1
|
Dos Santos Paixão V, Malcher SM, Oliveira da Silva W, Ferguson-Smith MA, O'Brien PCM, Rossi RV, Pieczarka JC, Nagamachi CY. Chromosomal rearrangements drive diversity in arboreal rodents of the genus Oecomys. Sci Rep 2025; 15:6111. [PMID: 39971995 PMCID: PMC11840007 DOI: 10.1038/s41598-025-89517-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 02/05/2025] [Indexed: 02/21/2025] Open
Abstract
Oecomys (Rodentia, Sigmodontinae, Oryzomyini) is a taxonomically complex and cytogenetically diverse genus with a controversial intraspecific phylogenetic relationship. Karyotypic analyses, using whole chromosome probes from Hylaeamys megacephalus (HME, Sigmodontinae, Oryzomyini) in some taxonomic lineages of this genus have detected the rearrangements that shaped their karyotypes, in addition to revealing relevant insights into the taxonomic status of these taxa. Thus, to investigate the chromosomal evolution of the genus, we characterized the karyotype of Oecomys rutilus (ORU) with HME probes, establishing chromosomal homology maps with the karyotypes of other congeners. The chromosomal phylogeny obtained by Maximum Parsimony analysis recovered the genus Oecomys as monophyletic, with moderate bootstrap support (68%). This clade branches into two large groups, the first including O. rutilus followed by O. catherinae-Rio de Janeiro and O. catherinae-Pará; the other group includes O. auyantepui followed by O. paricola cytotype C and O. paricola cytotype A + cytotype B. We detected that these taxa underwent intensive reorganization of their karyotypes, the rearrangements producing this diversity were 15 pericentric inversions, 12 centric fusions, 11 fissions, 5 in tandem fusions, 8 translocations and the addition/deletion of constitutive heterochromatin on two autosomes and the X chromosomes. However, despite the high number of chromosomal rearrangements found, we identified some entirely conserved syntenic blocks shared among all species analyzed. From these data, we hypothesized a putative ancestral karyotype. We also detected exclusive characteristics for ORU, the syntenic blocks HME 1/20/4 (ORU 1), HME (16,17)/3 (ORU 2), HME 2/1 (ORU 4), HME 2/7 (ORU 5), HME 5/(9,10)/8 (ORU 3), HME 19/12 (ORU 9). We provide an overview of the chromosomal reorganization of the genus that points to a high chromosomal diversity and show that chromosomal rearrangements play an important role in the radiation of these species.
Collapse
Affiliation(s)
- Vergiana Dos Santos Paixão
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará (UFPA), Pará, Brazil
| | - Stella Miranda Malcher
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará (UFPA), Pará, Brazil
| | - Willam Oliveira da Silva
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará (UFPA), Pará, Brazil
| | - Malcolm Andrew Ferguson-Smith
- Department of Veterinary Medicine, Cambridge Resource Centre for Comparative Genomics, University of Cambridge, Cambridge, UK
| | - Patricia Caroline Mary O'Brien
- Department of Veterinary Medicine, Cambridge Resource Centre for Comparative Genomics, University of Cambridge, Cambridge, UK
| | - Rogério Vieira Rossi
- Departamento de Biologia e Zoologia, Instituto de Biociências, Universidade Federal do Mato Grosso (UFMT), Mato Grosso, Brazil
| | - Julio Cesar Pieczarka
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará (UFPA), Pará, Brazil
| | - Cleusa Yoshiko Nagamachi
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará (UFPA), Pará, Brazil.
