1
|
Zeinali Nia E, Najjar Sadeghi R, Ebadi M, Faghihi M. ERK1/2 gene expression and hypomethylation of Alu and LINE1 elements in patients with type 2 diabetes with and without cataract: Impact of hyperglycemia-induced oxidative stress. J Diabetes Investig 2025; 16:689-706. [PMID: 39804191 PMCID: PMC11970314 DOI: 10.1111/jdi.14405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/19/2024] [Accepted: 01/02/2025] [Indexed: 04/05/2025] Open
Abstract
AIMS This study aimed to delineate the effect of hyperglycemia on the Alu/LINE-1 hypomethylation and in ERK1/2 genes expression in type 2 diabetes with and without cataract. METHODS This study included 58 diabetic patients without cataracts, 50 diabetic patients with cataracts, and 36 healthy controls. After DNA extraction and bisulfite treatment, LINE-1 and Alu methylation levels were assessed using Real-time MSP. ERK1/2 gene expression was analyzed through real-time PCR. Total antioxidant capacity (TAC), and fasting plasma glucose (FPG) were measured using colorimetric methods. Statistical analysis was performed with SPSS23, setting the significance level at P < 0.05. RESULTS The TAC levels were significantly lower for cataract and diabetic groups than controls (259.31 ± 122.99, 312.43 ± 145.46, 372.58 ± 132.95 nanomole of Trolox equivalent) with a significant correlation between FPG and TAC levels in both the cataract and diabetic groups (P < 0.05). Alu and LINE-1 sequences were found to be statistically hypomethylated in diabetic and cataract patients compared to controls. In these groups, TAC levels were directly correlated with Alu methylation (P < 0.05) but not LINE-1. ERK1/2 gene expression was significantly higher in diabetic and cataract patients, showing increases of 2.41-fold and 1.43-fold for ERK1, and 1.27-fold and 1.5 for ERK2, respectively. ERK1 expression correlated significantly with FPG levels. A reverse correlation was observed between TAC levels and ERK1/2 expression. CONCLUSIONS Our findings indicate that hyperglycemia-induced oxidative stress may alter ERK1/2 gene expression patterns and induce aberrant hypomethylation in Alu and LINE-1 sequences. These aberrant changes may play a contributing role in diabetic complications such as cataracts.
Collapse
Affiliation(s)
- Elham Zeinali Nia
- Department of Biochemistry, Faculty of Basic SciencesIslamic Azad University Damghan BranchDamghanIran
| | - Ruhollah Najjar Sadeghi
- Department of Clinical Biochemistry, Faculty of MedicineMazandaran University of Medical SciencesSariIran
| | - Mostafa Ebadi
- Department of Biochemistry, Faculty of Basic SciencesIslamic Azad University Damghan BranchDamghanIran
| | - Mohammad Faghihi
- Department of Medical SciencesShahid Beheshti UniversityTehranIran
| |
Collapse
|
2
|
Willmer T, Mabasa L, Sharma J, Muller CJF, Johnson R. Blood-Based DNA Methylation Biomarkers to Identify Risk and Progression of Cardiovascular Disease. Int J Mol Sci 2025; 26:2355. [PMID: 40076974 PMCID: PMC11900213 DOI: 10.3390/ijms26052355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/28/2025] [Accepted: 03/02/2025] [Indexed: 03/14/2025] Open
Abstract
Non-communicable diseases (NCDs) are the leading cause of death worldwide, with cardiovascular disease (CVD) accounting for half of all NCD-related deaths. The biological onset of CVD may occur long before the development of clinical symptoms, hence the urgent need to understand the molecular alterations underpinning CVD, which would facilitate intervention strategies to prevent or delay the onset of the disease. There is evidence to suggest that CVD develops through a complex interplay between genetic, lifestyle, and environmental factors. Epigenetic modifications, including DNA methylation, serve as proxies linking genetics and the environment to phenotypes and diseases. In the past decade, a growing list of studies has implicated DNA methylation in the early events of CVD pathogenesis. In this regard, screening for these epigenetic marks in asymptomatic individuals may assist in the early detection of CVD and serve to predict the response to therapeutic interventions. This review discusses the current literature on the relationship between blood-based DNA methylation alterations and CVD in humans. We highlight a set of differentially methylated genes that show promise as candidates for diagnostic and prognostic CVD biomarkers, which should be prioritized and replicated in future studies across additional populations. Finally, we discuss key limitations in DNA methylation studies, including genetic diversity, interpatient variability, cellular heterogeneity, study confounders, different methodological approaches used to isolate and measure DNA methylation, sample sizes, and cross-sectional study design.
