee A. Extracellular vesicles recovered from plasma of severe dengue patients induce CD4+ T cell suppression through PD-L1/PD-1 interaction. mBio 2023; 14:e0182323. [PMID: 37982662 PMCID: PMC10746246 DOI: 10.1128/mbio.01823-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/09/2023] [Indexed: 11/21/2023] Open
Abstract
IMPORTANCE Severe dengue manifestations caused by the dengue virus are a global health problem. Studies suggest that severe dengue disease depends on uncontrolled immune cell activation, and excessive inflammation adds to the pathogenesis of severe dengue disease. Therefore, it is important to understand the process that triggers the uncontrolled activation of the immune cells. The change in immune response in mild to severe dengue may be due to direct virus-to-cell interaction or it could be a contact-independent process through the extracellular vesicles (EVs) released from infected cells. The importance of circulating EVs in the context of dengue virus infection and pathogenesis remains unexplored. Therefore, understanding the possible biological function of circulating EVs may help to delineate the role of EVs in the progression of disease. Our present study highlights that EVs from plasma of severe dengue patients can have immunosuppressive properties on CD4+ T cells which may contribute to T cell suppression and may contribute to dengue disease progression.
Collapse
Affiliation(s)
- Sharda Kumari
- Laboratory of Virology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
| | - Bhaswati Bandyopadhyay
- Department of Microbiology, Calcutta School of Tropical Medicine, Kolkata, West Bengal, India
| | - Anamika Singh
- Disease Biology Laboratory, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
| | - Suruchi Aggarwal
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Amit Kumar Yadav
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Naval Kishore Vikram
- Department of Infectious Disease & Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Prasenjit Guchhait
- Disease Biology Laboratory, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
| | - Arup Banerjee
- Laboratory of Virology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
| |
Collapse
|
7
|
Sankar P, Mishra BB. Early innate cell interactions with Mycobacterium tuberculosis in protection and pathology of tuberculosis. Front Immunol 2023; 14:1260859. [PMID: 37965344 PMCID: PMC10641450 DOI: 10.3389/fimmu.2023.1260859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/26/2023] [Indexed: 11/16/2023] Open
Abstract
Tuberculosis (TB) remains a significant global health challenge, claiming the lives of up to 1.5 million individuals annually. TB is caused by the human pathogen Mycobacterium tuberculosis (Mtb), which primarily infects innate immune cells in the lungs. These immune cells play a critical role in the host defense against Mtb infection, influencing the inflammatory environment in the lungs, and facilitating the development of adaptive immunity. However, Mtb exploits and manipulates innate immune cells, using them as favorable niche for replication. Unfortunately, our understanding of the early interactions between Mtb and innate effector cells remains limited. This review underscores the interactions between Mtb and various innate immune cells, such as macrophages, dendritic cells, granulocytes, NK cells, innate lymphocytes-iNKT and ILCs. In addition, the contribution of alveolar epithelial cell and endothelial cells that constitutes the mucosal barrier in TB immunity will be discussed. Gaining insights into the early cellular basis of immune reactions to Mtb infection is crucial for our understanding of Mtb resistance and disease tolerance mechanisms. We argue that a better understanding of the early host-pathogen interactions could inform on future vaccination approaches and devise intervention strategies.
