1
|
Mantoan Ritter L, Annear NMP, Baple EL, Ben-Chaabane LY, Bodi I, Brosson L, Cadwgan JE, Coslett B, Crosby AH, Davies DM, Daykin N, Dedeurwaerdere S, Dühring Fenger C, Dunlop EA, Elmslie FV, Girodengo M, Hambleton S, Jansen AC, Johnson SR, Kearley KC, Kingswood JC, Laaniste L, Lachlan K, Latchford A, Madsen RR, Mansour S, Mihaylov SR, Muhammed L, Oliver C, Pepper T, Rawlins LE, Schim van der Loeff I, Siddiqui A, Takhar P, Tatton-Brown K, Tee AR, Tibarewal P, Tye C, Ultanir SK, Vanhaesebroeck B, Zare B, Pal DK, Bateman JM. mTOR pathway diseases: challenges and opportunities from bench to bedside and the mTOR node. Orphanet J Rare Dis 2025; 20:256. [PMID: 40426219 PMCID: PMC12107773 DOI: 10.1186/s13023-025-03740-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 04/16/2025] [Indexed: 05/29/2025] Open
Abstract
Mechanistic target of rapamycin (mTOR) is a highly conserved serine/threonine kinase that regulates key cellular processes including cell growth, autophagy and metabolism. Hyperactivation of the mTOR pathway causes a group of rare and ultrarare genetic diseases. mTOR pathway diseases have diverse clinical manifestations that are managed by distinct medical disciplines but share a common underlying molecular basis. There is a now a deep understanding of the molecular underpinning that regulates the mTOR pathway but effective treatments for most mTOR pathway diseases are lacking. Translating scientific knowledge into clinical applications to benefit the unmet clinical needs of patients is a major challenge common to many rare diseases. In this article we expound how mTOR pathway diseases provide an opportunity to coordinate basic and translational disease research across the group, together with industry, medical research foundations, charities and patient groups, by pooling expertise and driving progress to benefit patients. We outline the germline and somatic mutations in the mTOR pathway that cause rare diseases and summarise the prevalence, genetic basis, clinical manifestations, pathophysiology and current treatments for each disease in this group. We describe the challenges and opportunities for progress in elucidating the underlying mechanisms, improving diagnosis and prognosis, as well as the development and approval of new therapies for mTOR pathway diseases. We illustrate the crucial role of patient public involvement and engagement in rare disease and mTOR pathway disease research. Finally, we explain how the mTOR Pathway Diseases node, part of the Research Disease Research UK Platform, will address these challenges to improve the understanding, diagnosis and treatment of mTOR pathway diseases.
Collapse
Affiliation(s)
- Laura Mantoan Ritter
- King's College London Institute of Psychiatry Psychology and Neuroscience, London, UK
- King's College Hospital NHS Foundation Trust, London, UK
| | - Nicholas M P Annear
- St George's University Hospitals NHS Foundation Trust, London, UK
- School of Health & Medical Sciences, City St George's, University of London, London, UK
| | | | - Leila Y Ben-Chaabane
- King's College London Institute of Psychiatry Psychology and Neuroscience, London, UK
| | - Istvan Bodi
- King's College Hospital NHS Foundation Trust, London, UK
| | | | | | | | | | | | | | | | | | | | - Frances V Elmslie
- St George's University Hospitals NHS Foundation Trust, London, UK
- School of Health & Medical Sciences, City St George's, University of London, London, UK
| | - Marie Girodengo
- King's College London Institute of Psychiatry Psychology and Neuroscience, London, UK
- The Francis Crick Institute, London, UK
| | - Sophie Hambleton
- Newcastle University Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | | | - Simon R Johnson
- Centre for Respiratory Research, NIHR Nottingham Biomedical Research Centre and Biodiscovery Institute, Translational Medical Sciences, University of Nottingham, Nottingham, UK
| | - Kelly C Kearley
- mTOR Node Advisory Panel (MAP), London, UK
- PTEN UK and Ireland Patient Group, London, UK
| | - John C Kingswood
- St George's University Hospitals NHS Foundation Trust, London, UK
| | | | - Katherine Lachlan
- University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Andrew Latchford
- Polyposis Registry, St Mark's Hospital, London, UK
- Department of Surgery and Cancer, Imperial College London, London, UK
| | | | - Sahar Mansour
- St George's University Hospitals NHS Foundation Trust, London, UK
- School of Health & Medical Sciences, City St George's, University of London, London, UK
| | | | | | | | - Tom Pepper
- PTEN Research, Cheltenham, Gloucestershire, UK
| | | | - Ina Schim van der Loeff
- Newcastle University Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Ata Siddiqui
- King's College Hospital NHS Foundation Trust, London, UK
| | | | - Katrina Tatton-Brown
- St George's University Hospitals NHS Foundation Trust, London, UK
- School of Health & Medical Sciences, City St George's, University of London, London, UK
| | | | | | - Charlotte Tye
- King's College London Institute of Psychiatry Psychology and Neuroscience, London, UK
| | | | | | | | - Deb K Pal
- King's College London Institute of Psychiatry Psychology and Neuroscience, London, UK
| | - Joseph M Bateman
- King's College London Institute of Psychiatry Psychology and Neuroscience, London, UK.
