1
|
van Gelderen TA, Debnath P, Joly S, Bertomeu E, Duncan N, Furones D, Ribas L. Gonadal miRNomes and transcriptomes in infected fish reveal sexually dimorphic patterns of the immune response. Funct Integr Genomics 2025; 25:29. [PMID: 39883212 PMCID: PMC11782434 DOI: 10.1007/s10142-025-01537-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/31/2025]
Abstract
Fish disease outbreaks caused by bacterial burdens are responsible for decreasing productivity in aquaculture. Unraveling the molecular mechanisms activated in the gonads after infections is pivotal for enhancing husbandry techniques in fish farms, ensuring disease management, and selecting the most resilience phenotype. The present study, with an important commercial species the European sea bass (Dicentrarchus labrax), an important commercial species in Europe, examined changes in the miRNome and transcriptome 48 h after an intraperitoneal infection with Vibrio anguillarum. The findings indicate that following infection, testes exhibited more pronounced alterations in both the miRNome and transcriptome. Specifically, males showed approximately 26% more differentially expressed genes in testicular genes compared to females (2,624 vs. 101 DEGs). Additionally, four miRNAs (miR-183-5p, miR-191-3p, miR-451-5p, and miR-724-5p) were significantly expressed post-infection in males, while none were identified in females. Interestingly, upon deep analysis of sexual dimorphic gene modules, a larger number of miRNAs were identified in infected females targeting genes related to the immune system compared to infected males. These results suggest that fish ovaries demonstrate greater resilience in response to infections by suppressing genes related to the immune system through a post-transcriptional mechanism performed by miRNAs. In contrast, testes activate genes related to the immune system and repress genes related to cellular processes to cope with the infection. In particular, the crosstalk between the miRNome and transcriptome in infected males revealed a pivotal gene, namely, insulin-like growth factor binding protein (igfbp), acting as a gene network hub in which miR-192-3p was connected. The current study elucidated the need to comprehend the basic immune regulatory responses associated with miRNAs and gene regulation networks that depend on fish sex. The data reveal the importance of considering sex as a factor in interpreting the immune system in fish to generate efficient protocols to prevent outbreaks in fish farms.
Collapse
Affiliation(s)
- Tosca A van Gelderen
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (ICM-CSIC), Barcelona, 08003, Spain
| | - Pinky Debnath
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (ICM-CSIC), Barcelona, 08003, Spain
- Department of Fish Biology and Genetics, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Silvia Joly
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (ICM-CSIC), Barcelona, 08003, Spain
| | - Edgar Bertomeu
- Institut de Recerca i Tecnologia Agroalimentaries (IRTA), La Ràpita, Aquaculture, Spain
| | - Neil Duncan
- Institut de Recerca i Tecnologia Agroalimentaries (IRTA), La Ràpita, Aquaculture, Spain
| | - Dolors Furones
- Institut de Recerca i Tecnologia Agroalimentaries (IRTA), La Ràpita, Aquaculture, Spain
| | - Laia Ribas
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (ICM-CSIC), Barcelona, 08003, Spain.
| |
Collapse
|
2
|
Yu H, Chen Z, Liu Y, Shen Y, Gui L, Qiu J, Xu X, Li J. Deep sequencing identified miR-193b-3p as a positive regulator of autophagy targeting Akt3 in Ctenopharyngodon idella CIK cells during GCRV infection. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109586. [PMID: 38670410 DOI: 10.1016/j.fsi.2024.109586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/15/2024] [Accepted: 04/24/2024] [Indexed: 04/28/2024]
Abstract
Recent research has highlighted complex and close interaction between miRNAs, autophagy, and viral infection. In this study, we observed the autophagy status in CIK cells infected with GCRV at various time points. We found that GCRV consistently induced cellar autophagy from 0 h to 12 h post infection. Subsequently, we performed deep sequencing on CIK cells infected with GCRV at 0 h and 12 h respectively, identifying 38 DEMs and predicting 9581 target genes. With the functional enrichment analyses of GO and KEGG, we identified 35 autophagy-related target genes of these DEMs, among which akt3 was pinpointed as the most central hub gene using module assay of the PPI network. Then employing the miRanda and Targetscan programs for prediction, and verification through a double fluorescent enzyme system and qPCR method, we confirmed that miR-193 b-3p could target the 3'-UTR of grass carp akt3, reducing its gene expression. Ultimately, we illustrated that grass carp miR-193 b-3p could promote autophagy in CIK cells. Above results collectively indicated that miRNAs might play a critical role in autophagy of grass carp during GCRV infection and contributed significantly to antiviral immunity by targeting autophagy-related genes. This study may provide new insights into the intricate mechanisms involved in virus, autophagy, and miRNAs.