| |
Collapse
|
2
|
Moreira CN, Pricoli FG, Ferguson-Smith MA, Yonenaga-Yassuda Y, Ventura K. Karyotypic Reshuffling in the Genus Rhipidomys (Rodentia: Cricetidae: Sigmodontinae) Revealed by Zoo-FISH. Cytogenet Genome Res 2024; 164:110-120. [PMID: 38815552 DOI: 10.1159/000539476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 05/21/2024] [Indexed: 06/01/2024] Open
Abstract
INTRODUCTION Rhipidomys is the second most specious and the most widespread genus of the tribe Thomasomyini. Chromosomal data have been an important tool in the taxonomy of the group that presents low variability of diploid number (2n) and highly variable fundamental numbers (FNs). Despite such diversity, the genus has been studied mainly by classical and banding cytogenetic techniques. METHODS This study performed a comparative study between R. emiliae (2n = 44, FN = 52), R. macrurus (2n = 44, FN = 49), R. nitela (2n = 50, FN = 71), and R. mastacalis (2n = 44, FN = 72) using chromosome painting probes of two Oryzomyini species. RESULTS Our analysis revealed pericentric inversion as the main rearrangement involved in the karyotype evolution of the group, although tandem fusions/fissions were also detected. In addition, we detected eight syntenic associations exclusive of the genus Rhipidomys, and three syntenic associations shared between species of the tribe Thomasomyini and Oryzomyini. CONCLUSION Comparative cytogenetic analysis by ZOO-FISH on genus Rhipidomys supports a pattern of chromosomal rearrangement already suggested by comparative G-banding. However, the results suggest that karyotype variability in the genus could also involve the occurrence of an evolutionary new centromere.
Collapse
Affiliation(s)
- Camila N Moreira
- Centro de Estudos e Células Tronco, Terapia Celular e Genética Toxicológica, Universidade Federal de Mato Grosso do Sul, Campo Grande, Brazil
| | - Fernanda G Pricoli
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Malcolm A Ferguson-Smith
- Cambridge Resource Centre for Comparative Genomics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Yatiyo Yonenaga-Yassuda
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Karen Ventura
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
3
|
Oliveira da Silva W, Malcher SM, Ferguson-Smith MA, O'Brien PCM, Rossi RV, Geise L, Pieczarka JC, Nagamachi CY. Chromosomal rearrangements played an important role in the speciation of rice rats of genus Cerradomys (Rodentia, Sigmodontinae, Oryzomyini). Sci Rep 2024; 14:545. [PMID: 38177653 PMCID: PMC10766967 DOI: 10.1038/s41598-023-50861-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024] Open
Abstract
Rodents of the genus Cerradomys belong to tribe Oryzomyini, one of the most diverse and speciose groups in Sigmodontinae (Rodentia, Cricetidae). The speciation process in Cerradomys is associated with chromosomal rearrangements and biogeographic dynamics in South America during the Pleistocene era. As the morphological, molecular and karyotypic aspects of Myomorpha rodents do not evolve at the same rate, we strategically employed karyotypic characters for the construction of chromosomal phylogeny to investigate whether phylogenetic relationships using chromosomal data corroborate the radiation of Cerradomys taxa recovered by molecular phylogeny. Comparative chromosome painting using Hylaeamys megacephalus (HME) whole chromosome probes in C. langguthi (CLA), Cerradomys scotii (CSC), C. subflavus (CSU) and C. vivoi (CVI) shows that karyotypic variability is due to 16 fusion events, 2 fission events, 10 pericentric inversions and 1 centromeric repositioning, plus amplification of constitutive heterochromatin in the short arms of the X chromosomes of CSC and CLA. The chromosomal phylogeny obtained by Maximum Parsimony analysis retrieved Cerradomys as a monophyletic group with 97% support (bootstrap), with CSC as the sister to the other species, followed by a ramification into two clades (69% of branch support), the first comprising CLA and the other branch including CVI and CSU. We integrated the chromosome painting analysis of Eumuroida rodents investigated by HME and Mus musculus (MMU) probes and identified several syntenic blocks shared among representatives of Cricetidae and Muridae. The Cerradomys genus underwent an extensive karyotypic evolutionary process, with multiple rearrangements that shaped extant karyotypes. The chromosomal phylogeny corroborates the phylogenetic relationships proposed by molecular analysis and indicates that karyotypic diversity is associated with species radiation. Three syntenic blocks were identified as part of the ancestral Eumuroida karyotype (AEK): MMU 7/19 (AEK 1), MMU 14 (AEK 10) and MMU 12 (AEK 11). Besides, MMU 5/10 (HME 18/2/24) and MMU 8/13 (HME 22/5/11) should be considered as signatures for Cricetidae, while MMU 5/9/14, 5/7/19, 5 and 8/17 for Sigmodontinae.