Collapse
Affiliation(s)
- Tarryn Willmer
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa; (L.M.); (J.S.); (C.J.F.M.); (R.J.)
- Centre for Cardio-metabolic Research in Africa, Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Lawrence Mabasa
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa; (L.M.); (J.S.); (C.J.F.M.); (R.J.)
- Centre for Cardio-metabolic Research in Africa, Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa
| | - Jyoti Sharma
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa; (L.M.); (J.S.); (C.J.F.M.); (R.J.)
| | - Christo J. F. Muller
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa; (L.M.); (J.S.); (C.J.F.M.); (R.J.)
- Centre for Cardio-metabolic Research in Africa, Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa
- Department of Biochemistry and Microbiology, University of Zululand, Kwa-Dlangezwa 3886, South Africa
| | - Rabia Johnson
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa; (L.M.); (J.S.); (C.J.F.M.); (R.J.)
- Centre for Cardio-metabolic Research in Africa, Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa
| |
Collapse
|
3
|
Charoenvicha C, Thongsroy J, Apaijai N, Attachaipanich T, Sirimaharaj W, Khwanngern K, Chattipakorn N, Mutirangura A, Chattipakorn SC. Alterations of senescence-associated markers in patients with non-syndromic cleft lip and palate. Sci Rep 2024; 14:22555. [PMID: 39343816 PMCID: PMC11439953 DOI: 10.1038/s41598-024-74353-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024] Open
Abstract
Non-syndromic cleft lip with or without cleft palate (NSCL/P) is one of the most common craniofacial anomalies. Abnormal Alu methylation in DNA of the pregnant mother may influence the abnormal development of the child. This study aimed to examine Alu methylation and cellular senescence in NSCL/P patients and their mothers as well as the correlation with the severity of NSCL/P. A total of 39 patients with NSCL/P and 33 mothers were enrolled. Of these patients, 6 were cleft lip only (CLO), 9 were cleft palate only (CPO), and 24 were cleft lip and palate (CLP). Alu methylation and senescence markers were determined in the white blood cells of NSCL/P patients, their mothers, and in the lip and palatal tissues of patients at the time of cheiloplasty and palatoplasty. Total Alu methylation was not significantly different between groups. However, a decrease in Alu hypermethylation, increased partial Alu methylation, RAGE, and p16 expression were shown in CLP, the most severe cleft type. Alu methylation in tissues did not differ between groups. In mothers, an increase in Alu methylation was observed only in the CLP. Therefore, the pathogenesis of NSCL/P may be related to Alu methylation of the mother promoting loss of Alu methylation and subsequently senescence in the children.
Collapse
Affiliation(s)
- Chirakan Charoenvicha
- Plastic and Reconstructive Surgery Unit, Department of Surgery, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Princess Sirindhorn IT Foundation Craniofacial Center, Chiang Mai University, Chiang Mai, 50200, Thailand
- Clinical Surgical Research Center, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Jirapan Thongsroy
- School of Medicine, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Nattayaporn Apaijai
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Tanawat Attachaipanich
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Wimon Sirimaharaj
- Plastic and Reconstructive Surgery Unit, Department of Surgery, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Princess Sirindhorn IT Foundation Craniofacial Center, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Krit Khwanngern
- Plastic and Reconstructive Surgery Unit, Department of Surgery, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Princess Sirindhorn IT Foundation Craniofacial Center, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- The Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
| | - Apiwat Mutirangura
- Center of Excellence in Molecular Genetics of Cancer & Human Diseases, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
4
|
Katsanou A, Kostoulas C, Liberopoulos E, Tsatsoulis A, Georgiou I, Tigas S. Retrotransposons and Diabetes Mellitus. EPIGENOMES 2024; 8:35. [PMID: 39311137 PMCID: PMC11417941 DOI: 10.3390/epigenomes8030035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/01/2024] [Accepted: 09/04/2024] [Indexed: 09/26/2024] Open
Abstract