Collapse
Affiliation(s)
- Hongyan Yu
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Zheyan Chen
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Yuting Liu
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Yubang Shen
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Lang Gui
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Junqiang Qiu
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Xiaoyan Xu
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.
| | - Jiale Li
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
3
|
Verleih M, Visnovska T, Nguinkal JA, Rebl A, Goldammer T, Andreassen R. The Discovery and Characterization of Conserved and Novel miRNAs in the Different Developmental Stages and Organs of Pikeperch ( Sander lucioperca). Int J Mol Sci 2023; 25:189. [PMID: 38203361 PMCID: PMC10778745 DOI: 10.3390/ijms25010189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Micro RNAs (miRNAs) are short non-coding RNAs that act as post-transcriptional gene expression regulators. Genes regulated in vertebrates include those affecting growth and development or stress and immune response. Pikeperch (Sander lucioperca) is a species that is increasingly being considered for farming in recirculation aquaculture systems. We characterized the pikeperch miRNA repertoire to increase the knowledge of the genomic mechanisms affecting performance and health traits by applying small RNA sequencing to different developmental stages and organs. There were 234 conserved and 8 novel miRNA genes belonging to 104 families. A total of 375 unique mature miRNAs were processed from these genes. Many mature miRNAs showed high relative abundances or were significantly more expressed at early developmental stages, like the miR-10 and miR-430 family, let-7, the miRNA clusters 106-25-93, and 17-19-92. Several miRNAs associated with immune responses (e.g., slu-mir-731-5p, slu-mir-2188-5p, and slu-mir-8159-5p) were enriched in the spleen. The mature miRNAs slu-mir-203a-3p and slu-mir-205-5p were enriched in gills. These miRNAs are similarly abundant in many vertebrates, indicating that they have shared regulatory functions. There was also a significantly increased expression of the disease-associated miR-462/miR-731 cluster in response to hypoxia stress. This first pikeperch miRNAome reference resource paves the way for future functional studies to identify miRNA-associated variations that can be utilized in marker-assisted breeding programs.
Collapse
Affiliation(s)
- Marieke Verleih
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (M.V.); (A.R.)
| | - Tina Visnovska
- Bioinformatics Core Facility, Oslo University Hospital, 0424 Oslo, Norway
| | - Julien A. Nguinkal
- Department of Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany;
| | - Alexander Rebl
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (M.V.); (A.R.)
| | - Tom Goldammer
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (M.V.); (A.R.)
- Faculty of Agriculture and Environmental Sciences, University of Rostock, 18059 Rostock, Germany
| | - Rune Andreassen
- Department of Life Sciences and Health, OsloMet—Oslo Metropolitan University, 0167 Oslo, Norway;
| |
Collapse
|
4
|
Kozłowska M, Śliwińska A. The Link between Diabetes, Pancreatic Tumors, and miRNAs-New Players for Diagnosis and Therapy? Int J Mol Sci 2023; 24:10252. [PMID: 37373398 DOI: 10.3390/ijms241210252] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Despite significant progress in medicine, pancreatic cancer is one of the most tardily diagnosed cancer and is consequently associated with a poor prognosis and a low survival rate. The asymptomatic clinical picture and the lack of relevant diagnostic markers for the early stages of pancreatic cancer are believed to be the major constraints behind an accurate diagnosis of this disease. Furthermore, underlying mechanisms of pancreatic cancer development are still poorly recognized. It is well accepted that diabetes increases the risk of pancreatic cancer development, however the precise mechanisms are weakly investigated. Recent studies are focused on microRNAs as a causative factor of pancreatic cancer. This review aims to provide an overview of the current knowledge of pancreatic cancer and diabetes-associated microRNAs, and their potential in diagnosis and therapy. miR-96, miR-124, miR-21, and miR-10a were identified as promising biomarkers for early pancreatic cancer prediction. miR-26a, miR-101, and miR-200b carry therapeutic potential, as they not only regulate significant biological pathways, including the TGF-β and PI3K/AKT, but their re-expression contributes to the improvement of the prognosis by reducing invasiveness or chemoresistance. In diabetes, there are also changes in the expression of microRNAs, such as in miR-145, miR-29c, and miR-143. These microRNAs are involved, among others, in insulin signaling, including IRS-1 and AKT (miR-145), glucose homeostasis (hsa-miR-21), and glucose reuptake and gluconeogenesis (miR-29c). Although, changes in the expression of the same microRNAs are observed in both pancreatic cancer and diabetes, they exert different molecular effects. For example, miR-181a is upregulated in both pancreatic cancer and diabetes mellitus, but in diabetes it contributes to insulin resistance, whereas in pancreatic cancer it promotes tumor cell migration, respectively. To conclude, dysregulated microRNAs in diabetes affect crucial cellular processes that are involved in pancreatic cancer development and progression.