| |
Collapse
|
2
|
Zhang J, Argueta D, Tong X, Vinters HV, Mathern GW, Cepeda C. Iconography of abnormal non-neuronal cells in pediatric focal cortical dysplasia type IIb and tuberous sclerosis complex. Front Cell Neurosci 2025; 18:1486315. [PMID: 39835291 PMCID: PMC11743721 DOI: 10.3389/fncel.2024.1486315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/11/2024] [Indexed: 01/22/2025] Open
Abstract
Once believed to be the culprits of epileptogenic activity, the functional properties of balloon/giant cells (BC/GC), commonly found in some malformations of cortical development including focal cortical dysplasia type IIb (FCDIIb) and tuberous sclerosis complex (TSC), are beginning to be unraveled. These abnormal cells emerge during early brain development as a result of a hyperactive mTOR pathway and may express both neuronal and glial markers. A paradigm shift occurred when our group demonstrated that BC/GC in pediatric cases of FCDIIb and TSC are unable to generate action potentials and lack synaptic inputs. Hence, their role in epileptogenesis remained obscure. In this review, we provide a detailed characterization of abnormal non-neuronal cells including BC/GC, intermediate cells, and dysmorphic/reactive astrocytes found in FCDIIb and TSC cases, with special emphasis on electrophysiological and morphological assessments. Regardless of pathology, the electrophysiological properties of abnormal cells appear more glial-like, while others appear more neuronal-like. Their morphology also differs in terms of somatic size, shape, and dendritic elaboration. A common feature of these types of non-neuronal cells is their inability to generate action potentials. Thus, despite their distinct properties and etiologies, they share a common functional feature. We hypothesize that, although the exact role of abnormal non-neuronal cells in FCDIIb and TSC remains mysterious, it can be suggested that cells displaying more glial-like properties function in a similar way as astrocytes do, i.e., to buffer K+ ions and neurotransmitters, while those with more neuronal properties, may represent a metabolic burden due to high energy demands but inability to receive or transmit electric signals. In addition, due to the heterogeneity of these cells, a new classification scheme based on morphological, electrophysiological, and gene/protein expression in FCDIIb and TSC cases seems warranted.
Collapse
Affiliation(s)
- Joyce Zhang
- IDDRC, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California - Los Angeles, Los Angeles, CA, United States
| | - Deneen Argueta
- IDDRC, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California - Los Angeles, Los Angeles, CA, United States
| | - Xiaoping Tong
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Harry V. Vinters
- Department of Pathology and Laboratory Medicine, University of California - Los Angeles, Los Angeles, CA, United States
| | - Gary W. Mathern
- Department of Neurosurgery, David Geffen School of Medicine, University of California - Los Angeles, Los Angeles, CA, United States
| | - Carlos Cepeda
- IDDRC, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California - Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
3
|
Corrigan RR, Mashburn-Warren LM, Yoon H, Bedrosian TA. Somatic Mosaicism in Brain Disorders. ANNUAL REVIEW OF PATHOLOGY 2025; 20:13-32. [PMID: 39227323 DOI: 10.1146/annurev-pathmechdis-111523-023528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Research efforts over the past decade have defined the genetic landscape of somatic variation in the brain. Neurons accumulate somatic mutations from development through aging with potentially profound functional consequences. Recent studies have revealed the contribution of somatic mosaicism to various brain disorders including focal epilepsy, neuropsychiatric disease, and neurodegeneration. One notable finding is that the effect of somatic mosaicism on clinical outcomes can vary depending on contextual factors, such as the developmental origin of a variant or the number and type of cells affected. In this review, we highlight current knowledge regarding the role of somatic mosaicism in brain disorders and how biological context can mediate phenotypes. First, we identify the origins of brain somatic variation throughout the lifespan of an individual. Second, we explore recent discoveries that suggest somatic mosaicism contributes to various brain disorders. Finally, we discuss neuropathological associations of brain mosaicism in different biological contexts and potential clinical utility.
Collapse
Affiliation(s)
- Rachel R Corrigan
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA;
| | | | - Hyojung Yoon
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA;
| | - Tracy A Bedrosian
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA;
| |
Collapse
|
4
|
Leitner DF, William C, Faustin A, Kanshin E, Snuderl M, McGuone D, Wisniewski T, Ueberheide B, Gould L, Devinsky O. Raphe and ventrolateral medulla proteomics in sudden unexplained death in childhood with febrile seizure history. Acta Neuropathol 2024; 148:76. [PMID: 39607506 PMCID: PMC11604820 DOI: 10.1007/s00401-024-02832-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/28/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024]
Abstract
Sudden unexplained death in childhood (SUDC) is death of a child ≥ 12 months old that is unexplained after autopsy and detailed analyses. Among SUDC cases, ~ 30% have febrile seizure (FS) history, versus 2-5% in the general population. SUDC cases share features with sudden unexpected death in epilepsy (SUDEP) and sudden infant death syndrome (SIDS), in which brainstem autonomic dysfunction is implicated. To understand whether brainstem protein changes are associated with FS history in SUDC, we performed label-free quantitative mass spectrometry on microdissected midbrain dorsal raphe, medullary raphe, and the ventrolateral medulla (n = 8 SUDC-noFS, n = 11 SUDC-FS). Differential expression analysis between SUDC-FS and SUDC-noFS at p < 0.05 identified 178 altered proteins in dorsal raphe, 344 in medullary raphe, and 100 in the ventrolateral medulla. These proteins were most significantly associated with increased eukaryotic translation initiation (p = 3.09 × 10-7, z = 1.00), eukaryotic translation elongation (p = 6.31 × 10-49, z = 6.01), and coagulation system (p = 1.32 × 10-5, z = 1.00). The medullary raphe had the strongest enrichment for altered signaling pathways, including with comparisons to three other brain regions previously analyzed (frontal cortex, hippocampal dentate gyrus, cornu ammonus). Immunofluorescent tissue analysis of serotonin receptors identified 2.1-fold increased 5HT2A in the medullary raphe of SUDC-FS (p = 0.025). Weighted gene correlation network analysis (WGCNA) of case history indicated that longer FS history duration significantly correlated with protein levels in the medullary raphe and ventrolateral medulla; the most significant gene ontology biological processes were decreased cellular respiration (p = 9.8 × 10-5, corr = - 0.80) in medullary raphe and decreased synaptic vesicle cycle (p = 1.60 × 10-7, corr = - 0.90) in the ventrolateral medulla. Overall, FS in SUDC was associated with more protein differences in the medullary raphe and was related with increased translation-related signaling pathways. Future studies should assess whether these changes result from FS or may in some way predispose to FS or SUDC.