Retrotransposons are invasive genetic elements, which replicate by copying and pasting themselves throughout the genome in a process called retrotransposition. The most abundant retrotransposons by number in the human genome are Alu and LINE-1 elements, which comprise approximately 40% of the human genome. The ability of retrotransposons to expand and colonize eukaryotic genomes has rendered them evolutionarily successful and is responsible for creating genetic alterations leading to significant impacts on their hosts. Previous research suggested that hypomethylation of Alu and LINE-1 elements is associated with global hypomethylation and genomic instability in several types of cancer and diseases, such as neurodegenerative diseases, obesity, osteoporosis, and diabetes mellitus (DM). With the advancement of sequencing technologies and computational tools, the study of the retrotransposon's association with physiology and diseases is becoming a hot topic among researchers. Quantifying Alu and LINE-1 methylation is thought to serve as a surrogate measurement of global DNA methylation level. Although Alu and LINE-1 hypomethylation appears to serve as a cellular senescence biomarker promoting genomic instability, there is sparse information available regarding their potential functional and biological significance in DM. This review article summarizes the current knowledge on the involvement of the main epigenetic alterations in the methylation status of Alu and LINE-1 retrotransposons and their potential role as epigenetic markers of global DNA methylation in the pathogenesis of DM.
Collapse
Affiliation(s)
- Andromachi Katsanou
- Department of Endocrinology, University of Ioannina, 45110 Ioannina, Greece; (A.K.); (A.T.)
- Department of Internal Medicine, Hatzikosta General Hospital, 45445 Ioannina, Greece
| | - Charilaos Kostoulas
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (C.K.); (I.G.)
| | - Evangelos Liberopoulos
- First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, 11527 Athens, Greece;
| | - Agathocles Tsatsoulis
- Department of Endocrinology, University of Ioannina, 45110 Ioannina, Greece; (A.K.); (A.T.)
| | - Ioannis Georgiou
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (C.K.); (I.G.)
| | - Stelios Tigas
- Department of Endocrinology, University of Ioannina, 45110 Ioannina, Greece; (A.K.); (A.T.)
| |
Collapse
|
5
|
Huang D, Shang W, Xu M, Wan Q, Zhang J, Tang X, Shen Y, Wang Y, Yu Y. Genome-Wide Methylation Analysis Reveals a KCNK3-Prominent Causal Cascade on Hypertension. Circ Res 2024; 135:e76-e93. [PMID: 38841840 DOI: 10.1161/circresaha.124.324455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND Despite advances in understanding hypertension's genetic structure, how noncoding genetic variants influence it remains unclear. Studying their interaction with DNA methylation is crucial to deciphering this complex disease's genetic mechanisms. METHODS We investigated the genetic and epigenetic interplay in hypertension using whole-genome bisulfite sequencing. Methylation profiling in 918 males revealed allele-specific methylation and methylation quantitative trait loci. We engineered rs1275988T/C mutant mice using CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated protein 9), bred them for homozygosity, and subjected them to a high-salt diet. Telemetry captured their cardiovascular metrics. Protein-DNA interactions were elucidated using DNA pull-downs, mass spectrometry, and Western blots. A wire myograph assessed vascular function, and analysis of the Kcnk3 gene methylation highlighted the mutation's role in hypertension. RESULTS We discovered that DNA methylation-associated genetic effects, especially in non-cytosine-phosphate-guanine (non-CpG) island and noncoding distal regulatory regions, significantly contribute to hypertension predisposition. We identified distinct methylation quantitative trait locus patterns in the hypertensive population and observed that the onset of hypertension is influenced by the transmission of genetic effects through the demethylation process. By evidence-driven prioritization and in vivo experiments, we unearthed rs1275988 in a cell type-specific enhancer as a notable hypertension causal variant, intensifying hypertension through the modulation of local DNA methylation and consequential alterations in Kcnk3 gene expression and vascular remodeling. When exposed to a high-salt diet, mice with the rs1275988C/C genotype exhibited exacerbated hypertension and significant vascular remodeling, underscored by increased aortic wall thickness. The C allele of rs1275988 was associated with elevated DNA methylation levels, driving down the expression of the Kcnk3 gene by attenuating Nr2f2 (nuclear receptor subfamily 2 group F member 2) binding at the enhancer locus. CONCLUSIONS Our research reveals new insights into the complex interplay between genetic variations and DNA methylation in hypertension. We underscore hypomethylation's potential in hypertension onset and identify rs1275988 as a causal variant in vascular remodeling. This work advances our understanding of hypertension's molecular mechanisms and encourages personalized health care strategies.