Collapse
Affiliation(s)
- Małgorzata Kozłowska
- Student Scientific Society of Civilization Diseases, Medical University of Lodz, 251 Pomorska, 92-213 Lodz, Poland
| | - Agnieszka Śliwińska
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, Pomorska 251, 92-213 Lodz, Poland
| |
Collapse
|
5
|
Tang X, Fu J, Yao Y, Xu M. Identification and characterization of immune-related microRNAs in hybrid snakehead(Channa maculata♀ × Channa argus♂)after treated by Echinacea purpurea (Linn.) Moench. FISH & SHELLFISH IMMUNOLOGY 2023; 135:108653. [PMID: 36868540 DOI: 10.1016/j.fsi.2023.108653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Echinacea purpurea (Linn.) Moench (EP) is a globally popular herbal medicine, which showed effects on growth promotion, antioxidant and immunomodulatory activities in fish culture world widely. However, there are few studies about the effects on miRNAs by EP in fish. The hybrid snakehead fish (Channa maculate♀ × Channa argus ♂) was new important economic specie of freshwater aquaculture in China with high market value and demand while there were only a few reports about its miRNAs. To overview immune-related miRNAs of the hybrid snakehead fish and to further understand the immune regulating mechanism of EP, we herein constructed and analyzed three small RNA libraries of immune tissues including liver, spleen and head kidney of the fish with or without EP treatment via Illumina high-throughput sequencing technology. Results showed that EP can affect the immune activities of fish by the miRNA-regulated ways. Totally, 67 (47 up and 20 down) miRNAs in liver, 138 (55 up and 83 down) miRNAs in spleen, and 251 (15 up and 236 down) miRNAs in spleen were detected, as well as 30, 60, 139 kinds of immune-related miRNAs belonging to 22, 35 and 66 families of the three tissues respectively. The expressions of 8 immune-related miRNA family members were found in all the three tissues, including miR-10, miR-133, miR-22 and etc. Some miRNAs have been identified involved in the innate and adaptive immune responses, such as the miR-125, miR-138, and miR-181 family. Ten miRNA families with antioxidant target genes were also discovered, including miR-125, miR-1306, and miR-138, etc. Results from Gene Ontology (GO) and KEGG pathway analysis further confirmed there are a majority immune response targets of the miRNAs involved in the EP treatment process. Our study deepened understanding roles of miRNAs in fish immune system and provides new ideas for the study of immune mechanism of EP.
Collapse
Affiliation(s)
- Xuelian Tang
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China.
| | - Jinghua Fu
- College of Marine Science, South China Agricultural University, Guangzhou, 510642, China
| | - Ya Yao
- College of Marine Science, South China Agricultural University, Guangzhou, 510642, China
| | - Minjun Xu
- College of Marine Science, South China Agricultural University, Guangzhou, 510642, China; State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China.