Collapse
Affiliation(s)
- Dominique F Leitner
- Comprehensive Epilepsy Center, NYU Grossman School of Medicine, New York, NY, USA
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
- Center for Cognitive Neurology, NYU Grossman School of Medicine, New York, NY, USA
| | - Christopher William
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
| | - Arline Faustin
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
- Center for Cognitive Neurology, NYU Grossman School of Medicine, New York, NY, USA
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
| | - Evgeny Kanshin
- Proteomics Laboratory, Division of Advanced Research Technologies, NYU Grossman School of Medicine, New York, NY, USA
| | - Matija Snuderl
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
| | - Declan McGuone
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Thomas Wisniewski
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
- Center for Cognitive Neurology, NYU Grossman School of Medicine, New York, NY, USA
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Department of Psychiatry, NYU Grossman School of Medicine, New York, NY, USA
| | - Beatrix Ueberheide
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
- Proteomics Laboratory, Division of Advanced Research Technologies, NYU Grossman School of Medicine, New York, NY, USA
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA
| | - Laura Gould
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
- Sudden Unexplained Death in Childhood Foundation, New Jersey, USA
| | - Orrin Devinsky
- Comprehensive Epilepsy Center, NYU Grossman School of Medicine, New York, NY, USA.
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
5
|
Leitner D, Kavanagh T, Kanshin E, Balcomb K, Pires G, Thierry M, Suazo JI, Schneider J, Ueberheide B, Drummond E, Wisniewski T. Differences in the cerebral amyloid angiopathy proteome in Alzheimer's disease and mild cognitive impairment. Acta Neuropathol 2024; 148:9. [PMID: 39039355 PMCID: PMC11263258 DOI: 10.1007/s00401-024-02767-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/24/2024]
Abstract
Cerebral amyloid angiopathy (CAA) is characterized by amyloid beta (Aβ) deposition in cerebrovasculature. It is prevalent with aging and Alzheimer's disease (AD), associated with intracerebral hemorrhage, and contributes to cognitive deficits. To better understand molecular mechanisms, CAA(+) and CAA(-) vessels were microdissected from paraffin-embedded autopsy temporal cortex of age-matched Control (n = 10), mild cognitive impairment (MCI; n = 4), and sporadic AD (n = 6) cases, followed by label-free quantitative mass spectrometry. 257 proteins were differentially abundant in CAA(+) vessels compared to neighboring CAA(-) vessels in MCI, and 289 in AD (p < 0.05, fold-change > 1.5). 84 proteins changed in the same direction in both groups, and many changed in the same direction among proteins significant in at least one group (p < 0.0001, R2 = 0.62). In CAA(+) vessels, proteins significantly increased in both AD and MCI were particularly associated with collagen-containing extracellular matrix, while proteins associated with ribonucleoprotein complex were significantly decreased in both AD and MCI. In neighboring CAA(-) vessels, 61 proteins were differentially abundant in MCI, and 112 in AD when compared to Control cases. Increased proteins in CAA(-) vessels were associated with extracellular matrix, external encapsulating structure, and collagen-containing extracellular matrix in MCI; collagen trimer in AD. Twenty two proteins were increased in CAA(-) vessels of both AD and MCI. Comparison of the CAA proteome with published amyloid-plaque proteomic datasets identified many proteins similarly enriched in CAA and plaques, as well as a protein subset hypothesized as preferentially enriched in CAA when compared to plaques. SEMA3G emerged as a CAA specific marker, validated immunohistochemically and with correlation to pathology levels (p < 0.0001; R2 = 0.90). Overall, the CAA(-) vessel proteomes indicated changes in vessel integrity in AD and MCI in the absence of Aβ, and the CAA(+) vessel proteome was similar in MCI and AD, which was associated with vascular matrix reorganization, protein translation deficits, and blood brain barrier breakdown.
Collapse
Affiliation(s)
- Dominique Leitner
- Center for Cognitive Neurology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Comprehensive Epilepsy Center, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Tomas Kavanagh
- Brain and Mind Centre and School of Medical Sciences, University of Sydney, Camperdown, NSW, 2050, Australia
| | - Evgeny Kanshin
- Proteomics Laboratory, Division of Advanced Research Technologies and Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Kaleah Balcomb
- Brain and Mind Centre and School of Medical Sciences, University of Sydney, Camperdown, NSW, 2050, Australia
| | - Geoffrey Pires
- Center for Cognitive Neurology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Manon Thierry
- Center for Cognitive Neurology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Jianina I Suazo
- Center for Cognitive Neurology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Julie Schneider
- Department Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W Harrison Street, Suite 1000, Chicago, IL, 60612, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
- Department of Pathology, Rush University Medical Center, Chicago, IL, USA
| | - Beatrix Ueberheide
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Proteomics Laboratory, Division of Advanced Research Technologies and Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Eleanor Drummond
- Brain and Mind Centre and School of Medical Sciences, University of Sydney, Camperdown, NSW, 2050, Australia.
| | - Thomas Wisniewski
- Center for Cognitive Neurology, New York University Grossman School of Medicine, New York, NY, 10016, USA.
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, 10016, USA.
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, 10016, USA.
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
6
|
Ravizza T, Scheper M, Di Sapia R, Gorter J, Aronica E, Vezzani A. mTOR and neuroinflammation in epilepsy: implications for disease progression and treatment. Nat Rev Neurosci 2024; 25:334-350. [PMID: 38531962 DOI: 10.1038/s41583-024-00805-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2024] [Indexed: 03/28/2024]
Abstract
Epilepsy remains a major health concern as anti-seizure medications frequently fail, and there is currently no treatment to stop or prevent epileptogenesis, the process underlying the onset and progression of epilepsy. The identification of the pathological processes underlying epileptogenesis is instrumental to the development of drugs that may prevent the generation of seizures or control pharmaco-resistant seizures, which affect about 30% of patients. mTOR signalling and neuroinflammation have been recognized as critical pathways that are activated in brain cells in epilepsy. They represent a potential node of biological convergence in structural epilepsies with either a genetic or an acquired aetiology. Interventional studies in animal models and clinical studies give strong support to the involvement of each pathway in epilepsy. In this Review, we focus on available knowledge about the pathophysiological features of mTOR signalling and the neuroinflammatory brain response, and their interactions, in epilepsy. We discuss mitigation strategies for each pathway that display therapeutic effects in experimental and clinical epilepsy. A deeper understanding of these interconnected molecular cascades could enhance our strategies for managing epilepsy. This could pave the way for new treatments to fill the gaps in the development of preventative or disease-modifying drugs, thus overcoming the limitations of current symptomatic medications.