Collapse
Affiliation(s)
- Dandan Huang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, State Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, China (D.H., W.S., M.X., Y.S., Y.Y.)
- School of Food Science and Technology, Jiangnan University, Wuxi, China (D.H.)
| | - Wenlong Shang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, State Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, China (D.H., W.S., M.X., Y.S., Y.Y.)
| | - Mengtong Xu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, State Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, China (D.H., W.S., M.X., Y.S., Y.Y.)
| | - Qiangyou Wan
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine (Q.W.)
| | - Jin Zhang
- Department of Cardiovascular Medicine, Research Center for Hypertension Management and Prevention in Community, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China (J.Z., X.T., Y.W.)
| | - Xiaofeng Tang
- Department of Cardiovascular Medicine, Research Center for Hypertension Management and Prevention in Community, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China (J.Z., X.T., Y.W.)
| | - Yujun Shen
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, State Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, China (D.H., W.S., M.X., Y.S., Y.Y.)
| | - Yan Wang
- Department of Cardiovascular Medicine, Research Center for Hypertension Management and Prevention in Community, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China (J.Z., X.T., Y.W.)
| | - Ying Yu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, State Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, China (D.H., W.S., M.X., Y.S., Y.Y.)
| |
Collapse
|
6
|
Jiraboonsri S, Hemvipat P, Kamolratanakul S, Bhummaphan N, Siritientong T, Kitkumthorn N, Mutirangura A, Meevassana J. CpG methylation changes in Alu repetitive sequences in normal aging due to diastolic hypertension in human dermal fibroblasts from the facial area. Biomed Rep 2024; 20:5. [PMID: 38222864 PMCID: PMC10784876 DOI: 10.3892/br.2023.1693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 11/02/2023] [Indexed: 01/16/2024] Open
Abstract
Aging fibroblasts, an important factor contributing to skin aging, are affected by numerous mechanisms, including alterations in DNA methylation and age-related diseases. The current study aimed to investigate the role of Alu methylation in aging fibroblasts and hypertension. The Alu methylation levels in dermal fibroblasts obtained from patients of different ages and blood pressure status were analyzed using the combined bisulfite restriction analysis technique. An inverse correlation was observed between Alu methylation in dermal fibroblasts and patient age. Dermal fibroblasts from the high-normal diastolic blood pressure group had higher Alu methylation levels compared with those from the normal group. The findings of the present study suggest that Alu methylation alterations can be observed with chronological aging and hypertension, and are a potential aging marker or therapeutic target.
Collapse
Affiliation(s)
- Suvinai Jiraboonsri
- Center of Excellence in Burn and Wound Care, Chulalongkorn University, Bangkok 10330, Thailand
| | - Panicha Hemvipat
- Center of Excellence in Burn and Wound Care, Chulalongkorn University, Bangkok 10330, Thailand
| | - Supitcha Kamolratanakul
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Narumol Bhummaphan
- College of Public Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tippawan Siritientong
- Center of Excellence in Burn and Wound Care, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nakarin Kitkumthorn
- Department of Oral Biology, Faculty of Dentistry, Mahidol University, Bangkok 10400, Thailand
| | - Apiwat Mutirangura
- Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Jiraroch Meevassana
- Center of Excellence in Burn and Wound Care, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
7
|
Katsanou A, Kostoulas CA, Liberopoulos E, Tsatsoulis A, Georgiou I, Tigas S. Alu Methylation Patterns in Type 1 Diabetes: A Case-Control Study. Genes (Basel) 2023; 14:2149. [PMID: 38136971 PMCID: PMC10742409 DOI: 10.3390/genes14122149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/21/2023] [Accepted: 11/25/2023] [Indexed: 12/24/2023] Open
Abstract
