1
|
Blaurock J, Grunewald S, Engel KM. Intra-individual variability of the human seminal plasma metabolome. Asian J Androl 2025:00129336-990000000-00289. [PMID: 40019275 DOI: 10.4103/aja2024110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 12/12/2024] [Indexed: 03/01/2025] Open
Abstract
ABSTRACT In contrast to the conventional spermiogram, metabolomics approaches give insights into the molecular composition of semen and may provide more detailed information on the fertility status of the respective donor. Given the intra-individual variability of spermiogram parameters between two donations, this study sought to elucidate the biological variability of the seminal plasma metabolome over an average period of 8 weeks. Two time-shifted semen samples from 15 healthy donors were compared by a targeted metabolomics approach utilizing the Biocrates AbsoluteIDQ p180 kit. Next to intraclass correlation coefficients (ICC), which represent a measure of reliability, coefficients of variation within individuals (CVW) and coefficients of variation between individuals (CVB) were calculated for each metabolite to demonstrate its stability. Furthermore, men were divided into two cohorts, a similar sperm concentration (SSC) and a differing sperm concentration (DSC) cohort, based on the observed variance in sperm concentration between the two semen donations. The ICC was higher in the SSC compared to the DSC cohort. The levels of 18 metabolites, primarily acylcarnitines, varied between the initial and subsequent donations. After subdivision into subgroups, only ornithine and phosphatidylcholine 40:5 exhibited differential levels between the two donations in the SSC group, compared to 14 metabolites in the DSC group. CVB was higher than CVW but both differed between the metabolite subclasses. Biogenic amines were identified as the least reliable analytes over time, exhibiting the highest CVW, compared to sphingomyelins, which demonstrated the highest reliability with the lowest variation. CVB was the highest for ether-bound glycerophosphatidylcholines and the lowest for amino acids.
Collapse
Affiliation(s)
- Janet Blaurock
- Leipzig Reproductive Health Research Center (LE-REP), Andrology Unit, Department of Dermatology, Allergology and Venereology, University Hospital Leipzig, Leipzig 04103, Germany
| | - Sonja Grunewald
- Leipzig Reproductive Health Research Center (LE-REP), Andrology Unit, Department of Dermatology, Allergology and Venereology, University Hospital Leipzig, Leipzig 04103, Germany
| | - Kathrin M Engel
- Institute of Medical Physics and Biophysics, Faculty of Medicine, Leipzig University, Leipzig 04107, Germany
| |
Collapse
|
2
|
Aitken RJ, Gharagozloo P. The assessment of oxidative stress in human semen: chaos and confusion in pursuit of diagnostic precision. Reprod Biomed Online 2025; 50:104488. [PMID: 39731844 DOI: 10.1016/j.rbmo.2024.104488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/03/2024] [Accepted: 10/09/2024] [Indexed: 12/30/2024]
Abstract
The importance of oxidative stress in the aetiology of male infertility has occasioned numerous clinical trials designed to assess the potential of antioxidants for treating this condition. These trials have not returned definitive results, probably because they have never selected participants on the basis of oxidative stress. Clearly, if a moderate to severe state of oxidative stress does not exist in semen, antioxidants can hardly be expected to improve fertility. To resolve this issue, robust, user-friendly point-of-care assays need to be developed that will enable clinicians to quickly diagnose and monitor oxidative stress in patients' semen. Traditional assays of total antioxidant capacity do not fulfil this role, because they are time consuming, expensive and laboratory based. The introduction of an alternative electrochemical system (MiOXSYS®) was designed to address this problem. This assay records the static oxido-reductive potential of semen and then creates an index by dividing this measurement by the sperm concentration. The creation of such an index is flawed and undermines many of the data generated to date. This commentary explains the nature of this problem and emphasizes the continuing unmet need for effective diagnostic procedures capable of detecting seminal oxidative stress in the patient population.