Collapse
Affiliation(s)
- Teresa Ravizza
- Department of Acute Brain and Cardiovascular Injury, Mario Negri Institute for Pharmacological Research IRCCS, Milano, Italy
| | - Mirte Scheper
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Rossella Di Sapia
- Department of Acute Brain and Cardiovascular Injury, Mario Negri Institute for Pharmacological Research IRCCS, Milano, Italy
| | - Jan Gorter
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands.
| | - Annamaria Vezzani
- Department of Acute Brain and Cardiovascular Injury, Mario Negri Institute for Pharmacological Research IRCCS, Milano, Italy.
| |
Collapse
|
7
|
Leitner D, Pires G, Kavanagh T, Kanshin E, Askenazi M, Ueberheide B, Devinsky O, Wisniewski T, Drummond E. Similar brain proteomic signatures in Alzheimer's disease and epilepsy. Acta Neuropathol 2024; 147:27. [PMID: 38289539 PMCID: PMC10827928 DOI: 10.1007/s00401-024-02683-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/15/2023] [Accepted: 01/03/2024] [Indexed: 02/01/2024]
Abstract
The prevalence of epilepsy is increased among Alzheimer's Disease (AD) patients and cognitive impairment is common among people with epilepsy. Epilepsy and AD are linked but the shared pathophysiological changes remain poorly defined. We aim to identify protein differences associated with epilepsy and AD using published proteomics datasets. We observed a highly significant overlap in protein differences in epilepsy and AD: 89% (689/777) of proteins altered in the hippocampus of epilepsy patients were significantly altered in advanced AD. Of the proteins altered in both epilepsy and AD, 340 were altered in the same direction, while 216 proteins were altered in the opposite direction. Synapse and mitochondrial proteins were markedly decreased in epilepsy and AD, suggesting common disease mechanisms. In contrast, ribosome proteins were increased in epilepsy but decreased in AD. Notably, many of the proteins altered in epilepsy interact with tau or are regulated by tau expression. This suggests that tau likely mediates common protein changes in epilepsy and AD. Immunohistochemistry for Aβ and multiple phosphorylated tau species (pTau396/404, pTau217, pTau231) showed a trend for increased intraneuronal pTau217 and pTau231 but no phosphorylated tau aggregates or amyloid plaques in epilepsy hippocampal sections. Our results provide insights into common mechanisms in epilepsy and AD and highlights the potential role of tau in mediating common pathological protein changes in epilepsy and AD.
Collapse
Affiliation(s)
- Dominique Leitner
- Center for Cognitive Neurology, Department of Neurology, Grossman School of Medicine, New York University, New York, NY, 10016, USA
- Comprehensive Epilepsy Center, New York University Grossman School of Medicine, New York, 10016, USA
| | - Geoffrey Pires
- Center for Cognitive Neurology, Department of Neurology, Grossman School of Medicine, New York University, New York, NY, 10016, USA
| | - Tomas Kavanagh
- Brain and Mind Centre and School of Medical Sciences, University of Sydney, Camperdown, NSW, 2050, Australia
| | - Evgeny Kanshin
- Proteomics Laboratory, Division of Advanced Research Technologies and Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, 10016, USA
| | | | - Beatrix Ueberheide
- Center for Cognitive Neurology, Department of Neurology, Grossman School of Medicine, New York University, New York, NY, 10016, USA
- Proteomics Laboratory, Division of Advanced Research Technologies and Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, 10016, USA
| | - Orrin Devinsky
- Comprehensive Epilepsy Center, New York University Grossman School of Medicine, New York, 10016, USA
| | - Thomas Wisniewski
- Center for Cognitive Neurology, Department of Neurology, Grossman School of Medicine, New York University, New York, NY, 10016, USA.
| | - Eleanor Drummond
- Center for Cognitive Neurology, Department of Neurology, Grossman School of Medicine, New York University, New York, NY, 10016, USA.
- Brain and Mind Centre and School of Medical Sciences, University of Sydney, Camperdown, NSW, 2050, Australia.
| |
Collapse
|
8
|
Straka B, Splitkova B, Vlckova M, Tesner P, Rezacova H, Krskova L, Koblizek M, Kyncl M, Maulisova A, Bukacova K, Uhrova-Meszarosova A, Musilova A, Kudr M, Ebel M, Belohlavkova A, Jahodova A, Liby P, Tichy M, Jezdik P, Zamecnik J, Aronica E, Krsek P. Genetic testing in children enrolled in epilepsy surgery program. A real-life study. Eur J Paediatr Neurol 2023; 47:80-87. [PMID: 37812946 DOI: 10.1016/j.ejpn.2023.09.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 10/11/2023]
Abstract
OBJECTIVE Although genetic causes of drug-resistant focal epilepsy and selected focal malformations of cortical development (MCD) have been described, a limited number of studies comprehensively analysed genetic diagnoses in patients undergoing pre-surgical evaluation, their outcomes and the effect of genetic diagnosis on surgical strategy. METHODS We analysed a prospective cohort of children enrolled in epilepsy surgery program over January 2018-July 2022. The majority of patients underwent germline and/or somatic genetic testing. We searched for predictors of surgical outcome and positive result of germline genetic testing. RESULTS Ninety-five patients were enrolled in epilepsy surgery program and 64 underwent resective epilepsy surgery. We ascertained germline genetic diagnosis in 13/74 patients having underwent germline gene testing (pathogenic or likely pathogenic variants in CHRNA4, NPRL3, DEPDC5, FGF12, GRIA2, SZT2, STXBP1) and identified three copy number variants. Thirty-five patients underwent somatic gene testing; we detected 10 pathogenic or likely pathogenic variants in genes SLC35A2, PTEN, MTOR, DEPDC5, NPRL3. Germline genetic diagnosis was significantly associated with the diagnosis of focal epilepsy with unknown seizure onset. SIGNIFICANCE Germline and somatic gene testing can ascertain a definite genetic diagnosis in a significant subgroup of patients in epilepsy surgery programs. Diagnosis of focal genetic epilepsy may tip the scales against the decision to proceed with invasive EEG study or surgical resection; however, selected patients with genetic focal epilepsies associated with MCD may benefit from resective epilepsy surgery and therefore, a genetic diagnosis does not disqualify patients from presurgical evaluation and epilepsy surgery.