Evidence suggests that genome-wide hypomethylation may promote genomic instability and cellular senescence, leading to chronic complications in people with diabetes mellitus. Limited data are however available on the Alu methylation status in patients with type 1 diabetes (T1D). Methods: We investigated DNA methylation levels and patterns of Alu methylation in the peripheral blood of 36 patients with T1D and 29 healthy controls, matched for age and sex, by using the COmbined Bisulfite Restriction Analysis method (COBRA). Results: Total Alu methylation rate (mC) was similar between patients with T1D and controls (67.3% (64.4-70.9%) vs. 68.0% (62.0-71.1%), p = 0.874). However, patients with T1D had significantly higher levels of the partial Alu methylation pattern (mCuC + uCmC) (41.9% (35.8-45.8%) vs. 36.0% (31.7-40.55%), p = 0.004) compared to healthy controls. In addition, a positive correlation between levels of glycated hemoglobin (HbA1c) and the partially methylated loci (mCuC + uCmC) was observed (Spearman's rho = 0.293, p = 0.018). Furthermore, significant differences were observed between patients with T1D diagnosed before and after the age of 15 years regarding the total methylation mC, the methylated pattern mCmC and the unmethylated pattern uCuC (p = 0.040, p = 0.044 and p = 0.040, respectively). Conclusions: In conclusion, total Alu methylation rates were similar, but the partial Alu methylation pattern (mCuC + uCmC) was significantly higher in patients with T1D compared to healthy controls. Furthermore, this pattern was associated positively with the levels of HbA1c and negatively with the age at diagnosis.
Collapse
Affiliation(s)
- Andromachi Katsanou
- Department of Endocrinology, University of Ioannina, 45110 Ioannina, Greece; (A.K.); (A.T.)
- Department of Internal Medicine, Hatzikosta General Hospital, 45445 Ioannina, Greece
| | - Charilaos A. Kostoulas
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (C.A.K.); (I.A.G.)
| | - Evangelos Liberopoulos
- First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, 11527 Athens, Greece;
| | - Agathocles Tsatsoulis
- Department of Endocrinology, University of Ioannina, 45110 Ioannina, Greece; (A.K.); (A.T.)
| | - Ioannis Georgiou
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (C.A.K.); (I.A.G.)
| | - Stelios Tigas
- Department of Endocrinology, University of Ioannina, 45110 Ioannina, Greece; (A.K.); (A.T.)
| |
Collapse
|
8
|
Thongsroy J, Mutirangura A. Decreased Alu methylation in type 2 diabetes mellitus patients increases HbA1c levels. J Clin Lab Anal 2023; 37:e24966. [PMID: 37743692 PMCID: PMC10623537 DOI: 10.1002/jcla.24966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/20/2023] [Accepted: 09/13/2023] [Indexed: 09/26/2023] Open
Abstract
INTRODUCTION Alu hypomethylation is a common epigenetic process that promotes genomic instability with aging phenotypes, which leads to type 2 diabetes mellitus (type 2 DM). Previously, our results showed significantly decreased Alu methylation levels in type 2 DM patients. In this study, we aimed to investigate the longitudinal changes in Alu methylation levels in these patients. RESULTS We observed significantly decreased Alu methylation levels in type 2 DM patients compared with normal (p = 0.0462). Moreover, our findings demonstrated changes in Alu hypomethylation over a follow-up period within the same individuals (p < 0.0001). A reduction in Alu methylation was found in patients with increasing HbA1c levels (p = 0.0013) and directly correlated with increased HbA1c levels in type 2 DM patients (r = -0.2273, p = 0.0387). CONCLUSIONS Alu methylation in type 2 DM patients progressively decreases with increasing HbA1c levels. This observation suggests a potential association between Alu hypomethylation and the underlying molecular mechanisms of elevated blood glucose. Furthermore, monitoring Alu methylation levels may serve as a valuable biomarker for assessing the clinical outcomes of type 2 DM.
Collapse
Affiliation(s)
- Jirapan Thongsroy
- School of MedicineWalailak UniversityNakhon Si ThammaratThailand
- Research Center in Tropical PathobiologyWalailak UniversityNakhon Si ThammaratThailand
| | - Apiwat Mutirangura
- Center for Excellence in Molecular Genetics of Cancer and Human DiseasesChulalongkorn UniversityBangkokThailand
- Department of Anatomy, Faculty of MedicineChulalongkorn UniversityBangkokThailand
| |
Collapse
|