Collapse
Affiliation(s)
- Robert John Aitken
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, School of Environmental and Life Sciences, College of Engineering Science and Environment, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.
| | | |
Collapse
|
3
|
Aitken RJ, Wilkins A, Harrison N, Bahrami M, Gibb Z, McIntosh K, Vuong Q, Lambourne S. A Comparative Analysis of the Antioxidant Profiles Generated by the RoXsta TM System for Diverse Biological Fluids Highlights the Powerful Protective Role of Human Seminal Plasma. Antioxidants (Basel) 2025; 14:90. [PMID: 39857424 PMCID: PMC11762656 DOI: 10.3390/antiox14010090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/08/2025] [Accepted: 01/12/2025] [Indexed: 01/27/2025] Open
Abstract
(1) Background: The RoXstaTM system has been developed as a rapid, effective means of profiling different types of antioxidant activity. The purpose of this study was to examine its performance utilizing a diverse array of biological fluids including semen, blood plasma, serum, urine, saliva, follicular fluid and plant extracts. (2) Methods: The RoXstaTM system was used to assess the ability of different fluids to suppress free radical formation as well as scavenge a variety of toxic oxygen metabolites including free radicals and both hydrogen and organic peroxides. (3) Results: Human semen was shown to have significantly (p < 0.001) more peroxide scavenging power than any other fluid tested (10-14 mM vitamin C equivalent compared with 1-2 mM for blood serum or plasma), while urine was particularly effective in scavenging free radicals and preventing free radical formation (p < 0.001). The powerful antioxidant properties of human semen were shown to reside within the seminal plasma (SP) fraction, rather than the spermatozoa, and to be resistant to snap freezing in liquid nitrogen. Moreover, comparative studies demonstrated that human SP exhibited significantly (p < 0.001) higher levels of antioxidant potential than any other species examined (stallion, bull, dog) and that this intense activity reflected the relative vulnerability of human spermatozoa to peroxide attack. (4) Conclusions: The RoXstaTM system provides valuable information on the antioxidant profile of complex biological fluids, supporting its diagnostic role in conditions associated with oxidative stress. Based on the results secured in this study, human semen is identified as a particularly rich source of antioxidants capable of scavenging both hydrogen and organic peroxides, in keeping with the high susceptibility of human spermatozoa to peroxide-mediated damage.
Collapse
Affiliation(s)
- Robert J. Aitken
- Centre for Reproductive Science, University of Newcastle, Newcastle, NSW 2308, Australia; (A.W.); (N.H.); (M.B.); (Z.G.); (K.M.); (S.L.)
- Hunter Medical Research Institute, Newcastle, NSW 2305, Australia
| | - Alexandra Wilkins
- Centre for Reproductive Science, University of Newcastle, Newcastle, NSW 2308, Australia; (A.W.); (N.H.); (M.B.); (Z.G.); (K.M.); (S.L.)
| | - Natasha Harrison
- Centre for Reproductive Science, University of Newcastle, Newcastle, NSW 2308, Australia; (A.W.); (N.H.); (M.B.); (Z.G.); (K.M.); (S.L.)
| | - Mohammad Bahrami
- Centre for Reproductive Science, University of Newcastle, Newcastle, NSW 2308, Australia; (A.W.); (N.H.); (M.B.); (Z.G.); (K.M.); (S.L.)
| | - Zamira Gibb
- Centre for Reproductive Science, University of Newcastle, Newcastle, NSW 2308, Australia; (A.W.); (N.H.); (M.B.); (Z.G.); (K.M.); (S.L.)
| | - Kaitlin McIntosh
- Centre for Reproductive Science, University of Newcastle, Newcastle, NSW 2308, Australia; (A.W.); (N.H.); (M.B.); (Z.G.); (K.M.); (S.L.)
| | - Quan Vuong
- School of Environmental and Life Sciences, University of Newcastle, Brush Rd., Ourimbah, NSW 2258, Australia
| | - Sarah Lambourne
- Centre for Reproductive Science, University of Newcastle, Newcastle, NSW 2308, Australia; (A.W.); (N.H.); (M.B.); (Z.G.); (K.M.); (S.L.)