Collapse
Affiliation(s)
- Barbora Straka
- Department of Paediatric Neurology, Motol Epilepsy Center, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Full Member of the ERN EpiCARE, V Uvalu 84, 15006, Prague, Czech Republic.
| | - Barbora Splitkova
- Department of Paediatric Neurology, Motol Epilepsy Center, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Full Member of the ERN EpiCARE, V Uvalu 84, 15006, Prague, Czech Republic.
| | - Marketa Vlckova
- Department of Biology and Medical Genetics, Motol Epilepsy Center, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Motol University Hospital, Full Member of the ERN EpiCARE, V Uvalu 84, 15006, Prague, Czech Republic.
| | - Pavel Tesner
- Department of Biology and Medical Genetics, Motol Epilepsy Center, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Motol University Hospital, Full Member of the ERN EpiCARE, V Uvalu 84, 15006, Prague, Czech Republic.
| | - Hana Rezacova
- Department of Biology and Medical Genetics, Motol Epilepsy Center, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Motol University Hospital, Full Member of the ERN EpiCARE, V Uvalu 84, 15006, Prague, Czech Republic.
| | - Lenka Krskova
- Department of Pathology and Molecular Medicine, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Full Member of the ERN EpiCARE, V Uvalu 84, 15006, Prague, Czech Republic.
| | - Miroslav Koblizek
- Department of Pathology and Molecular Medicine, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Full Member of the ERN EpiCARE, V Uvalu 84, 15006, Prague, Czech Republic.
| | - Martin Kyncl
- Department of Radiology, Motol Epilepsy Center, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Full Member of the ERN EpiCARE, V Uvalu 84, 15006, Prague, Czech Republic.
| | - Alice Maulisova
- Department of Clinical Psychology, Motol University Hospital, V Uvalu 84, 15006, Prague, Czech Republic.
| | - Katerina Bukacova
- Department of Clinical Psychology, Motol University Hospital, V Uvalu 84, 15006, Prague, Czech Republic.
| | - Anna Uhrova-Meszarosova
- Department of Paediatric Neurology, Motol Epilepsy Center, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Full Member of the ERN EpiCARE, V Uvalu 84, 15006, Prague, Czech Republic.
| | - Alena Musilova
- Department of Paediatric Neurology, Motol Epilepsy Center, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Full Member of the ERN EpiCARE, V Uvalu 84, 15006, Prague, Czech Republic.
| | - Martin Kudr
- Department of Paediatric Neurology, Motol Epilepsy Center, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Full Member of the ERN EpiCARE, V Uvalu 84, 15006, Prague, Czech Republic.
| | - Matyas Ebel
- Department of Paediatric Neurology, Motol Epilepsy Center, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Full Member of the ERN EpiCARE, V Uvalu 84, 15006, Prague, Czech Republic.
| | - Anezka Belohlavkova
- Department of Paediatric Neurology, Motol Epilepsy Center, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Full Member of the ERN EpiCARE, V Uvalu 84, 15006, Prague, Czech Republic.
| | - Alena Jahodova
- Department of Paediatric Neurology, Motol Epilepsy Center, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Full Member of the ERN EpiCARE, V Uvalu 84, 15006, Prague, Czech Republic.
| | - Petr Liby
- Department of Neurosurgery, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Full Member of the ERN EpiCARE, V Uvalu 84, 15006, Prague, Czech Republic.
| | - Michal Tichy
- Department of Neurosurgery, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Full Member of the ERN EpiCARE, V Uvalu 84, 15006, Prague, Czech Republic.
| | - Petr Jezdik
- Faculty of Electrical Engineering, Department of Circuit Theory, Czech Technical University in Prague, Technicka 2, Praha 6, 166 27, Czech Republic.
| | - Josef Zamecnik
- Department of Pathology and Molecular Medicine, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Full Member of the ERN EpiCARE, V Uvalu 84, 15006, Prague, Czech Republic.
| | - Eleonora Aronica
- Amsterdam UMC Location University of Amsterdam, Department of Neuropathology, Amsterdam Neuroscience, the Netherlands; Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, the Netherlands.
| | - Pavel Krsek
- Department of Paediatric Neurology, Motol Epilepsy Center, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Full Member of the ERN EpiCARE, V Uvalu 84, 15006, Prague, Czech Republic.