Collapse
Affiliation(s)
| | - Bibhuti Bhusan Mishra
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, United States
| |
Collapse
|
8
|
Ahor HS, Schulte R, Adankwah E, Harelimana JDD, Minadzi D, Acheampong I, Vivekanandan MM, Aniagyei W, Yeboah A, Arthur JF, Lamptey M, Abass MK, Kumbel F, Osei-Yeboah F, Gawusu A, Debrah LB, Owusu DO, Debrah A, Mayatepek E, Seyfarth J, Phillips RO, Jacobsen M. Monocyte pathology in human tuberculosis is due to plasma milieu changes and aberrant STAT signalling. Immunology 2023; 170:154-166. [PMID: 37219921 DOI: 10.1111/imm.13659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/29/2023] [Indexed: 05/24/2023] Open
Abstract
Monocyte-derived macrophages contribute centrally to immune protection in Mycobacterium tuberculosis infection and changes in monocyte phenotype characterize immunopathology in tuberculosis patients. Recent studies highlighted an important role of the plasma milieu in tuberculosis immunopathology. Here, we investigated monocyte pathology in patients with acute tuberculosis and determined tuberculosis plasma milieu effects on phenotype as well as cytokine signalling of reference monocytes. Patients with tuberculosis (n = 37) and asymptomatic contacts (controls n = 35) were recruited as part of a hospital-based study in the Ashanti region of Ghana. Multiplex flow cytometry phenotyping of monocyte immunopathology was performed and effects of individual blood plasma samples on reference monocytes prior to and during treatment were characterized. Concomitantly, cell signalling pathways were analysed to elucidate underlying mechanisms of plasma effects on monocytes. Multiplex flow cytometry visualization characterized changes in monocyte subpopulations and detected higher expression of CD40, CD64 and PD-L1 in monocytes from tuberculosis patients as compared to controls. Aberrant expression normalized during anti-mycobacterial treatment and also CD33 expression decreased markedly. Notably, higher CD33, CD40 and CD64 expression was induced in reference monocytes when cultured in the presence of plasma samples from tuberculosis patients as compared to controls. STAT signalling pathways were affected by the aberrant plasma milieu and higher levels of STAT3 and STAT5 phosphorylation was found in tuberculosis plasma-treated reference monocytes. Importantly, high pSTAT3 levels were associated with high CD33 expression and pSTAT5 correlated with CD40 as well as CD64 expression. These results suggested plasma milieu effects with potential implications on monocyte phenotype and function in acute tuberculosis.
Collapse
Affiliation(s)
- Hubert Senanu Ahor
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital Duesseldorf, Heinrich-Heine University, Duesseldorf, Germany
| | - Rebecca Schulte
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital Duesseldorf, Heinrich-Heine University, Duesseldorf, Germany
| | - Ernest Adankwah
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi, Ghana
| | - Jean De Dieu Harelimana
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital Duesseldorf, Heinrich-Heine University, Duesseldorf, Germany
| | - Difery Minadzi
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi, Ghana
| | - Isaac Acheampong
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi, Ghana
| | | | - Wilfred Aniagyei
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi, Ghana
| | - Augustine Yeboah
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi, Ghana
| | - Joseph F Arthur
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi, Ghana
| | - Millicent Lamptey
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi, Ghana
| | | | | | | | - Amidu Gawusu
- Sene West Health Directorate, Kwame Danso, Ghana
| | - Linda Batsa Debrah
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi, Ghana
| | - Dorcas O Owusu
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi, Ghana
| | - Alexander Debrah
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi, Ghana
| | - Ertan Mayatepek
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital Duesseldorf, Heinrich-Heine University, Duesseldorf, Germany
| | - Julia Seyfarth
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital Duesseldorf, Heinrich-Heine University, Duesseldorf, Germany
| | - Richard O Phillips
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi, Ghana
- School of Medicine and Dentistry, College of Health Sciences, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Marc Jacobsen
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital Duesseldorf, Heinrich-Heine University, Duesseldorf, Germany
| |
Collapse
|
9
|
Sutherland SIM, Ju X, Silveira PA, Kupresanin F, Horvath LG, Clark GJ. CD300f signalling induces inhibitory human monocytes/macrophages. Cell Immunol 2023; 390:104731. [PMID: 37302321 DOI: 10.1016/j.cellimm.2023.104731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 05/11/2023] [Accepted: 05/30/2023] [Indexed: 06/13/2023]
Abstract
The CD300 glycoproteins are a family of related leucocyte surface molecules that regulate the immune response via their paired triggering and inhibitory receptors. Here we studied CD300f, an apoptotic cell receptor, and how it modulates the function of human monocytes and macrophages. We showed that CD300f signalling by crosslinking with anti-CD300f mAb (DCR-2) suppressed monocytes causing upregulation of the inhibitory molecule, CD274 (PD-L1) and their inhibition of T cell proliferation. Furthermore, CD300f signalling drove macrophages preferentially towards M2-type with upregulation of CD274, which was further enhanced by IL-4. CD300f signalling activates the PI3K/Akt pathway in monocytes. Inhibition of PI3K/Akt signalling resulting from CD300f crosslinking leads to downregulation of CD274 expression on monocytes. These findings highlight the potential use of CD300f blockade in cancer immune therapy to target immune suppressive macrophages in the tumour microenvironment, a known resistance mechanism to PD-1/PD-L1 checkpoint inhibitors.