| |
Collapse
|
4
|
Zhang G, Wen F, Li Y, Sun P, Li Y, Hu Z, Wang H, Ma Y, Liang G, Chen L, Yang K, Hu J. Sulforaphane acts through the NFE2L2/AMPK signaling pathway to protect boar spermatozoa from cryoinjury by activating antioxidant defenses. Theriogenology 2024; 230:330-340. [PMID: 39369625 DOI: 10.1016/j.theriogenology.2024.09.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/08/2024]
Abstract
During cryopreservation, a substantial portion of spermatozoa undergoes apoptosis due to cryoinjury, resulting in decreased fertility. Boar spermatozoa are highly sensitive to temperature, with low temperature triggering reactive oxygen species (ROS) generation, leading to oxidative stress and apoptosis. Sulforaphane (SFN), a potent natural compound found in cruciferous vegetables, is efficacious in mitigating oxidative stress. We here supplemented different SFN concentrations (0, 1.25, 2.5, 5, 10, and 20 μM) into the freezing extender to explore its effect on boar sperm during cryopreservation and determine the optimal SFN concentration. Supplementation of 5 μM SFN exhibited the highest sperm motility, motion performance, plasma membrane integrity, acrosome integrity, and antioxidant properties (total antioxidant capacity (T-AOC) and antioxidant enzyme activity) after freezing and thawing. Then, RT group, C group and C + SFN group were established to explore the effect of SFN on the cryopreservation-induced sperm apoptosis level and fertilizing capacity of post-thawed sperms. SFN effectively rescued the apoptosis and fertilizing capacity of post-thawed sperms. Mechanistically, SFN activated the redox-sensitive nuclear factor erythroid 2-related factor 2 (NRF2/NFE2L2) by promoting adenosine monophosphate-activated protein kinase (AMPK) phosphorylation. This activation improved antioxidant defenses, ultimately improving cryoinjury in boar spermatozoa. In summary, SFN suppressed cryopreservation-induced apoptosis of spermatozoa by activating antioxidant defenses and the AMPK/NFE2L2 signaling pathway. These findings suggest a novel approach for augmenting the cryoprotective efficiency and spermatozoa fertility after cryopreservation.
Collapse
Affiliation(s)
- Guangzhi Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Fei Wen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yu Li
- Key Laboratory for Efficient Ruminant Breeding Technology of Higher Education Institutions in Shaanxi Province, The Youth Innovation Team of Shaanxi Universities, Zhang Yong Academician Animal Biotechnology Engineering Center, Yangling Vocational & Technical College, Yangling, 712100, Shaanxi, China
| | - Pingyu Sun
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yang Li
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhangtao Hu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hui Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China; College of Animal Science, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang Uygur Autonomous Region, China
| | - Yunhui Ma
- Dali County Zhongkang Livestock Breeding Co., Ltd., Dali County, 715100, Shanxi, China
| | - Guodong Liang
- Dali County Zhongkang Livestock Breeding Co., Ltd., Dali County, 715100, Shanxi, China
| | - Lin Chen
- Dali County Zhongkang Livestock Breeding Co., Ltd., Dali County, 715100, Shanxi, China
| | - Ke Yang
- Dali County Zhongkang Livestock Breeding Co., Ltd., Dali County, 715100, Shanxi, China
| | - Jianhong Hu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
5
|
Prabutzki P, Schiller J, Engel KM. Phospholipid-derived lysophospholipids in (patho)physiology. Atherosclerosis 2024; 398:118569. [PMID: 39227208 DOI: 10.1016/j.atherosclerosis.2024.118569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/17/2024] [Accepted: 08/21/2024] [Indexed: 09/05/2024]
Abstract
Phospholipids (PL) are major components of cellular membranes and changes in PL metabolism have been associated with the pathogenesis of numerous diseases. Lysophosphatidylcholine (LPC) in particular, is a comparably abundant component of oxidatively damaged tissues. LPC originates from the cleavage of phosphatidylcholine (PC) by phospholipase A2 or the reaction of lipids with reactive oxygen species (ROS) such as HOCl. Another explanation of increased LPC concentration is the decreased re-acylation of LPC into PC. While there are also several other lysophospholipids, LPC is the most abundant lysophospholipid in mammals and will therefore be the focus of this review. LPC is involved in many physiological processes. It induces the migration of lymphocytes, fostering the production of pro-inflammatory compounds by inducing oxidative stress. LPC also "signals" via G protein-coupled and Toll-like receptors and has been implicated in the development of different diseases. However, LPCs are not purely "bad": this is reflected by the fact that the concentration and fatty acyl composition of LPC varies under different conditions, in plasma of healthy and diseased individuals, in tissues and different tumors. Targeting LPC and lipid metabolism and restoring homeostasis might be a potential therapeutic method for inflammation-related diseases.