| |
Collapse
|
9
|
Leitner DF, Kanshin E, Faustin A, Thierry M, Friedman D, Devore S, Ueberheide B, Devinsky O, Wisniewski T. Localized proteomic differences in the choroid plexus of Alzheimer's disease and epilepsy patients. Front Neurol 2023; 14:1221775. [PMID: 37521285 PMCID: PMC10379643 DOI: 10.3389/fneur.2023.1221775] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/22/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction Alzheimer's disease (AD) and epilepsy are reciprocally related. Among sporadic AD patients, clinical seizures occur in 10-22% and subclinical epileptiform abnormalities occur in 22-54%. Cognitive deficits, especially short-term memory impairments, occur in most epilepsy patients. Common neurophysiological and molecular mechanisms occur in AD and epilepsy. The choroid plexus undergoes pathological changes in aging, AD, and epilepsy, including decreased CSF turnover, amyloid beta (Aβ), and tau accumulation due to impaired clearance and disrupted CSF amino acid homeostasis. This pathology may contribute to synaptic dysfunction in AD and epilepsy. Methods We evaluated control (n = 8), severe AD (n = 8; A3, B3, C3 neuropathology), and epilepsy autopsy cases (n = 12) using laser capture microdissection (LCM) followed by label-free quantitative mass spectrometry on the choroid plexus adjacent to the hippocampus at the lateral geniculate nucleus level. Results Proteomics identified 2,459 proteins in the choroid plexus. At a 5% false discovery rate (FDR), 616 proteins were differentially expressed in AD vs. control, 1 protein in epilepsy vs. control, and 438 proteins in AD vs. epilepsy. There was more variability in the epilepsy group across syndromes. The top 20 signaling pathways associated with differentially expressed proteins in AD vs. control included cell metabolism pathways; activated fatty acid beta-oxidation (p = 2.00 x 10-7, z = 3.00), and inhibited glycolysis (p = 1.00 x 10-12, z = -3.46). For AD vs. epilepsy, the altered pathways included cell metabolism pathways, activated complement system (p = 5.62 x 10-5, z = 2.00), and pathogen-induced cytokine storm (p = 2.19 x 10-2, z = 3.61). Of the 617 altered proteins in AD and epilepsy vs. controls, 497 (81%) were positively correlated (p < 0.0001, R2 = 0.27). Discussion We found altered signaling pathways in the choroid plexus of severe AD cases and many correlated changes in the protein expression of cell metabolism pathways in AD and epilepsy cases. The shared molecular mechanisms should be investigated further to distinguish primary pathogenic changes from the secondary ones. These mechanisms could inform novel therapeutic strategies to prevent disease progression or restore normal function. A focus on dual-diagnosed AD/epilepsy cases, specific epilepsy syndromes, such as temporal lobe epilepsy, and changes across different severity levels in AD and epilepsy would add to our understanding.
Collapse
Affiliation(s)
- Dominique F. Leitner
- Comprehensive Epilepsy Center, New York University Grossman School of Medicine, New York, NY, United States
- Center for Cognitive Neurology, Department of Neurology, New York University Grossman School of Medicine, New York, NY, United States
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, United States
| | - Evgeny Kanshin
- Proteomics Laboratory, Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY, United States
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, United States
| | - Arline Faustin
- Center for Cognitive Neurology, Department of Neurology, New York University Grossman School of Medicine, New York, NY, United States
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, United States
| | - Manon Thierry
- Center for Cognitive Neurology, Department of Neurology, New York University Grossman School of Medicine, New York, NY, United States
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, United States
| | - Daniel Friedman
- Comprehensive Epilepsy Center, New York University Grossman School of Medicine, New York, NY, United States
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, United States
| | - Sasha Devore
- Comprehensive Epilepsy Center, New York University Grossman School of Medicine, New York, NY, United States
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, United States
| | - Beatrix Ueberheide
- Center for Cognitive Neurology, Department of Neurology, New York University Grossman School of Medicine, New York, NY, United States
- Proteomics Laboratory, Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY, United States
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, United States
| | - Orrin Devinsky
- Comprehensive Epilepsy Center, New York University Grossman School of Medicine, New York, NY, United States
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, United States
| | - Thomas Wisniewski
- Center for Cognitive Neurology, Department of Neurology, New York University Grossman School of Medicine, New York, NY, United States
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, United States
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, United States
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
10
|
Goldman AM. Oncogenic Pathways Provide Clue to the Etiology of Human Mesial Temporal Lobe Epilepsy. JAMA Neurol 2023:2804532. [PMID: 37126324 DOI: 10.1001/jamaneurol.2023.0465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Affiliation(s)
- Alica M Goldman
- Department of Neurology, Neurophysiology Section, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
11
|
Leitner DF, Siu Y, Korman A, Lin Z, Kanshin E, Friedman D, Devore S, Ueberheide B, Tsirigos A, Jones DR, Wisniewski T, Devinsky O. Metabolomic, proteomic, and transcriptomic changes in adults with epilepsy on modified Atkins diet. Epilepsia 2023; 64:1046-1060. [PMID: 36775798 PMCID: PMC10372873 DOI: 10.1111/epi.17540] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/14/2023]
Abstract
OBJECTIVE High-fat and low-carbohydrate diets can reduce seizure frequency in some treatment-resistant epilepsy patients, including the more flexible modified Atkins diet (MAD), which is more palatable, mimicking fasting and inducing high ketone body levels. Low-carbohydrate diets may shift brain energy production, particularly impacting neuron- and astrocyte-linked metabolism. METHODS We evaluated the effect of short-term MAD on molecular mechanisms in adult epilepsy patients from surgical brain tissue and plasma compared to control participants consuming a nonmodified higher carbohydrate diet (n = 6 MAD, mean age = 43.7 years, range = 21-53, diet for average 10 days; n = 10 control, mean age = 41.9 years, range = 28-64). RESULTS By metabolomics, there were 13 increased metabolites in plasma (n = 15 participants with available specimens), which included 4.10-fold increased ketone body 3-hydroxybutyric acid, decreased palmitic acid in cortex (n = 16), and 11 decreased metabolites in hippocampus (n = 6), which had top associations with mitochondrial functions. Cortex and plasma 3-hydroxybutyric acid levels had a positive correlation (p = .0088, R2 = .48). Brain proteomics and RNAseq identified few differences, including 2.75-fold increased hippocampal MT-ND3 and trends (p < .01, false discovery rate > 5%) in hippocampal nicotinamide adenine dinucleotide (NADH)-related signaling pathways (activated oxidative phosphorylation and inhibited sirtuin signaling). SIGNIFICANCE Short-term MAD was associated with metabolic differences in plasma and resected epilepsy brain tissue when compared to control participants, in combination with trending expression changes observed in hippocampal NADH-related signaling pathways. Future studies should evaluate how brain molecular mechanisms are altered with long-term MAD in a larger cohort of epilepsy patients, with correlations to seizure frequency, epilepsy syndrome, and other clinical variables. [Clinicaltrials.gov NCT02565966.].