Collapse
Affiliation(s)
- Willam Oliveira da Silva
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará (UFPA), Belém, Pará, Brazil
| | - Stella Miranda Malcher
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará (UFPA), Belém, Pará, Brazil
| | - Malcolm Andrew Ferguson-Smith
- Cambridge Resource Centre for Comparative Genomics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Patricia Caroline Mary O'Brien
- Cambridge Resource Centre for Comparative Genomics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Rogério Vieira Rossi
- Departamento de Biologia e Zoologia, Instituto de Biociências, Universidade Federal do Mato Grosso (UFMT), Mato Grosso, Brazil
| | - Lena Geise
- Departamento de Zoologia, Laboratório de Mastozoologia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Julio Cesar Pieczarka
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará (UFPA), Belém, Pará, Brazil
| | - Cleusa Yoshiko Nagamachi
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará (UFPA), Belém, Pará, Brazil.
| |
Collapse
|
4
|
Yang D, Li Y, Zhu M, Cui R, Gao J, Shu Y, Lu X, Zhang H, Zhang K. Genome-Wide Identification and Expression Analysis of the Cucumber FKBP Gene Family in Response to Abiotic and Biotic Stresses. Genes (Basel) 2023; 14:2006. [PMID: 38002948 PMCID: PMC10671320 DOI: 10.3390/genes14112006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/20/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
The FKBP (FK506-binding protein) gene family is an important member of the PPlase protease family and plays a vital role during the processes of plant growth and development. However, no studies of the FKBP gene family have been reported in cucumber. In this study, 19 FKBP genes were identified in cucumber, which were located on chromosomes 1, 3, 4, 6, and 7. Phylogenetic analysis divided the cucumber FKBP genes into three subgroups. The FKBP genes in the same subgroup exhibited similar structures and conserved motifs. The cis-acting elements analysis revealed that the promoters of cucumber FKBP genes contained hormone-, stress-, and development-related cis-acting elements. Synteny analysis of the FKBP genes among cucumber, Arabidopsis, and rice showed that 12 kinds of syntenic relationships were detected between cucumber and Arabidopsis FKBP genes, and 3 kinds of syntenic relationships were observed between cucumber and rice FKBP genes. The tissue-specific expression analysis showed that some FKBP genes were expressed in all tissues, while others were only highly expressed in part of the 10 types of tissues. The expression profile analysis of cucumber FKBP genes under 13 types of stresses showed that the CsaV3_1G007080 gene was differentially expressed under abiotic stresses (high temperature, NaCl, silicon, and photoperiod) and biotic stresses (downy mildew, green mottle mosaic virus, Fusarium wilt, phytophthora capsica, angular leaf spot, and root-knot nematode), which indicated that the CsaV3_1G007080 gene plays an important role in the growth and development of cucumber. The interaction protein analysis showed that most of the proteins in the FKBP gene family interacted with each other. The results of this study will lay the foundation for further research on the molecular biological functions of the cucumber FKBP gene family.
Collapse
Affiliation(s)
- Dekun Yang
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China; (D.Y.); (M.Z.); (R.C.); (J.G.); (Y.S.); (X.L.)
| | - Yahui Li
- School of Life Science, Huaibei Normal University, Huaibei 235000, China;
| | - Mengdi Zhu
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China; (D.Y.); (M.Z.); (R.C.); (J.G.); (Y.S.); (X.L.)
| | - Rongjing Cui
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China; (D.Y.); (M.Z.); (R.C.); (J.G.); (Y.S.); (X.L.)
| | - Jiong Gao
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China; (D.Y.); (M.Z.); (R.C.); (J.G.); (Y.S.); (X.L.)
| | - Yingjie Shu
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China; (D.Y.); (M.Z.); (R.C.); (J.G.); (Y.S.); (X.L.)
| | - Xiaomin Lu
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China; (D.Y.); (M.Z.); (R.C.); (J.G.); (Y.S.); (X.L.)
| | - Huijun Zhang
- School of Life Science, Huaibei Normal University, Huaibei 235000, China;
| | - Kaijing Zhang
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China; (D.Y.); (M.Z.); (R.C.); (J.G.); (Y.S.); (X.L.)
| |
Collapse
|