Collapse
Affiliation(s)
- Patricia Prabutzki
- Institute of Medical Physics and Biophysics, Faculty of Medicine, Leipzig University, Härtelstr. 16-18, D 04107 Leipzig, Germany
| | - Jürgen Schiller
- Institute of Medical Physics and Biophysics, Faculty of Medicine, Leipzig University, Härtelstr. 16-18, D 04107 Leipzig, Germany
| | - Kathrin M Engel
- Institute of Medical Physics and Biophysics, Faculty of Medicine, Leipzig University, Härtelstr. 16-18, D 04107 Leipzig, Germany.
| |
Collapse
|
6
|
Horta Remedios M, Liang W, González LN, Li V, Da Ros VG, Cohen DJ, Zaremberg V. Ether lipids and a peroxisomal riddle in sperm. Front Cell Dev Biol 2023; 11:1166232. [PMID: 37397249 PMCID: PMC10309183 DOI: 10.3389/fcell.2023.1166232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/26/2023] [Indexed: 07/04/2023] Open
Abstract
Sperm are terminally differentiated cells that lack most of the membranous organelles, resulting in a high abundance of ether glycerolipids found across different species. Ether lipids include plasmalogens, platelet activating factor, GPI-anchors and seminolipid. These lipids play important roles in sperm function and performance, and thus are of special interest as potential fertility markers and therapeutic targets. In the present article, we first review the existing knowledge on the relevance of the different types of ether lipids for sperm production, maturation and function. To further understand ether-lipid metabolism in sperm, we then query available proteomic data from highly purified sperm, and produce a map of metabolic steps retained in these cells. Our analysis pinpoints the presence of a truncated ether lipid biosynthetic pathway that would be competent for the production of precursors through the initial peroxisomal core steps, but devoid of subsequent microsomal enzymes responsible for the final synthesis of all complex ether-lipids. Despite the widely accepted notion that sperm lack peroxisomes, the thorough analysis of published data conducted herein identifies nearly 70% of all known peroxisomal resident proteins as part of the sperm proteome. In view of this, we highlight open questions related to lipid metabolism and possible peroxisomal functions in sperm. We propose a repurposed role for the truncated peroxisomal ether-lipid pathway in detoxification of products from oxidative stress, which is known to critically influence sperm function. The likely presence of a peroxisomal-derived remnant compartment that could act as a sink for toxic fatty alcohols and fatty aldehydes generated by mitochondrial activity is discussed. With this perspective, our review provides a comprehensive metabolic map associated with ether-lipids and peroxisomal-related functions in sperm and offers new insights into potentially relevant antioxidant mechanisms that warrant further research.
Collapse
Affiliation(s)
| | - Weisheng Liang
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Lucas N. González
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Buenos Aires, Argentina
| | - Victoria Li
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Vanina G. Da Ros
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Buenos Aires, Argentina
| | - Débora J. Cohen
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Buenos Aires, Argentina
| | - Vanina Zaremberg
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
7
|
Jakop U, Engel KM, Hürland M, Müller P, Osmers JH, Jung M, Schulze M. Lipid alterations by oxidative stress increase detached acrosomes after cryopreservation of semen in Holstein bulls. Theriogenology 2023; 197:37-45. [PMID: 36470108 DOI: 10.1016/j.theriogenology.2022.11.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 10/21/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
The nearly exclusive use of cryopreserved semen in cattle breeding enables long shipping distances, higher storage times, quarantine to avoid germ transmission and easy dispersal of high genetic value bulls. Spermatozoa from bulls are well freezable and improvement of cryopreservation protocols over decades has led to high semen quality. However, there is still some loss of spermatozoa in each semen dose due to detached acrosomes after thawing. There are even individual bulls with extremely high numbers of detached acrosomes after cryopreservation, called "bad freezers". This study screened 1092 ejaculates from 59 Holstein bulls for the difference in detached acrosomes before and after cryopreservation (ΔAC). The individual bull influenced ΔAC (P < 0.001) and allowed selection for individuals with repeatedly low ΔAC (good freezers) or high ΔAC (bad freezers). Good freezers were superior to bad freezers in a thermo-resistance test (78.2% vs. 33.6% total motility, respectively, P = 0.047) and had higher non-return rates (NRR: 46.8% vs. 40.8%, respectively, P = 0.016). Since oxidative stress is one possible explanation for premature acrosome reaction, the radical reduction capacity of the seminal fluid was measured, finding that this parameter was reduced in bad freezer bulls during cryopreservation (P = 0.043). Analysis of lipid species in sperm cells by matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF MS) showed a reduction of ether lipids and plasmalogens as well as an increase in formyl-lysophosphatidylcholines only within the bad freezers during cryopreservation (P = 0.043). In conclusion these findings show, that lipid alteration caused by oxidative stress is one essential reason for highly augmented acrosome reacted spermatozoa in bad freezer bulls. Therefore, increased use of antioxidants in the extender could be a possible starting point for developing individualized extenders for bad freezer bulls of high genetic value, in order to raise sperm quality after cryopreservation even in those bulls.