Collapse
Affiliation(s)
- Dominique F. Leitner
- Comprehensive Epilepsy Center, New York University Grossman School of Medicine, New York, New York, United States of America
- Center for Cognitive Neurology, Department of Neurology, New York University Grossman School of Medicine, New York, New York, United States of America
- Department of Neurology, New York University Grossman School of Medicine, New York, New York, United States of America
| | - Yik Siu
- Metabolomics Core Resource Laboratory, New York University Grossman School of Medicine, New York, New York, United States of America
| | - Aryeh Korman
- Metabolomics Core Resource Laboratory, New York University Grossman School of Medicine, New York, New York, United States of America
| | - Ziyan Lin
- Applied Bioinformatics Laboratories, New York University Grossman School of Medicine, New York, New York, United States of America
| | - Evgeny Kanshin
- Proteomics Laboratory, Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, New York, United States of America
| | - Daniel Friedman
- Comprehensive Epilepsy Center, New York University Grossman School of Medicine, New York, New York, United States of America
- Department of Neurology, New York University Grossman School of Medicine, New York, New York, United States of America
| | - Sasha Devore
- Comprehensive Epilepsy Center, New York University Grossman School of Medicine, New York, New York, United States of America
- Department of Neurology, New York University Grossman School of Medicine, New York, New York, United States of America
| | - Beatrix Ueberheide
- Center for Cognitive Neurology, Department of Neurology, New York University Grossman School of Medicine, New York, New York, United States of America
- Proteomics Laboratory, Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, New York, United States of America
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, New York, United States of America
| | - Aristotelis Tsirigos
- Applied Bioinformatics Laboratories, New York University Grossman School of Medicine, New York, New York, United States of America
- Department of Medicine, New York University Grossman School of Medicine, New York, New York, United States of America
- Department of Pathology, New York University Grossman School of Medicine, New York, New York, United States of America
| | - Drew R. Jones
- Metabolomics Core Resource Laboratory, New York University Grossman School of Medicine, New York, New York, United States of America
| | - Thomas Wisniewski
- Center for Cognitive Neurology, Department of Neurology, New York University Grossman School of Medicine, New York, New York, United States of America
- Department of Neurology, New York University Grossman School of Medicine, New York, New York, United States of America
- Department of Pathology, New York University Grossman School of Medicine, New York, New York, United States of America
- Department of Psychiatry, New York University Grossman School of Medicine, New York, New York, United States of America
| | - Orrin Devinsky
- Comprehensive Epilepsy Center, New York University Grossman School of Medicine, New York, New York, United States of America
- Department of Neurology, New York University Grossman School of Medicine, New York, New York, United States of America
| |
Collapse
|
12
|
Schönberger K, Mitterer M, Glaser K, Stecher M, Hobitz S, Schain-Zota D, Schuldes K, Lämmermann T, Rambold AS, Cabezas-Wallscheid N, Buescher JM. LC-MS-Based Targeted Metabolomics for FACS-Purified Rare Cells. Anal Chem 2023; 95:4325-4334. [PMID: 36812587 PMCID: PMC9996616 DOI: 10.1021/acs.analchem.2c04396] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Metabolism plays a fundamental role in regulating cellular functions and fate decisions. Liquid chromatography-mass spectrometry (LC-MS)-based targeted metabolomic approaches provide high-resolution insights into the metabolic state of a cell. However, the typical sample size is in the order of 105-107 cells and thus not compatible with rare cell populations, especially in the case of a prior flow cytometry-based purification step. Here, we present a comprehensively optimized protocol for targeted metabolomics on rare cell types, such as hematopoietic stem cells and mast cells. Only 5000 cells per sample are required to detect up to 80 metabolites above background. The use of regular-flow liquid chromatography allows for robust data acquisition, and the omission of drying or chemical derivatization avoids potential sources of error. Cell-type-specific differences are preserved while the addition of internal standards, generation of relevant background control samples, and targeted metabolite with quantifiers and qualifiers ensure high data quality. This protocol could help numerous studies to gain thorough insights into cellular metabolic profiles and simultaneously reduce the number of laboratory animals and the time-consuming and costly experiments associated with rare cell-type purification.