Collapse
Affiliation(s)
- Sarah I M Sutherland
- Dendritic Cell Research, ANZAC Research Institute, Sydney, NSW, Australia; Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia; Chris O'Brien Lifehouse, Sydney, NSW, Australia
| | - Xinsheng Ju
- Dendritic Cell Research, ANZAC Research Institute, Sydney, NSW, Australia; Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Pablo A Silveira
- Dendritic Cell Research, ANZAC Research Institute, Sydney, NSW, Australia; Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Fiona Kupresanin
- Dendritic Cell Research, ANZAC Research Institute, Sydney, NSW, Australia
| | - Lisa G Horvath
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia; Chris O'Brien Lifehouse, Sydney, NSW, Australia; Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Georgina J Clark
- Dendritic Cell Research, ANZAC Research Institute, Sydney, NSW, Australia; Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
10
|
Yang Y, Fu Y, Sheng S, Ji C, Pu X, Xu G. Screening for diagnostic targets in tuberculosis and study on its pathogenic mechanism based on mRNA sequencing technology and miRNA-mRNA-pathway regulatory network. Front Immunol 2023; 14:1038647. [PMID: 36793717 PMCID: PMC9923233 DOI: 10.3389/fimmu.2023.1038647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/12/2023] [Indexed: 01/31/2023] Open
Abstract
Purpose Tuberculosis is common infectious diseases, characterized by infectivity, concealment and chronicity, and the early diagnosis is helpful to block the spread of tuberculosis and reduce the resistance of Mycobacterium tuberculosis to anti-tuberculosis drugs. At present, there are obvious limitations in the application of clinical detection methods used for the early diagnosis of tuberculosis. RNA sequencing (RNA-Seq) has become an economical and accurate gene sequencing method for quantifying transcripts and detecting unknown RNA species. Methods A peripheral blood mRNA sequencing was used to screen the differentially expressed genes between healthy people and tuberculosis patients. A protein-protein interaction (PPI) network of differentially expressed genes was constructed through Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database. The potential diagnostic targets of tuberculosis were screened by the calculation of degree, betweenness and closeness in Cytoscape 3.9.1 software. Finally, the functional pathways and the molecular mechanism of tuberculosis were clarified in combination of the prediction results of key gene miRNAs, and by Gene Ontology (GO) enrichment analysis and the Kyoto Encyclopedia Genes and Genomes (KEGG) pathway annotation analysis. Results 556 Differential genes of tuberculosis were screened out by mRNA sequencing. Six key genes (AKT1, TP53, EGF, ARF1, CD274 and PRKCZ) were screened as the potential diagnostic targets for tuberculosis by analyzing the PPI regulatory network and using three algorithms. Three pathways related to the pathogenesis of tuberculosis were identified by KEGG pathway analysis, and two key miRNAs (has-miR-150-5p and has-miR-25-3p) that might participate in the pathogenesis of tuberculosis were screened out by constructing a miRNA-mRNA pathway regulatory network. Conclusion Six key genes and two important miRNAs that could regulate them were screened out by mRNA sequencing. The 6 key genes and 2 important miRNAs may participate in the pathogenesis of infection and invasion of Mycobacterium tuberculosis through herpes simplex virus 1 infection, endocytosis and B cell receptor signaling pathways.
Collapse
|
11
|
Tessema B, Boldt A, König B, Maier M, Sack U. Flow-Cytometry Intracellular Detection and Quantification of HIV1 p24 Antigen and Immunocheckpoint Molecules in T Cells among HIV/AIDS Patients. HIV AIDS (Auckl) 2022; 14:365-379. [PMID: 35958525 PMCID: PMC9359413 DOI: 10.2147/hiv.s374369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/22/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Belay Tessema
- Department of Medical Microbiology, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
- Institute of Clinical Immunology, Faculty of Medicine, University of Leipzig, Leipzig, Germany
- Institute of Medical Microbiology and Virology, Faculty of Medicine, University of Leipzig, Leipzig, Germany
- Correspondence: Belay Tessema, Department of Medical Microbiology, College of Medicine and Health Sciences, University of Gondar, 196, Gondar, Ethiopia, Tel +251-91-930-6918, Email
| | - Andreas Boldt
- Institute of Clinical Immunology, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Brigitte König
- Institute of Medical Microbiology and Virology, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Melanie Maier
- Department of Virology, Institute of Medical Microbiology and Virology, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Ulrich Sack
- Institute of Clinical Immunology, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| |
Collapse
|