Collapse
Affiliation(s)
- Ulrike Jakop
- Institute for Reproduction of Farm Animals Schönow, Bernauer Allee 10, D-16321, Bernau, Germany.
| | - Kathrin M Engel
- Leipzig University, Faculty of Medicine, Institute for Medical Physics and Biophysics, Härtelstr. 16-18, D-04107, Leipzig, Germany
| | - Maren Hürland
- Institute for Reproduction of Farm Animals Schönow, Bernauer Allee 10, D-16321, Bernau, Germany; RBB Rinderproduktion Berlin-Brandenburg GmbH, Lehniner Str. 9, D-14550, Groß Kreutz (Havel), Germany
| | - Peter Müller
- Humboldt University Berlin, Department of Biology, Invalidenstraße 43, D-10115, Berlin, Germany
| | - Jan-Henrik Osmers
- RBB Rinderproduktion Berlin-Brandenburg GmbH, Lehniner Str. 9, D-14550, Groß Kreutz (Havel), Germany
| | - Markus Jung
- Institute for Reproduction of Farm Animals Schönow, Bernauer Allee 10, D-16321, Bernau, Germany
| | - Martin Schulze
- Institute for Reproduction of Farm Animals Schönow, Bernauer Allee 10, D-16321, Bernau, Germany
| |
Collapse
|
8
|
Li W, Mi S, Zhang J, Liu X, Chen S, Liu S, Feng X, Tang Y, Li Y, Liu L, Fang L, Zhang S, Yu Y. Integrating sperm cell transcriptome and seminal plasma metabolome to analyze the molecular regulatory mechanism of sperm motility in Holstein stud bulls. J Anim Sci 2023; 101:skad214. [PMID: 37366074 PMCID: PMC10355371 DOI: 10.1093/jas/skad214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 06/26/2023] [Indexed: 06/28/2023] Open
Abstract
Considering that artificial insemination is the most widely used assisted reproductive technique in the dairy industry, the semen quality of bulls is very important for selecting excellent stud bulls. Sperm motility is one of the important traits of semen quality, and related genes may be regulated by environmental factors. Seminal plasma can affect sperm cell transcriptome and further affect sperm motility through exosome or other processes. However, the molecular regulation mechanism of bull sperm motility has not been studied by combining the sperm cell transcriptome with seminal plasma metabolome. The number of motile sperm per ejaculate (NMSPE) is an integrated indicator for assessing sperm motility in stud bulls. In the present study, we selected 7 bulls with higher NMSPE (5,698.55 million +/- 945.40 million) as group H and 7 bulls with lower NMSPE (2,279.76 million +/- 1,305.69 million) as group L from 53 Holstein stud bulls. The differentially expressed genes (DEGs) in sperm cells were evaluated between the two groups (H vs. L). We conducted gene co-expression network analysis (WGCNA) on H and L groups of bulls, as well as two monozygotic twin Holstein bulls with different NMSPE values, to screen candidate genes for NMSPE. The regulatory effect of seminal plasma metabolome on the candidate genes of NMSPE was also investigated. A total of 1,099 DEGs were identified in the sperm cells of H and L groups. These DEGs were primarily concentrated in energy metabolism and sperm cell transcription. The significantly enriched Kyoto encyclopedia of genes and genomes (KEGG) pathways of the 57 differential metabolites were the aminoacyl-tRNA biosynthesis pathway and vitamin B6 metabolism pathway. Our study discovered 14 genes as the potential candidate markers for sperm motility, including FBXO39. We observed a broad correlation between transcriptome of sperm cells and seminal plasma metabolome, such as three metabolites, namely, mesaconic acid, 2-coumaric acid, and 4-formylaminoantipyrine, might regulate FBXO39 expression through potential pathways. The genes related to seminal plasma metabolites expressed in sperm cells are not only located near the quantitative trait loci of reproductive traits, but also enriched in the genome-wide association study signal of sire conception rate. Collectively, this study was the first to investigate the interplays among transcriptome of sperm cells and seminal plasma metabolome from Holstein stud bulls with different sperm motility.