Collapse
Affiliation(s)
- Katharina Schönberger
- Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany.,International Max Planck Research School for Immunobiology, Epigenetics and Metabolism (IMPRS-IEM), 79108 Freiburg, Germany.,Faculty of Biology, University of Freiburg, 79085 Freiburg, Germany
| | - Michael Mitterer
- Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany
| | - Katharina Glaser
- Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany.,International Max Planck Research School for Immunobiology, Epigenetics and Metabolism (IMPRS-IEM), 79108 Freiburg, Germany.,Faculty of Biology, University of Freiburg, 79085 Freiburg, Germany
| | - Manuel Stecher
- Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany.,Faculty of Biology, University of Freiburg, 79085 Freiburg, Germany.,International Max Planck Research School for Immunobiology, Epigenetics and Metabolism (IMPRS-MCB), 79108 Freiburg, Germany
| | - Sebastian Hobitz
- Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany
| | - Dominik Schain-Zota
- Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany
| | - Konrad Schuldes
- Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany
| | - Tim Lämmermann
- Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany
| | - Angelika S Rambold
- Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany
| | | | - Joerg M Buescher
- Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany
| |
Collapse
|
13
|
Focal cortical dysplasia as a cause of epilepsy: The current evidence of associated genes and future therapeutic treatments. INTERDISCIPLINARY NEUROSURGERY 2022. [DOI: 10.1016/j.inat.2022.101635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
14
|
Leitner DF, Devore S, Laze J, Friedman D, Mills JD, Liu Y, Janitz M, Anink JJ, Baayen JC, Idema S, van Vliet EA, Diehl B, Scott C, Thijs R, Nei M, Askenazi M, Sivathamboo S, O’Brien T, Wisniewski T, Thom M, Aronica E, Boldrini M, Devinsky O. Serotonin receptor expression in hippocampus and temporal cortex of temporal lobe epilepsy patients by postictal generalized electroencephalographic suppression duration. Epilepsia 2022; 63:2925-2936. [PMID: 36053862 PMCID: PMC9669210 DOI: 10.1111/epi.17400] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/18/2022] [Accepted: 08/18/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Prolonged postictal generalized electroencephalographic suppression (PGES) is a potential biomarker for sudden unexpected death in epilepsy (SUDEP), which may be associated with dysfunctional autonomic responses and serotonin signaling. To better understand molecular mechanisms, PGES duration was correlated to 5HT1A and 5HT2A receptor protein expression and RNAseq from resected hippocampus and temporal cortex of temporal lobe epilepsy patients with seizures recorded in preoperative evaluation. METHODS Analyses included 36 cases (age = 14-64 years, age at epilepsy onset = 0-51 years, epilepsy duration = 2-53 years, PGES duration = 0-93 s), with 13 cases in all hippocampal analyses. 5HT1A and 5HT2A protein was evaluated by Western blot and histologically in hippocampus (n = 16) and temporal cortex (n = 9). We correlated PGES duration to our previous RNAseq dataset for serotonin receptor expression and signaling pathways, as well as weighted gene correlation network analysis (WGCNA) to identify correlated gene clusters. RESULTS In hippocampus, 5HT2A protein by Western blot positively correlated with PGES duration (p = .0024, R2 = .52), but 5HT1A did not (p = .87, R2 = .0020). In temporal cortex, 5HT1A and 5HT2A had lower expression and did not correlate with PGES duration. Histologically, PGES duration did not correlate with 5HT1A or 5HT2A expression in hippocampal CA4, dentate gyrus, or temporal cortex. RNAseq identified two serotonin receptors with expression that correlated with PGES duration in an exploratory analysis: HTR3B negatively correlated (p = .043, R2 = .26) and HTR4 positively correlated (p = .049, R2 = .25). WGCNA identified four modules correlated with PGES duration, including positive correlation with synaptic transcripts (p = .040, Pearson correlation r = .52), particularly potassium channels (KCNA4, KCNC4, KCNH1, KCNIP4, KCNJ3, KCNJ6, KCNK1). No modules were associated with serotonin receptor signaling. SIGNIFICANCE Higher hippocampal 5HT2A receptor protein and potassium channel transcripts may reflect underlying mechanisms contributing to or resulting from prolonged PGES. Future studies with larger cohorts should assess functional analyses and additional brain regions to elucidate mechanisms underlying PGES and SUDEP risk.
Collapse
Affiliation(s)
- Dominique F. Leitner
- Comprehensive Epilepsy Center, NYU Grossman School of Medicine, New York, NY, USA
- Center for Cognitive Neurology, NYU Grossman School of Medicine, New York, NY, USA
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
| | - Sasha Devore
- Comprehensive Epilepsy Center, NYU Grossman School of Medicine, New York, NY, USA
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
| | - Juliana Laze
- Comprehensive Epilepsy Center, NYU Grossman School of Medicine, New York, NY, USA
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
| | - Daniel Friedman
- Comprehensive Epilepsy Center, NYU Grossman School of Medicine, New York, NY, USA
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
| | - James D. Mills
- Amsterdam UMC location University of Amsterdam, Department of (Neuro)pathology, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands
- Department of Clinical and Experimental Epilepsy, University College London Institute of Neurology, London, UK
- Chalfont Centre for Epilepsy, Bucks, UK
| | - Yan Liu
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, NY, USA
| | - Michael Janitz
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Jasper J. Anink
- Amsterdam UMC location University of Amsterdam, Department of (Neuro)pathology, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands
| | - Johannes C. Baayen
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Neurosurgery, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, the Netherlands
| | - Sander Idema
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Neurosurgery, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, the Netherlands
| | - Erwin A. van Vliet
- Amsterdam UMC location University of Amsterdam, Department of (Neuro)pathology, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, the Netherlands
| | - Beate Diehl
- Department of Clinical and Experimental Epilepsy, University College London Institute of Neurology, London, UK
| | - Catherine Scott
- Department of Clinical and Experimental Epilepsy, University College London Institute of Neurology, London, UK
| | - Roland Thijs
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, the Netherlands
| | - Maromi Nei
- Department of Neurology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
| | - Manor Askenazi
- Biomedical Hosting LLC, Arlington, MA, USA
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA
| | - Shobi Sivathamboo
- Department of Neuroscience, Alfred Health, Central Clinical School, Melbourne, Victoria, Australia
- Department Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
| | - Terence O’Brien
- Department of Neuroscience, Alfred Health, Central Clinical School, Melbourne, Victoria, Australia
- Department Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
| | - Thomas Wisniewski
- Center for Cognitive Neurology, NYU Grossman School of Medicine, New York, NY, USA
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Department of Psychiatry, NYU Grossman School of Medicine, New York, NY, USA
| | - Maria Thom
- Department of Clinical and Experimental Epilepsy, University College London Institute of Neurology, London, UK
| | - Eleonora Aronica
- Amsterdam UMC location University of Amsterdam, Department of (Neuro)pathology, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, the Netherlands
| | - Maura Boldrini
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Orrin Devinsky
- Comprehensive Epilepsy Center, NYU Grossman School of Medicine, New York, NY, USA
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
| |
Collapse
|