| |
Collapse
|
6
|
Jantawongsri K, Nørregaard RD, Bach L, Dietz R, Sonne C, Jørgensen K, Lierhagen S, Ciesielski TM, Jenssen BM, Waugh CA, Eriksen R, Nowak B, Anderson K. Effects of exposure to environmentally relevant concentrations of lead (Pb) on expression of stress and immune-related genes, and microRNAs in shorthorn sculpins (Myoxocephalus scorpius). ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:1068-1077. [PMID: 36006498 PMCID: PMC9458575 DOI: 10.1007/s10646-022-02575-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Old lead-zinc (Pb-Zn) mining sites in Greenland have increased the environmental concentration of Pb in local marine organisms, including the shorthorn sculpin. Organ metal concentrations and histopathology have been used in environmental monitoring programs to evaluate metal exposure and subsequent effects in shorthorn sculpins. So far, no study has reported the impact of heavy metals on gene expression involved in metal-related stress and immune responses in sculpins. The aim of this study was to investigate the effect of exposure to environmentally relevant waterborne Pb (0.73 ± 0.35 μg/L) on hepatic gene expression of metallothionein (mt), immunoglobulin M (igm), and microRNAs (miRNAs; mir132 and mir155) associated with immune responses in the shorthorn sculpin compared to a control group. The mt and igm expression were upregulated in the Pb-exposed group compared to the control group. The transcripts of mir132 and mir155 were not different in sculpins between the Pb-exposed and control group; however, miRNA levels were significantly correlated with Pb liver concentrations. Furthermore, there was a positive correlation between liver Pb concentrations and igm, and a positive relationship between igm and mir155. The results indicate that exposure to Pb similar to those concentrations reported in in marine waters around Greenland Pb-Zn mine sites influences the mt and immune responses in shorthorn sculpins. This is the first study to identify candidate molecular markers in the shorthorn sculpins exposed to waterborne environmentally relevant Pb suggesting mt and igm as potential molecular markers of exposure to be applied in future assessments of the marine environment near Arctic mining sites.
Collapse
Affiliation(s)
- Khattapan Jantawongsri
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Launceston, TAS, 7250, Australia.
| | - Rasmus Dyrmose Nørregaard
- Department of Ecoscience and Arctic Research Centre (ARC), Faculty of Technical Sciences, Aarhus University, Frederiksborgvej 399, P.O. Box 358, DK-4000, Roskilde, Denmark
| | - Lis Bach
- Department of Ecoscience and Arctic Research Centre (ARC), Faculty of Technical Sciences, Aarhus University, Frederiksborgvej 399, P.O. Box 358, DK-4000, Roskilde, Denmark
| | - Rune Dietz
- Department of Ecoscience and Arctic Research Centre (ARC), Faculty of Technical Sciences, Aarhus University, Frederiksborgvej 399, P.O. Box 358, DK-4000, Roskilde, Denmark
| | - Christian Sonne
- Department of Ecoscience and Arctic Research Centre (ARC), Faculty of Technical Sciences, Aarhus University, Frederiksborgvej 399, P.O. Box 358, DK-4000, Roskilde, Denmark
| | - Kasper Jørgensen
- Den Blå Planet, National Aquarium Denmark, Jacob Fortlingsvej 1, DK-2770, Kastrup, Copenhagen, Denmark
| | - Syverin Lierhagen
- Department of Chemistry, Norwegian University of Science and Technology, NO-7491, Trondheim, Norway
| | - Tomasz Maciej Ciesielski
- Department of Biology, Norwegian University of Science and Technology, Høgskoleringen 5, NO-7491, Trondheim, Norway
| | - Bjørn Munro Jenssen
- Department of Ecoscience and Arctic Research Centre (ARC), Faculty of Technical Sciences, Aarhus University, Frederiksborgvej 399, P.O. Box 358, DK-4000, Roskilde, Denmark
- Department of Biology, Norwegian University of Science and Technology, Høgskoleringen 5, NO-7491, Trondheim, Norway
- Department of Arctic Technology, The University Centre in Svalbard, P.O. Box 156, NO-9171, Longyearbyen, Svalbard, Norway
| | - Courtney Alice Waugh
- Department of Biology, Norwegian University of Science and Technology, Høgskoleringen 5, NO-7491, Trondheim, Norway
- Faculty of Biosciences and Aquaculture, Nord University, NO-7729, Steinkjer, Norway
| | - Ruth Eriksen
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Launceston, TAS, 7250, Australia
- CSIRO Oceans and Atmosphere, Castray Esplanade, Battery Point, Hobart, TAS, 7004, Australia
| | - Barbara Nowak
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Launceston, TAS, 7250, Australia
- Department of Ecoscience and Arctic Research Centre (ARC), Faculty of Technical Sciences, Aarhus University, Frederiksborgvej 399, P.O. Box 358, DK-4000, Roskilde, Denmark
| | - Kelli Anderson
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Launceston, TAS, 7250, Australia
| |
Collapse
|