Collapse
Affiliation(s)
- Wenlong Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs & National Engineering Laboratory for Animal Breeding, Department of Animal Breeding and Genetics, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Siyuan Mi
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs & National Engineering Laboratory for Animal Breeding, Department of Animal Breeding and Genetics, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jinning Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs & National Engineering Laboratory for Animal Breeding, Department of Animal Breeding and Genetics, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xueqin Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs & National Engineering Laboratory for Animal Breeding, Department of Animal Breeding and Genetics, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Siqian Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs & National Engineering Laboratory for Animal Breeding, Department of Animal Breeding and Genetics, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shuli Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs & National Engineering Laboratory for Animal Breeding, Department of Animal Breeding and Genetics, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Xia Feng
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs & National Engineering Laboratory for Animal Breeding, Department of Animal Breeding and Genetics, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yongjie Tang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs & National Engineering Laboratory for Animal Breeding, Department of Animal Breeding and Genetics, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yanhua Li
- Beijing Dairy Cattle Center, Qinghe’nanzhen Deshengmenwai Road, Beijing 100192, China
| | - Lin Liu
- Beijing Dairy Cattle Center, Qinghe’nanzhen Deshengmenwai Road, Beijing 100192, China
| | - Lingzhao Fang
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
- Center for Quantitative Genetics and Genomics (QGG), Aarhus University, Aarhus, Denmark
| | - Shengli Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs & National Engineering Laboratory for Animal Breeding, Department of Animal Breeding and Genetics, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Ying Yu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs & National Engineering Laboratory for Animal Breeding, Department of Animal Breeding and Genetics, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
9
|
Quirino M, Jakop U, Mellagi APG, Bortolozzo FP, Jung M, Schulze M. Live cells are not affected by dead sperm in liquid boar semen: new insights based on a thermo-resistance test. Reprod Domest Anim 2022; 57:1327-1335. [PMID: 35848934 DOI: 10.1111/rda.14208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 07/17/2022] [Indexed: 11/26/2022]
Abstract
This study evaluated the effect of different proportions of dead spermatozoa on the quality of liquid boar semen during a thermo-resistance test (TRT). After three days of storage (17°C), 54 conventional AI semen doses (~ 23 × 106 sperm/mL in ~ 88 mL of BTS) were split into three 15 mL-treatments (25%, 50% and 75% dead sperm cells) by mixing two subsamples containing 75% (I) and 0% (II) of live cells. Spermatozoa were evaluated after TRT at 30 (on-test) and 300 min (off-test) incubation at 38°C. At the on-test, treatments 25%, 50% and 75% dead sperm cells showed medians for total sperm motility of 77.6%, 50.2% and 25.6%, respectively. Considering the absolute variation of sperm motility during TRT, doses with 25% dead sperm lost more percentage points (pp) (-9.4 pp) compared to doses containing 50% (-8.2 pp) and 75% dead sperm (-4.5 pp). The lowest loss was observed for doses with 75% dead sperm (P < 0.01). However, data showed that treatments lost similar proportion of motile cells over the TRT: 25% dead sperm = -11.9%, 50% dead sperm = -16.0% and 75% dead sperm = -17.5% (P = 0.31). Regarding the flow cytometry parameters (plasma and acrosomal membrane integrity, mitochondrial activity of cells with intact plasma membrane, high degree of lipid disorder and apoptotic cells), the absolute variations did not surpass values of -1.8 pp, 3.4 pp, -5.4 pp and 4.7 pp, respectively. Moreover, the relative variation suggested that dead sperm did not substantially change their values over the TRT. In conclusion, dead sperm cells did not influence the quality of contemporary live cells during the period and in conditions of a TRT.
Collapse
Affiliation(s)
- Monike Quirino
- Institute for Reproduction of Farm Animals Schönow, Bernau, Germany.,Setor de Suínos, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Ulrike Jakop
- Institute for Reproduction of Farm Animals Schönow, Bernau, Germany
| | | | | | - Markus Jung
- Institute for Reproduction of Farm Animals Schönow, Bernau, Germany
| | - Martin Schulze
- Institute for Reproduction of Farm Animals Schönow, Bernau, Germany
| |
Collapse
|